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Abstract. We present a new computational approach for a class of large-scale nonlinear eigen-
value problems (NEPs) that are nonlinear in the eigenvalue. The contribution of this paper is two-fold.
We derive a new iterative algorithm for NEPs, the tensor infinite Arnoldi method (TIAR), which is
applicable to a general class of NEPs, and we show how to specialize the algorithm to a specific NEP:
the waveguide eigenvalue problem. The waveguide eigenvalue problem arises from a finite-element
discretization of a partial differential equation (PDE) used in the study waves propagating in a peri-
odic medium. The algorithm is successfully applied to accurately solve benchmark problems as well
as complicated waveguides. We study the complexity of the specialized algorithm with respect to the
number of iterations m and the size of the problem n, both from a theoretical perspective and in
practice. For the waveguide eigenvalue problem, we establish that the computationally dominating
part of the algorithm has complexity O(nm2 +

√
nm3). Hence, the asymptotic complexity of TIAR

applied to the waveguide eigenvalue problem, for n → ∞, is the same as for Arnoldi’s method for
standard eigenvalue problems.

1. Introduction. Consider the propagation of waves in a periodic medium, which
are governed by the Helmholtz equation

(1.1) ∆v(x, z) + ω2η(x, z)2v(x, z) = 0, (x, z) ∈ R2,

where η ∈ L∞(R2) is called the index of refraction and ω the temporal frequency.
When (1.1) models an electromagnetic wave, the solution v typically represents the y-
component of the electric or the magnetic field. The (spatially dependent) wavenumber
is κ(x, z) := ωη(x, z) and we assume that the material is periodic in the z-direction
and without loss of generality the period is assumed to be 1, i.e., η(x, z+ 1) = η(x, z).
The index of refraction is assumed to be constant for sufficiently large |x|, such that
κ(x, z) = κ− when x < x−, κ(x, z) = κ+ when x > x+. In this paper we assume the
wavenumber to be piecewise constant. Figure 1.1 shows an example of the setup.

Bloch solutions to (1.1) are those solutions that can be factorized as a product of
a z-periodic function and eγz, i.e.,

(1.2) v(x, z) = v̂(x, z)eγz, v̂(x, z + 1) = v̂(x, z).

The constant γ ∈ C is called the Floquet multiplier and without loss of generality, it
is assumed that Im γ ∈ (−2π, 0]. We interpret (1.1) in a weak sense. We are only
interested in Bloch solutions that decay in magnitude as |x| → ∞ and we require that
v̂, restricted to S := R × (0, 1), belongs to the Sobolev space H1(S). Moreover, we
assume that any Bloch solution has a representative in C1(S). These solutions are in
general not in C2(S) since κ is discontinuous.

In this contex, Bloch solutions are also called guided modes of (1.1). If γ is purely
imaginary, the mode is called propagating; if |Re γ| is small it is called leaky. Both
mode types are of great interest in various settings [11, 26, 31, 28, 2]. We present a
procedure to compute leaky modes, with Re γ < 0 and Im γ ∈ (−2π, 0). This specific
setup has been studied, e.g., in [32].

To compute the guided modes one can either fix ω and find γ, or, conversely, fix γ
and find ω. Both formulations lead to a PDE eigenvalue problem set on the unbounded
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Figure 1.1: Illustration of a waveguide defined on R2. The wavenumber κ(x, z) is
constant in the three regions separated by the thick lines.

domain S. When γ is held fix, the eigenvalue problem is linear and if ω is held fix, it
is nonlinear (quadratic) in γ. In this paper we fix ω, and the substitution of (1.2) into
(1.1) leads to the following problem. Find (γ, v̂) ∈ C×H1(S) such that

∆v̂(x, z) + 2γv̂z(x, z) + (γ2 + κ(x, z)2)v̂(x, z) = 0, (x, z) ∈ S,(1.3a)

v̂(x, 0) = v̂(x, 1), x ∈ R,(1.3b)

v̂z(x, 0) = v̂z(x, 1), x ∈ R.(1.3c)

The problem (1.3), which in this paper is referred to as the waveguide eigenvalue
problem, is defined on an unbounded domain. We use a well-known technique to
reduce the problem on a unbounded domain to a problem on a bounded domain. We
impose artificial (absorbing) boundary conditions, in particular so-called Dirichlet-to-
Neumann (DtN) maps. See [14, 3] for literature on artificial boundary conditions.

The DtN-reformulation and a finite-element discretization, with rectangular ele-
ments generated by a uniform grid with nx and nz grid points in x and z-direction
correspondingly, is presented in Section 2. A similar DtN-discretization has been ap-
plied to the waveguide eigenvalue problem in the literature [32]. In relation to [32],
we need further equivalence results for the DtN-operator and use a different type of
discretization, which allows easier integration with our new iterative method. Due
to the fact that the DtN-maps depend on γ, the discretization leads to a nonlinear
eigenvalue problem (NEP) of the following type. Find (γ,w) ∈ C× Cn\{0} such that

(1.4) M(γ)w = 0,

where

(1.5) M(γ) :=

[
Q(γ) C1(γ)
CT2 P (γ)

]
∈ Cn×n,

and n = nxnz + 2nz. The matrices Q(γ) ∈ Cnxnz×nxnz and C1(γ) ∈ Cnxnz×2nz are a
quadratic polynomials in γ, Q(γ) = A0 +A1γ +A2γ

2, C1(γ) = C1,0 +C1,1γ +C1,2γ
2,

where Ai, C1,i and CT2 are large and sparse. The matrix P (γ) has the structure

(1.6) P (γ) =

[
RΛ−(γ)R−1 0

0 RΛ+(γ)R−1

]
∈ C2nz×2nz

and Λ±(γ) ∈ Cnz×nz are diagonal matrices containing nonlinear functions of γ involv-
ing square roots of polynomials. The matrix-vector product corresponding to R and
R−1 can be computed with the Fast Fourier Transform (FFT).

We have two main contributions in this paper:
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• a new algorithm, the tensor infinite Arnoldi method (TIAR), for a general
class of NEPs (1.4), which is based on a tensor representation of the basis of
the infinite Arnoldi method (IAR) [18];

• a discretization of the waveguide eigenvalue problem and an adaption of TIAR,
such that the problem can be efficiently solved.

The contributions are tightly connected since the selection of discretization is done with
the objective to be able to use TIAR, and TIAR is further improved by exploitation
of the structures of the discretization.

The general NEP (1.4) has received considerable attention in the literature in
various generality settings. We list those algorithm that are related to our method.
See the review papers [24, 37] and the problem collection [4], for further literature.

The structure of the basis matrix arising in Arnoldi’s method in the context of
NEPs has been exploited in various settings. Although the approaches are different,
they do have in common that they exploit a redundancy in the Krylov subspace. To
our knowledge, the first approach was the SOAR-method [1] which is derived from a
structure arising in Arnoldi’s method applied to a particular companion matrix for
quadratic eigenvalue problems. For more general polynomial eigenvalue problems,
an approach was presented at a conference [30]. The approach [21] also contains a
structure exploitation designed for polynomial eigenvalue problems (expressed in a
Chebyshev basis). It is particularly suitable to use in a two stage-approach, which
is done in [7], where the eigenvalues of interest lie in a predefined interval and (a
non-polynomial) M can first be approximated with interpolation on a Chebyshev grid
and subsequently the polynomial eigenvalue problem can be solved with [21]. The
algorithm in [39] also exploits a compact representation. It is mainly developed for
moment-matching in model reduction of time-delay systems, where the main goal is to
compute a subspace (of Cn) with appropriate approximation properties. The algorithm
in [36], which has been developed in parallel independent of our work, also exploits
compact representation and is based on a rational Krylov method. We further relate to
[36] in Section 5.3. In this paper we prove the existence of a compact representation of
the basis in the infinite Arnoldi method, which is a method designed for non-polynomial
analytic nonlinear eigenvalue problems. We also show how the compact representation
can be exploited. The algorithm improves efficiency both in terms of memory and
computation time. Moreover, our compact representation can be naturally combined
with the waveguide eigenvalue problem.

Some recent approaches for (1.4) exploit low-rank properties, e.g., M (i)(0) = ViQ
T ,

where Vi, Q ∈ Cn×r for sufficiently large i, and r is small relative to n. See, e.g.,
[29, 38, 34]. This property is present here if we select r = nz = O(

√
n), which is not

very small with respect to the size of the problem, making the low-rank methods to
not appear favorable for this NEP.

The (non-polynomial) nonlinearities in our approach stem from absorbing bound-
ary conditions. Other absorbing boundary conditions also lead to NEPs. This has
been illustrated in specific applications, e.g., in the simulation of optical fibers [19],
cavity in accelerator design [22], double-periodic photonic crystals [8, 9] and micro-
electromechanical systems [5]. There is to our knowledge no approach that integrates
the structure of the discretization of the PDE and the γ-dependent boundary condi-
tions with an Arnoldi method. The adaption of the algorithm to our specific PDE is
presented in Section 4.
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The notation is mostly standard. A matrix consisting of elements ai,j is denoted

[ai,j ]
m
i,j=1 =

a1,1 · · · a1,m

...
...

am,1 · · · am,m

 .
The notation is analogous for vectors and tensors. We use Q to denote an extension
of Q with one block row of zeros. The size of the block will be clear by the context.

2. Derivation of the NEP.

2.1. DtN reformulation. Our computational approach is based on the concept
of artificial boundary conditions. The technique of artificial boundary conditions has
been used in various settings, e.g., [32, 20, 15, 11, 12]. The unbounded-domain problem
is equivalently rephrased as a bounded-domain problem on S0 := [x−, x+]× [0, 1] ⊂ S
by introducing certain boundary conditions at x = x±. The boundary conditions
are stated in terms of so-called Dirichlet-to-Neumann (DtN) maps which relate the
(normal) derivative of the solution at the boundary with the function value at the
boundary. The artificial boundary conditions and the discretization are selected such
that we can integrate the structure of the discretization, with algorithm presented in
Section 4.

We first derive some results necessary for our setting. The DtN formulation of the
eigenvalue problem (1.3) is given as follows. Find γ and u ∈ H1(S0) such that

∆u(x, z) + 2γuz(x, z) + (γ2 + κ(x, z)2)u(x, z) = 0, (x, z) ∈ S0,(2.1a)

u(x, 0) = u(x, 1), x ∈ (x−, x+),(2.1b)

uz(x, 0) = uz(x, 1), x ∈ (x−, x+),(2.1c)

T−,γ [u(x−, ·)] = −ux(x−, ·),(2.1d)

T+,γ [u(x+, ·)] = ux(x+, ·),(2.1e)

where T±,γ : H1([0, 1]) 7→ L2([0, 1]) are the DtN maps, defined by

(2.2) T±,γ [g](z) :=
∑
k∈Z

s±,k(γ)gke
2πikz,

where [gk]k∈Z is the Fourier expansion of g, i.e., g(z) :=
∑
k∈Z gke

2πikz and

β±,k(γ) := (γ + 2iπk)2 + κ2
± = ((γ + 2iπk) + iκ±)((γ + 2iπk)− iκ±),(2.3)

s±,k(γ) := sign(Im (β±,k(γ)))i
√
β±,k(γ).(2.4)

In this section we show that, under the assumption that neither the real nor the
imaginary part of γ vanishes, the DtN maps are well-defined and the problems (1.3) and
(2.1) are equivalent. In order to characterize the DtN maps, we consider the exterior
problems, i.e., the problems corresponding to the domains S+ = (x+,∞)× (0, 1) and
S− = (−∞, x−) × (0, 1). The exterior problems are defined as the two problems
corresponding to finding w ∈ H1(S±) such that, for a given g,

∆w + 2γwz + (γ2 + κ2
±)w = 0, (x, z) ∈ S±,(2.5a)

w(x, 0) = w(x, 1),(2.5b)

wz(x, 0) = wz(x, 1),(2.5c)

w(x±, z) = g(z).(2.5d)
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Remark 2.1 (Regularity). Note that if we multiply a solution to (1.3), (2.1) or
(2.5) with eγz, we have a solution to the Helmholtz equation, i.e., it satisfies (1.1)
in their respective domains, i.e., S, S0 and S±. By assumption, solutions to (1.3),
(2.1) and (2.5) are C1 and the traces taken on x = x± and its first derivatives are
always well-defined and continuous. Moreover, for x < x− and x > x+, since κ(x, z)
is constant, the problem can be interpreted in a strong sense and the solutions are in
C∞.

Our assumption that the solution has regularity C1 can be relaxed as follows. If we
select x− and x+ such that κ is constant over x− and x+, we have by elliptic regularity
[10, Section 6.3.1, Theorem 1], that weak H1 solutions of (1.3), (2.1) and (2.5) are
in H2

loc. This means that traces taken on x = x± of a solution and its derivatives are
always well-defined and smooth, without explicitly assuming that the solution is in C1.

The following result illustrates that the application of the DtN maps in (2.2) is
in a sense equivalent to solving the exterior problems and evaluating the solutions in
the normal direction at the boundary x = x±. More precisely, the following lemma
shows that if Re γ 6= 0 and Im γ ∈ (−2π, 0) the problems are well-posed in H1(S±)
and the boundary relations (2.1d) and (2.1e) are satisfied. The proof is available in
Appendix A.

Lemma 2.2 (Characterization of DtN maps). Suppose Re γ 6= 0, and Im γ 6∈ 2πZ
and g ∈ H1/2([0, 1]). Then, each of the exterior problems (2.5) have a unique solution
w ∈ H1(S±). Moreover, there is a constant C independent of g such that

(2.6) ||w||H1(S±) ≤ C||g||H1/2([0,1]).

If it is further assumed that g ∈ H1([0, 1]), then the DtN maps in (2.2) are well-defined
and satisfy

(2.7) T+,γ [w(x+, ·)](z) = wx(x+, z), T−,γ [w(x−, ·)](z) = −wx(x−, z).

This lemma immediately implies the equivalence between (1.3) and (2.1) under
the same conditions on γ.

Theorem 2.3 (Equivalence of (1.3) and (2.1)). Suppose Re γ 6= 0 and Im γ 6∈ 2πZ.
Then u ∈ H1(S0) is a solution to (2.1) if and only if there exists a solution v̂ ∈ H1(S)
to (1.3) such that u is the restriction of v̂ to S0.

Proof. Suppose v̂ is a solution of (1.3) and u is its restriction to S0. Then u
clearly satisfies (2.1a-c). By Remark 2.1 the functions v̂(x±, z) = u(x±, z) are in
C1([0, 1]) ⊂ H1([0, 1]). Lemma 2.2 shows that v̂, restricted to S±, are the unique
solutions to the exterior problems (2.5). Hence, v̂ is identical to the union of u and
the solutions to the exterior problems (2.5). Since v̂ ∈ C1(S), we have that v̂x(x±, z)
is continuous and wx(x±, z) = ux(x±, z) = v̂x(x±, z). Moreover, due to (2.7), the
boundary conditions (2.1d-e) are satisfied.

On the other hand, suppose u ∈ H1(S0) is a weak solution to (2.1). Remark 2.1
again implies that u ∈ C1(S0) and in particular u(x±, z) ∈ C1([0, 1]) ⊂ H1([0, 1]).
We have from Lemma 2.2 that the exterior problems (2.5) have unique solutions w
that satisfy (2.7). Let v̂ be defined as the union of the u and w. The union v̂ has
a continuous derivative on the boundary x = x± due to (2.1)d-e and (2.7) and since
u ∈ H1(S0) and w ∈ H1(S±), then v̂ ∈ H1(S) and satisfies (1.3) by construction.

Remark 2.4 (Conditions on γ). Modes with Re γ = 0 are propagating. For those
modes, the well-posedness of the DtN-maps depends on the wave number. See [11] for
precise results about well-posedness in the situation Re γ = 0. In our setting we only
consider leaky modes and Re γ < 0. The situation Re γ > 0 can be treated analogously.
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2.2. Discretization. We discretize the finite-domain PDE (2.1) with a finite-
element approach. The domain [x−, x+] × [0, 1] is partitioned using rectangular ele-
ments obtained with a uniform distribution of nodes in the x and z directions. We
use nx grid points in the x-direction and nz grid points in the z-direction and define
xi = x− + ihx and zj = jhz where i = 1, . . . , nx, j = 1, . . . , nz, hx = x+−x−

nx+1 and

hz = 1
nz

. The basis functions are chosen as piecewise bilinear functions that are peri-
odic in the z direction with period 1. In particular, the basis functions that we consider
are periodic modification of the standard basis functions. We let û denote the vector of
containing coefficients for the interior points, û ≈ vec([u(zj , xi)]

nx,nz

j=1,i ) and û+ and û−
the coefficients corresponding to the boundary, i.e., ûT± ≈ [u(x±, z1), . . . , u(x0, znx

)].
By applying the Ritz–Galerkin discretization on the weak formulation, we find that

(2.8) Q(γ)û+ C1(γ)

[
û−
û+

]
= 0,

where Q(γ) := A0 +γA1 +γ2A2, C1(γ) := C1,0 +γC1,1 +γ2C1,2. The matrices (Ai)
2
i=0

and (C1,i)
2
i=0 can be computed in an efficient and explicit way1 with the procedure

outlined in Appendix B.
Two approximations must be done in order to incorporate the boundary conditions.

We construct approximations of the right-hand side of (2.1)d-e using the one-sided
second-order finite-difference approximation,

(2.9)

 −ux(x−, z1)
...

−ux(x−, znz
)

 ≈ −CT2,−û− d0û− and

 ux(x+, z1)
...

ux(x+, znz
)

 ≈ −CT2,+û− d0û+

where CT2,− = (d1, d2, 0, . . . , 0)⊗ Inz ∈ Cnz×nznx and CT2,+ = ((0, . . . , 0, d2, d1)⊗ Inz ) ∈
Cnz×nznx with d0 = − 3

2hx
, d1 = 2

hx
and d2 = − 1

2hx
. The DtN maps in the left-hand

side of (2.1d-e) act on the function values on the boundary only, i.e., the function
approximated by û±. We compute the first p Fourier coefficients of the approximated
function, apply the definition of T±,γ on the Fourier coefficients, and convert the Fourier
expansion back to the uniform grid. More precisely, the approximation of the left-hand
side of (2.1)d-e is given by

(2.10)
[
T±,γ(u(x±, z))|z=zi

]nz

i=1
≈ RL±(γ)R−1û± ∈ Cnz

where L±(γ) = diag([sj,±(γ)]pj=−p), and R = [exp(2iπjzk)]nz,p
k=1,j=−p with nz = 2p+ 1.

In the algorithm we exploit that the action of R and R−1 can be computed with
FFT. We match (2.10) and (2.9) and get a discretization of the boundary condition
(2.1)d-e. That is, we reach the NEP (1.4), with M given by (1.5) if we define C2 :=[
C2,− C2,+

]
, Λ±(γ) := L± + d0I and wT :=

[
ûT ûT− ûT+

]
and combine (2.8) with

(2.10) and (2.9).

3. Derivation and adaption of TIAR.

3.1. Basis matrix structure of the infinite Arnoldi method (IAR). There
exist several variations of IAR, [16, 18]. We base our derivation of a variant of IAR in
[18] called the Taylor variant, as it is based on the Taylor coefficients (derivatives) of

1For reproducability, we have provided MATLAB functions to generate the problem: http://

people.kth.se/~gmele/waveguide/
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M . Our algorithm can also be derived directly by using a function representation and
infinite dimensional operators similar to [18]. Such a function setting was also natural
in the derivation of restarting procedures for TIAR [25]. For reasons of conciseness, we
derive our new algorithm by an equivalence with the Taylor variant. We now briefly
summarize the algorithm and characterize a structure in the basis matrix. Similar to
the standard Arnoldi method, IAR is an algorithm with an algorithmic state consisting
of a basis matrixQk and a Hessenberg matrixHk. The basis matrix and the Hessenberg
matrix are expanded in every loop. Unlike the standard Arnoldi method, in IAR, the
basis matrix is expanded by a block row as well as a column, leading to a basis matrix
with block triangular structure, where the leading (top left) submatrix of the basis
matrix is the basis matrix of the previous loop. More precisely, there exist vectors
qi,j ∈ Cn, i, j = 1, . . . , k such that

(3.1) Qk =


q1,1 q1,2 · · · q1,k

0 q2,2

...
. . .

. . .
...

0 · · · 0 qk,k

 .
In every loop in IAR we must compute a new vector to be used in the expansion

of Qk and Hk. In practice, in iteration k, this reduces to computing y1 ∈ Cn given
y2, . . . , yk+1 such that

(3.2) y1 = −M(0)−1

(
k∑
i=1

M (i)(0)yi+1

)
.

Clearly, since M(0) does not change throughout the iteration, and we can compute
an LU-factorization before starting the algorithm, such that the linear system can be
solved efficiently in every iteration. IAR (Taylor version) is for completeness given by
Algorithm 1.

q11 q12 q13 q14

q22 q23 q24

q33 q34

q44

y1

y2

y3

y4

y5

q15

q25

q35

q45

q55

Figure 3.1: The computation tree representing Steps 3-9 for Algorithm 1 when k = 4,
i.e., after three iterations. Every node is vector of size n. The dashed lines correspond
to computing linear combinations. Clearly, the only (potentially) new direction of the
span of all vectors can be represented by y1.

Steps 3-9 of Algorithm 1 are visualized in Figure 3.1 when k = 4, i.e., after three
iterations. We have marked those operations that are linear combinations as dashed
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Algorithm 1: Infinite Arnoldi method - IAR (Taylor version) [18]

input : x1 ∈ Cn

1 Let Q1 = x1/‖x1‖2, H0 =empty matrix
for k = 1, 2, . . . ,m do

2 Compute y2, . . . , yk+1 from the last column of Qk by setting yj = 1
j−1qj−1,k

for j = 2, . . . , k + 1.
3 Compute y1 from y2, . . . , yk+1 using (3.2)

4 Let y := vec(y1, . . . , yk+1) and Q
k

:=

[
Qk
0

]
∈ C(n(k+1))×k.

5 Compute h = QH
k
y

6 Compute y⊥ = y −Q
k
h

7 Possibly repeat Steps 5-6 and get new h and y⊥
8 Compute β = ‖y⊥‖2
9 Compute qk+1 = y⊥/β

10 Let Hk =

[
Hk−1 h

0 β

]
∈ C(k+1)×k

11 Expand Qk into Qk+1 = [Q
k
, qk+1]

end
12 Compute the eigenvalues {µi}mi=1 of the leading m×m submatrix of the

Hessenberg matrix Hk and return approximations {1/µi}mi=1

lines. The fact that the many operations are linear combinations leads to a structure
in Qk which can be exploited such that we can reduce the usage of computer resources
(memory and computation time) and maintain an equivalence with Algorithm 1.

More precisely, the block elements of the basis matrix Qk have the following struc-
ture.

Lemma 3.1 (Structure of basis matrix). Let Qi, i = 1, . . . , k be the sequence
of basis matrices generated during the execution of k − 1 iterations of Algorithm 1.
Then, all block elements of the basis matrix Qk (when partitioned as (3.1)) are linear
combinations of q1,1, . . . , q1,k.

Proof. The proof is based on induction over the iteration count k. The result is
trivial for k = 1. Suppose the results holds for some k. Due to the fact that Qk is the
leading submatrix of Qk+1, as in (3.1), we only need to show that the blocks of the
new column are a linear combinations qi,j , i, j = 1, . . . , k. This follows directly from
the fact that q2,k+1, . . . , qk+1,k+1 is (in step 3-9 in Algorithm 1) constructed as linear
combination of q1,k, . . . , qk,k. See Figure 3.1

We note that the structure presented in Lemma 3.1 is very natural in view of similar
structures in other settings [21, Section 3.1], [39, Page 1057] and [36, Theorem 4.4].
To our knowledge, this has previously not been observed for IAR in the general case.

3.2. Derivation of TIAR. We now know from Lemma 3.1 that the basis matrix
in IAR has a redundant structure. In this section we show that this structure can
be exploited such that Algorithm 1 can be equivalently reformulated as an iteration
involving a tensor factorization of the basis matrix without redundancy. We present a
different formulation involving a factorization with a tensor which allows us to improve
IAR both in terms of memory and computation time. This equivalent, but improved,
version of Algorithm 1 appears to be competitive in general, and can be considerably
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specialized to the waveguide eigenvalue problem as we show in section 4.
More precisely, Lemma 3.1 implies that there exists ai,j,` for i, j, ` = 1, . . . , k such

that

(3.3) qi,j =

k∑
`=1

ai,j,`z`, for i, j = 1, . . . , k

where z1, . . . , zk is a basis of the span of the k first columns of the first block row,
i.e., span(q1,1, . . . , q1,k) = span(z1, . . . , zk). Due to (3.3), the quantities [z1, . . . , zk],
ai,j,` for i, j, ` = 1, . . . , k can be interpreted as a factorization of Qk. Rather than
representing the basis directly by storing q1,1, . . . , q1,k, we will use an orthogonal basis,
z1, . . . , zk, i.e., the columns of the matrix Zk := [z1, . . . , zk] ∈ Cn×k are orthonormal.
We use an orthogonal basis since we observed an improved numerical stability with
an orthogonal basis. A similar difference in numerical stability has been completely
characterized for similar methods for quadratic eigenvalues problems in [23]. Note that
the first block row of Qk can only be linearly independent if k ≤ n. This is the case
for large-scale nonlinear eigenvalue problems, as the one we consider in this paper.

Suppose for the moment that we have carried out k− 1 iterations of Algorithm 1.
From Lemma 3.1 we know that the basis matrix can be factorized according to (3.3).
The following results show that one loop, i.e., steps 2-11, can be carried out without
explicitly storing Qk, but instead only storing the factorization (3.3) represented by
the tensor ai,j,` for i, j, ` = 1, . . . , k and the matrix Zk ∈ Cn×k. Instead of carrying
out operations on Qk that lead to Qk+1, we construct equivalent operations on the
factorization of Qk, i.e., ai,j,` for i, j, ` = 1, . . . , k and the matrix Zk ∈ Cn×k, that
directly lead to the factorization of Qk+1, i.e., ai,j,` for i, j, ` = 1, . . . , k + 1 and the
matrix Zk+1 ∈ Cn×(k+1), without explicitly forming Qk or Qk+1.

To this end, suppose we have ai,j,` for i, j, ` = 1, . . . , k and z1, . . . , zk available after
k− 1 iterations such that (3.3) is satisfied, and consider the steps 2-11 one-by-one. In
Step 2 we need to compute the vectors y2, . . . , yk+1. They can be computed from the
factorization of Qk, since

(3.4) yj =
1

j − 1
qj−1,k =

1

j − 1

k∑
`=1

aj−1,k,`z`,

for j = 2, . . . , k+1. The vector y1 is (in Step 3) computed using (3.2) and y2, . . . , yk+1

and does not explicitly require the basis matrix. For reasons of efficiency (which we
further discuss in Remark 3.3) we carry out (3.4) with an equivalent matrix-matrix
multiplication,

(3.5)
[
ỹ2 · · · ỹk+1

]
= ZkAk,

where ATk = [ai,k,`]
k
i,j=1 and subsequently setting

(3.6) yj =
1

j − 1
ỹj for j = 2, . . . , k + 1.

In order to efficiently carry out the Gram-Schmidt orthogonalization process in
step 5-9, it turns out to be efficient to first form a new vector zk+1, which can be used
in the factorized representation of Qk+1. We define a new vector zk+1 via a Gram-
Schmidt orthogonalization of y1 against z1, . . . , zk. That is, we compute zk+1 ∈ Cn
and t1, . . . , tk+1 ∈ C such that

(3.7) y1 = t1z1 + · · ·+ tk+1zk+1
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and expand Zk+1 :=
[
Zk zk+1

]
such that ZHk+1Zk+1 = I.

The new vector y (formed in Step 4) can now be expressed using the factorization,
since

(3.8) y =


y1

1
1q1,k
1
2q2,k

...
1
k qk,k

 = e1 ⊗ y1 +

k∑
`=1


0

1
1a1,k,`
1
2a2,k,`

...
1
kak,k,`

⊗ z` =

k+1∑
`=1

 g1,`

...
gk+1,`

⊗ z`

where we have defined gi,` as

g1,` := t` for ` = 1, . . . , k + 1(3.9a)

gi,` :=
1

i− 1
ai−1,k,` for i = 2, . . . , k + 1, ` = 1, . . . , k,(3.9b)

gi,k+1 := 0 for i = 2, . . . , k + 1.(3.9c)

Instead of explicitly working with y, we store the matrix [gi,`]
k+1
i,`=1 ∈ C(k+1)×(k+1),

representing the blocks of y as linear combinations of Zk+1.
In order to derive a procedure to compute h ∈ Ck (in Step 5) without explicitly

using Qk, it is convenient to express the relation (3.3) using Kronecker products. We
have

(3.10) Qk =

k∑
`=1

a1,1,` · · · a1,k,`

...
...

ak,1,` · · · ak,k,`

⊗ z`.
From the definition of h and (3.10) combined with (3.8) and the orthogonality of

Zk+1, we can now see that h can be expressed without explicitly using Qk as follows

h = QH
k
y =

 k∑
`=1

a
∗
1,1,` · · · a∗k,1,` 0
...

...
...

a∗1,k,` · · · a∗k,k,` 0

⊗ zH`

k+1∑
`′=1

 g1,`′

...
gk+1,`′

⊗ z`′
(3.11)

=

k∑
`=1

a
∗
1,1,` · · · a∗k,1,`
...

...
a∗1,k,` · · · a∗k,k,`


g1,`

...
gk,`

 .
In Step 8 we need to compute the orthogonal completement of y with respect to Q

k
.

This can be represented (without explicit use of Qk) as follows

y⊥ = y −Q
k
h =

k+1∑
`=1

 g1,`

...
gk+1,`

⊗ z` − k∑
`=1



a1,1,` · · · a1,k,`

...
...

ak,1,` · · · ak,k,`
0 · · · 0

h
⊗ z`(3.12)

=

k+1∑
`=1

 f1,`

...
fk+1,`

⊗ z`,
10



where we have used the elements of the matrix [fi,j ]
k+1
i,`=1 with columns defined by

(3.13)

 f1,`

...
fk+1,`

 :=

 g1,`

...
gk+1,`

−

a1,1,` · · · a1,k,`

...
...

ak,1,` · · · ak,k,`
0 · · · 0

h
for ` = 1, . . . , k and fi,k+1 := gi,k+1 for i = 1, . . . , k + 1.

We need β in Step 9, which is defined as the Euclidean norm of y⊥. Due to the
orthogonality of Zk+1, we can also express β without using vectors of length n. In
fact, it turns out that β is the Frobenius norm of the matrix [fi,j ]

k+1
i,j=1, since

β2 = ‖y⊥‖2 =

k+1∑
`=1

 f1,`

...
fk+1,`

⊗ z`

H k+1∑

`′=1

 f1,`′

...
fk+1,`′

⊗ z`′ ,


=

k+1∑
`=1

 f1,`

...
fk+1,`


H  f1,`

...
fk+1,`

 =
∥∥[fi,j ]

k+1
i,j=1

∥∥2

frob
.

Finally (in Step 11), we expand Qk by one column corresponding qk+1, which is
the normalized orthogonal complement. By using the introduced matrix [fi,j ]

k+1
i,j=1 we

have that

(3.14) qk+1 =
1

β
y⊥ =

1

β

k+1∑
`=1

 f1,`

...
fk+1,`

⊗ z`.
Let us now define

ai,k+1,` =
1

β
fi,`, for i, ` = 1, . . . , k + 1,(3.15a)

ak+1,j,` = 0 for ` = 1, . . . , k + 1, j = 1, . . . , k(3.15b)

ai,j,k+1 = 0 for i = 1, . . . , k + 1, j = 1, . . . , k.(3.15c)

Hence, ai,j,` for i, j, ` = 1, . . . , k + 1 and Zk+1 can be seen as a factorization of Qk+1

in the sense of (3.3), since the column added in comparison to the factorization of Qk
is precisely (3.14).

We summarize the above reasoning with a precise result showing how the depen-
dence on Qk for every step in Algorithm 1 can be removed, including how a factoriza-
tion of Qk+1 can be constructed.

Theorem 3.2 (Equivalent steps of algorithm). Let Qk be the basis matrix gener-
ated by k−1 iterations of Algorithm 1 and suppose ai,j,`, for i, j, ` = 1, . . . , k and Zk are
given such that they represent a factorization of Qk of the type (3.3). The quantities
computed (by executing Steps 2-11) in iteration k satisfy the following relations.

(i) The vectors y2, . . . , yk+1 computed in Step 2,satisfy (3.5).
(ii) Suppose y1 (computed in Step 3) satisfies y1 6∈ span(z1, . . . , zk). Let zk+1 ∈ Cn

and t1, . . . , tk+1 ∈ C be the result of the Gram-Schmidt process satisfying (3.7).
Moreover, let [gi,`]

k+1
i,`=1 be defined by (3.9). Then, then h computed in Step 5,

satisfies (3.11).

11



(iii) Let [fi,`]
k+1
i,`=1 be defined by (3.13). Then, the vector y⊥, computed in Step 6,

satisfies (3.12).

(iv) The scalar β, computed in Step 8, satisfies β =
∥∥∥[fi,`]

k+1
i,`=1

∥∥∥
fro

Moreover, if we expand ai,j,` as in (3.15), then, ai,j,`, for i, j, ` = 1, . . . , k + 1 and
z1, . . . , zk+1 represent a factorization of Qk+1 in the sense that (3.3) is satisfied for
k + 1.

The above theorem directly gives us a practical algorithm. We state it explicitly in
Algorithm 2. The details of the (possibly) repeated Gram-Schmidt process in Step 6–7
is straightforward and left out for brevity.

Algorithm 2: Tensor infinite Arnoldi method - TIAR

Input : x1 ∈ Cn

1 Let Q1 = x1/‖x1‖2, H0 =empty matrix
for k = 1, 2, . . . ,m do

2 Compute y2, . . . , yk+1 from ai,k,`, i, ` = 1, . . . , k and Zk using (3.5)-(3.6)
3 Compute y1 from y2, . . . , yk+1 using (3.2)
4 Compute t1, . . . , tk+1 and zk+1 by orthogonalizing y1 against z1, . . . , zk

using a (possibly repeated) Gram-Schmidt process such that (3.7) is
satisfied.

5 Compute the matrix G = [gi,`]
k+1
i,`=1 using (3.9)

6 Compute h ∈ Ck using (3.11)

7 Compute the matrix F = [fi,`]
k+1
i,`=1 using (3.13)

8 Possibly repeat Steps 6-7 and obtain updated h and F
9 Compute β = ‖F‖fro

10 Expand ai,j,` using (3.15)

11 Let Hk =

[
Hk−1 h

0 β

]
∈ C(k+1)×k

end
12 Compute the eigenvalues {µi}mi=1 of the leading m×m submatrix of the

Hessenberg matrix Hk and return approximations {1/µi}mi=1

Remark 3.3 (Computational performance of IAR and TIAR). Under the condi-
tion that q1,1, . . . , q1,m are linearly independent, Algorithm 1 (IAR) and Algorithm 2
(TIAR) are equivalent in exact arithmetic. The required computational resources of
the two algorithms are however very different and TIAR appears to be preferable over
IAR, in general.

The first advantage of TIAR concerns the memory requirements. More precisely, in
TIAR, the basis matrix is stored using a tensor [ai,j,`]

m
i,j,`=1 ∈ Cm×m×m and a matrix

Zm ∈ Cn×m. Therefore, TIAR requires the storage of O(m3) + O(mn) numbers. In
contrast to this, in IAR we need to store O(m2n) numbers since the basis matrix Qm
is of size mn×m. Therefore, assuming that m� n, TIAR requires much less memory
than IAR.

The essential computational cost of carrying out m steps of IAR consists of: m
linear solves, computing

∑k
i=1M

(i)(0)xi, for k = 1, . . . ,m, and orthogonalizing a vec-
tor of length kn against k vectors of size kn for k = 1, . . . ,m. The orthogonalization
has complexity

(3.16) tIAR,orth(m,n) = O(m3n),

12



which is the dominating cost when the linear solves are relatively cheap as in the waveg-
uide eigenvalue problem.

On the other hand, the computationally dominating part of carrying out m steps
of TIAR is as follows. Identical to IAR, m steps require m linear solves, and the
computation of

∑k
i=1M

(i)(0)xi, for k = 1, . . . ,m. The orthogonalization process in
TIAR (Step 4-9) is computationally cheaper than IAR. More precisely,

tTIAR,orth(m,n) = O(m2n).

Unlike IAR, TIAR requires a computational effort in order to access the vectors y2, . . . , yk
in Step 2 since they are implicitly given via ai,j,k and Zk. In Step 2 we compute
y2, . . . , yk with (3.6) and (3.5) which correspond to multiplying a matrix of size n× k
with a matrix of size k×k (and subsequently scaling the vectors). Hence, the operations
corresponding to Step 2 for m iterations of TIAR can be carried out in

(3.17) tTIAR,Step 2(m,n) = O(m3n).

At first sight, nothing is gained since the complexity of the orthogonalization in
IAR (3.16) and Step 2 of TIAR, are both O(m3n). However, it turns out that TIAR is
often considerably faster in practice. This can be explained as follows. In the orthog-
onalization process of IAR we must compute h = QT

k
y where Q

k
∈ Ckn×k, whereas in

Step 2 in TIAR we must compute ZkA
T
k (in (3.5)) where Zk ∈ Cn×k and Ak ∈ Ck×k.

Note that the operation ZkA
T
k involves nk + k2 values, whereas QT

k
y involves nk2 val-

ues, i.e., Step 2 in TIAR involves less data. This implies that on modern computer
architectures, where CPU caching makes operations on small data-sets more efficient,
it is in practice considerably faster to compute ZkA

T
k than QT

k
y although the opera-

tions have the same computational complexity. This difference is also verified in the
simulations in Section 5.

Although TIAR and IAR are mathemtically equivalent, they are not equivalent
in finite arithmetic. As is pointed in [23] numerical stability can be an issue in this
class of methods. The potential source of instability in SOAR discussed in [23] is
however not present in our method, since we do not need to solve a linear system with
a matrix containing coefficients. Moreover, in the context of our approach, we have
not observed numerical instability and IAR and TIAR produce numerically similar
eigenpair approximations.

4. Adaption to the waveguide problem.

4.1. Cayley transformation. One interpretation of IAR involves a derivation
via the truncated Taylor series expansion. The truncated Taylor expansion is expected
to converge slowly for points close to the branch-point singularities, and in general not
converge at all for points further away from the origin than the closest singularity.
Note that M , defined in (1.4), has branch point singularities at the roots of β±,k(γ)
for k = −p, . . . , p, where β±,k is defined in (2.3). In our situation, the eigenvalues
of interest are close to the imaginary axis and, since the roots of β±,k are purely
imaginary, the singularities are purely imaginary, which suggests poor performance of
IAR (as well as TIAR) when applied to M .

In order to resolve this, we first carry out a Cayley transformation, which for a
shift γ0 ∈ (−∞, 0)× (−2π, 0)i is given by

(4.1) λ =
γ − γ0

γ + γ̄0
,
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Figure 4.1: Trajectories of the eigenvalues as a function of the shift γ0.

and its inverse is γ = (γ0 + λγ̄0)/(1− λ). The Cayley transformation moves the shift
γ0 to the origin, the singularities to the unit circle and the eigenvalues of interest to
points inside the unit disk, i.e., inside the convergence disk. The choice of the shift
γ0 is problem dependent and may require different tries. In particular, the closer the
shift is to the imaginary axis, the closer the transformed eigenvalues are to 1 and
therefore to the border of the unitary disk. On the other hand, if the shift is far from
the imaginary axis, the transformed eigenvalues will be localized at −1. An optimal
choice of the shift moves the eigenvalues as far as possible from the border of the disk,
therefore γ0 should be selected in the middle of the region of interest with distance of
the imaginary axis close to the expected location of the eigenvalues, see Figure 4.1.

Note that the transformed problem is still a nonlinear eigenvalue problem of the
type (1.4), and we can easily remove the poles introduced by the denominator in (4.1).
More precisely, we work with the transformed nonlinear eigenvalue problem

M̃(λ) :=

[
(1− λ)2I

(1− λ)I

]
M(γ0+λγ̄0

1−λ )

=

[
FA(λ) FC1

(λ)

(1− λ)CT2 P̃ (λ)

]
,(4.2)

where

FA(λ) := (1− λ)2A0 + (γ0 + λγ̄0)(1− λ)A1 + (γ0 + λγ̄0)2A2,

FC1(λ) := (1− λ)2C1,0 + (γ0 + λγ̄0)(1− λ)C1,1 + (γ0 + λγ̄0)2C1,2,

P̃ (λ) := (1− λ)P (
γ0 + λγ̄0

1− λ
).(4.3)

4.2. Efficient computation of y1. In order apply IAR or TIAR to the waveg-
uide problem, we need to provide a procedure to compute y1 in Step 3 of Algorithm 1
and Algorithm 2 using (3.2). The structure of M̃ in (4.2) can be explicitly exploited
and merged with Step 2 as follows. We analyze (3.2) for k ≥ 3. It is straightforward
to compute the corresponding formulas for k < 3. Due to the definition of M̃ in (4.2),
formula (3.2) can be expressed as

(4.4) −M̃(0)y1 = z1 + z2,
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with

z1 :=

[
F ′A(0)y2,1 + F ′C1

(0)y2,2 + F ′′A(0)y3,1 + F ′′C1
(0)y3,2

−CT2 y2,1

]
,

z2 :=

[
0∑k

i=1 P̃
(i)(0)yi+1,2.

]
(4.5)

where we have decomposed yTi = [yTi,1, y
T
i,2], i = 1, . . . , k with yi,1 ∈ Cnxnz and yi,2 ∈

C2nz . We solve the linear system (4.4) with a Schur complement. More precisely, we
use that the (2,2)-block of (4.2) is explicitly available with FFT and we compute an
LU-factorization of the Schur complement. In this way, computing solutions to (4.4)
is not a dominating component (in terms of execution time) in our situation. The
vector z1 can be computed directly by using the definition of FA and FC1

. Using the
definition of P̃ in (4.3), we can express the bottom block of z2 as

(4.6) z2,2 =

[
R 0
0 R

] k∑
i=1

Di

([
R−1 0

0 R−1

]
yi+1,2

)
∈ C2nz ,

where Di := diag(α−,−p,i, . . . , α−,p,i, α+,−p,i, . . . , α+,p,i) with

(4.7) α±,j,i :=

(
di

dλi

(
(1− λ)(s±,j(

γ0 + λγ̄0

1− λ
) + d0)

))
λ=0

.

In order to carry out m steps of the algorithm, we need to evaluate (4.7) 2nzm times.
We propose to do this with the efficient recursion formula given Appendix C. We note
that similar formulas are used in [32] for slightly different functions.

Although the above formulas can be used directly to compute y1, further perfor-
mance improvement can be achieved by considerations of Step 2. Note that the com-
plexity of Step 2 in TIAR is O(m3n), as given in equation (3.17). The computational
complexity of this step can be decreased by using the fact that in order to compute
y1 in Step 3 and equation (4.4)-(4.5), we only need y2, y3 and y4,2, . . . , yk+1,2 ∈ C2nz ,
i.e., not the full vectors. The structure can exploited in the operations in Step 2 as
follows.

Let B11 ∈ C2×2, B12 ∈ C2×(k−2), B21 ∈ C(k−2)×2 and B22 ∈ C(k−2)×(k−2) be
defined as blocks of Ak,

(4.8) Ak =

[
B11 B12

B21 B22

]
.

From (3.5) and (3.6) we have

(4.9)
[
ỹ2 ỹ3

]
= Zk

[
B11

B21

]
,
[
y2 y3

]
=
[
ỹ2 ỹ3/2

]
,

and

(4.10)
[
ỹ4,2 . . . ỹk+1,2

]
= Zk,2B22,

[
y4,2 . . . yk+1,2

]
=
[
ỹ4,2/3 . . . ỹk+1,2/k

]
,

where Zk,2 ∈ C2nz×(k−2) consists of the trailing block of Zk.
By using formulas (4.9)-(4.10), we merge Step 2 and Step 3 in Algorithm 2 such

that we can compute y1 without computing the full vectors y2, . . . , yk. For future
reference we call this adaption WTIAR.
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As explained in Remark 3.3, Step 2 of TIAR is the dominating component in terms
of asymptotic complexity. With the adaption explained in (4.8)-(4.10), the complexity
of Step 2 in WTIAR is

(4.11) tWTIAR,Step 2(m,n) = O(nm2) +O(nzm
3).

If the problem is discretized with the same number of discretization points in x-
direction and z-direction, we have tWTIAR,Step 2(m,n) = O(nm2) +O(

√
nm3), which

is considerable better than the complexity (3.17), i.e., the complexity of Step 2 in the
plain TIAR. Notice that when n is sufficiently large the dominating term of the com-
plexity of WTIAR is O(nm2) which is also the complexity of the Arnoldi algorithm for
the standard eigenvalue problem. The complexity is verified in practice in Section 5.

5. Numerical experiments.

5.1. Benchmark example. In order to illustrate properties of our approach, we
consider a waveguide previously analyzed in [32, 6]. We set the wavenumber as in
Figure 5.1, where K1 =

√
2.3 ω, K2 =

√
3 ω, K3 = ω and ω = π. Recall that the task

is to compute the eigenvalues in the region Ω := (−∞, 0)×(−2π, 0)i ⊂ C, in particular
those which are close to the imaginary axis.

2/π

0.4

0.5

1K1 K2 K3

Figure 5.1: Geometry of the waveguide in Section 5.1

We select x− and x+ such that the interior domain is minimized, i.e., x− = 0
and x+ = 2/π + 0.4. The PDE is discretized with a FEM approach as explained in
Section 2.2. Recall that the waveguide eigenvalue problem has branch point singular-
ities and that the algorithms we are considering are based on derivations using Taylor
series expansion. As explained in Section 4.1, the location of the shift γ in the Cayley
transformation influences the convergence of the Taylor series, and cannot be chosen
too close to the target, i.e., the imaginary axis. We select γ0 = −3iπ, i.e., in the middle
of Ω in the imaginary direction. The error is measured using the relative residual norm

(5.1) E(w, γ) :=
‖M(γ)w‖∑2

i=0 |γ|i (‖Ai‖+ ‖C1,i‖) + ‖CT
2 ‖+ 2d0 +

∑p
j=−p (|sj,+(γ)|+ |sj,−(γ)|)

,

for ‖w‖ = 1.
We discretize the problem and we compute the eigenvalues of the nonlinear eigen-

value problem using WTIAR2. They are reported, for different discretizations, in Ta-
ble 5.1. The required CPU time is reported in Table 5.2. The solution of the problem
with the finest discretization, i.e., the last row of Table 5.1, was computed in more

2All simulations were carried out with Intel octa core i7-3770 CPU 3.40GHz and 16 GB RAM,
except for the last two rows of Table 5.1 which were computed with Intel Xeon 2.0 GHz and 64 GB
RAM.
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Figure 5.2: Execution of m = 100 iterations of WTIAR. The domain is discretized
setting nx = 640 and nz = 641.
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Figure 5.3: One solution of the waveguide eigenvalue problem with respect the waveg-
uide in Figure 5.1. The domain is discretized setting nx = 640 and nz = 641.

than 10 hours. The bottleneck for the finest discretization is the memory requirements
of the computation of the LU-factorization of the Schur complement corresponding
to M̃(0). An illustration of the execution of WTIAR, for this problem, is given in
Figure 5.2, where the domain is discretized with nx = 640 and nz = 641 and m = 100
iterations are performed. We observe in Figure 5.2a and 5.2b that two Ritz values
converge within the region of interest and two additional approximations converge to
values with positive real part and of no interest in this application. The converge
depends on the choice of the shift γ0 as expected from the discussion in Section 4.1.

In Figure 5.3b we observe that the Fourier coefficients do not have exponential
decay for u(x+, z). Indeed, the decay is quadratic, which is consistent with the fact
that the solutions are C1-functions, but in general not C2, as explained in Remark 2.1.
In particular, the second derivative of the eigenfunction is not continuous in x = x+.
Hence, the eigenfunctions appear to have just weak regularity, which means that the
waveguide eigenvalue problem does not have a strong solution. This supports the choice
of the discretization method, based on the FEM, that we use in this paper. In these
simulations we selected x± such that the interior domain is minimized. We also carried
out simulations for larger interior domains, without observing any qualitative difference
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Problem size nx nz First eigenvalue Second eigenvalue
132 10 11 -0.010297987 - 4.966269257i -0.008202089 - 1.390972357i
462 20 21 -0.009556975 - 4.965939619i -0.009012367 - 1.337899343i

1,722 40 41 -0.009401369 - 4.965933116i -0.009258151 - 1.322687924i
6,642 80 81 -0.009368285 - 4.966067569i -0.009332752 - 1.318511833i
26,082 160 161 -0.009359775 - 4.966072322i -0.009350769 - 1.317465909i
103,362 320 321 -0.009357649 - 4.966071811i -0.009355348 - 1.317202268i
411,522 640 641 -0.009357159 - 4.966073495i -0.009356561 - 1.317134070i

1,642,242 1,280 1,281 -0.009357028 - 4.966073418i -0.009356859 - 1.317117443i
6,561,282 2,560 2,561 -0.009356994 - 4.966073409i -0.009356933 - 1.317113346i
9,009,002 3,000 3,001 -0.009356991 - 4.966073406i -0.009356938 - 1.317112905i

Table 5.1: Eigenvalue approximations stemming from WTIAR with m = 100.
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Figure 5.4: Comparison of IAR, TIAR and the WTIAR in terms of CPU time and
stability

in the computed solutions. By Remark 2.1, this suggests that the C1-assumption is
not a restriction in this case.

The plot of the absolute value of one eigenfunction is given in Figure 5.3a. The
convergence rate with respect to discretization, appears to be quadratic in the diameter
of the elements. See Table 5.1.

As we mentioned in Remark 3.3, TIAR requires less memory and has the same
complexity as IAR, although it is in practice considerable faster. According to Sec-
tion 4.2, WTIAR requires the same memory resources as TIAR, but WTIAR has
lower complexity. These properties are illustrated in Figure 5.4a and Table 5.2. As
we showed in the theorem 3.2 TIAR and IAR are mathematically equivalent by con-
struction. However, IAR and TIAR (as well as WTIAR) incorporate orthogonalization
in different ways which may influence the impact of round-off errors. It turns out that
the Hm matrices computed with IAR and TIAR are numerically different, but the Ritz
values in Ω have a small difference. See Figure 5.4b. This suggests that there is an
effect of the roundoff errors, but for the purpose of computing the Ritz values located
in Ω, such error is not large for this problem.
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CPU time storage of Qm
n nx nz IAR WTIAR IAR TIAR

462 20 21 8.35 secs 2.58 secs 35.24 MB 7.98 MB
1,722 40 41 28.90 secs 2.83 secs 131.38 MB 8.94 MB
6,642 80 81 1 min and 59 secs 4.81 secs 506.74 MB 12.70 MB
26,082 160 161 8 mins and 13.37 secs 13.9 secs 1.94 GB 27.52 MB
103,362 320 321 out of memory 45.50 secs out of memory 86.48 MB
411,522 640 641 out of memory 3 mins and 30.29 secs out of memory 321.60 MB

1,642,242 1280 1281 out of memory 15 mins and 20.61 secs out of memory 1.23 GB

Table 5.2: CPU time and estimated memory required to perform m = 100 iterations
of IAR and WTIAR. The memory requirements for the storage of the basis is the same
TIAR and WTIAR.
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Figure 5.5: CPU time of the main parts of IAR and WTIAR with m = 100 iterations.

We mentioned in Section 4.2, that when n became sufficiently large, the dominating
part of WTIAR is the orthogonalization process. This can be observed in Figure 5.5b.
Recall that the orthogonalization in WTIAR has complexity O(nm2), which is also the
complexity of the standard Arnoldi algorithm. Hence, solving the waveguide eigenvalue
problem with WTIAR using a fine discretization, has in this sense the same complexity
as solving a standard eigenvalue problem of the same size using the Arnoldi algorithm.
According to Remark 3.3 the dominating part of IAR is also the orthogonalization
process, but this has higher complexity O(nm3). See Figure 5.5a.

5.2. Waveguide with complex shape. In order to show the generality of our
algorithm, we carried out simulations on a waveguide with a more complex geometry
and solutions. It is described in Figure 5.6 where K1 =

√
2.3ω, K2 = 2

√
3ω, K3 =

4
√

3ω and K4 = ω and ω = π.
We again select x− and x+ such that the interior domain is minimized, i.e., x− = 0

and x+ = 2. We discretize the problem and choose the same discretization parameters
as in Section 5.1 and choose as shift γ0 = −2− iπ. An illustration of the execution of
WTIAR, for this problem, is given in Figure 5.7, where the domain is discretized with
nx = 640 and nz = 641 and m = 100 iterations are performed. We observe that several
Ritz values converge within the region of interest Ω. See Figure 5.7b and Figure 5.7a.
One of the dominant eigenfunctions is illustrated in Figure 5.7c.

5.3. Simulations with a different method. In order to illustrate the compet-
itiveness of our approach we present some simulations carried with a different method.
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Figure 5.7: Execution of m = 100 iterations of WTIAR. The parameters of the DtN
maps are x− = 0 and x+ = 2. The domain is discretized setting nx = 640 and
nz = 641.

We compare TIAR with NLEIGS as presented in [13] in terms of convergence rate (not
CPU time). The compact representation results developed in [36, 33] can be adapted
to improve the performance of NLEIGS, which however would not modify the con-
vergence rate. We used the publicly available MATLAB implementation of NLEIGS
provided by the same authors.

We briefly summarize the main features of NLEIGS. This algorithm is based on
rational approximations of the nonlinear eigenvalue problem combined with a ratio-
nal Krylov method for the linearized problem. Moreover, it is designed to compute
eigenvalues in a region of interest Σ not containing singularities. The poles of the
rational approximation are selected as a subset of the singularities of the problem,
and the nodes are selected on ∂Σ in a Leja–Bagby style. The algorithm has different

20



0 20 40 60 80 100

Iteration k

10 -15

10 -10

10 -5

10 0

R
e
la

ti
v
e
 r

e
s
id

u
a
l 
E

(w
,γ

)

Ritz values in Σ

Ritz values outside Σ

(a) Original problem (1.5)

0 20 40 60 80 100

Iteration k

10 -15

10 -10

10 -5

10 0

R
e
la

ti
v
e
 r

e
s
id

u
a
l 
E

(w
,γ

)

Ritz values in  Σ

Ritz values outside Σ

(b) Cayley transformed problem (4.2)

Figure 5.8: Residual history of m = 100 iterations of NLEIGS (static variant), where
x− = 0, x+ = 2, nx = 100 and nz = 101.

variants which involve different shift selection strategies. In the dynamic and hybrid
variants some of the shifts are coupled with the nodes, allowing a dynamic feature of
the algorithm. In the static variant the shifts are selected independent of nodes. The
static variant is a two-stage approach where the nonlinearity is approximated and sub-
sequently the linearized problem is solved iteratively, i.e., a so called approximate-first
approach.

We applied all three variants of NLEIGS to the waveguide eigenvalue problem, for
the model in Section 5.2. Our problem has branch-point singularities, and therefore
we selected Ξ as a discretization of the branch–cuts analogous to [13, Section 7.1]. The
region Σ was selected as a rectangle containing all eigenvalues of interest, not including
the imaginary axis. We also carried out simulations for the Cayley transformed problem
(4.2), where Σ was selected as a disk of radius less than one. The dynamic and hybrid
versions were in some situations able to compute some but never all eigenvalues of
interest. In particular when the imaginary axis was almost included in Σ, the hybrid
and dynamic variants of NLEIGS did not compute any eigenvalues for neither of the
problems considered, whereas when Σ was selected sufficiently far from the imaginary
axis, some eigenvalues were computed, which however were not all the eigenvalues
of interest. With the static variant, NLEIGS was able to compute all solutions to
a medium sized problem. The convergence diagram is presented in Figure 5.8. We
observe that 100 iterations are insufficient to obtain good accuracy in this setting.
In Figure 5.8, several of the eigenvalues of interest correspond to convergence curves
with a larger convergence factor, and the eigenvalue closest to the imaginary axis has
residual approximately 10−3. In contrast to this, with our specialization of TIAR, all
eigenvalues converged in 100 iterations. See Figure 5.7b.

We have here focused on a convergence rate comparison. A CPU time comparison
would only be fair after incorporating focused research on a specialization of NLEIGS
for this particular problem, and further tuning of method parameters. We limited our
simulations to the ideas presented in [13] where the authors suggested to select the
nodes in a Leja–Bagby style. This approach seems less effective than our approach to
(1.5). Moreover, both algorithms (TIAR and NLEIGS) require the solutions of many
linear systems involving the matrix M(λ̄). As we mentioned in Section 5.1, for this
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problem, the solution of such linear systems is a restriction of the problem size that
can be solved with our approach. Since the same linear systems appear in NLEIGS,
this restriction will also be present. Hence, even if a specialization of NLEIGS would
be carried out, it will never be able be to solve larger problems than our approach.

6. Concluding remarks and outlook. In this paper we have presented a new
general approach for NEPs and shown how to specialize the method to a specific
problem stemming from analysis of wave propagation. Note that the non-polynomial
nonlinearity arises from the absorbing boundary conditions. In our setting we were
able to establish an explicit characterization of the DtN maps, which allowed us to
incorporate the structure at an algorithmic level. This approach does not appear
to be restricted to the waveguide problem. Many PDEs can be constructed with
absorbing boundary conditions expressed in a closed form. By appropriate analysis, in
particular differentiation with respect to the eigenvalue, the approach should carry over
to other PDEs and other absorbing boundary conditions. Note that in our approach we
selected x− and x+ such that the interior domain is minimized. If we select a larger
domain, the decay of the Fourier coefficients in Figure 5.2c is faster and the DtN
can be approximated with a γ-dependent low-rank matrix, for which other methods
are available. In contrast to our approach, such an approach requires a larger interior
domain to be discretized, a choice of x− and x+ and a choice of a truncation parameter.

There exist several variants of IAR, e.g., the Chebyshev version [18] and restarting
variations [17]. There are also related rational Krylov methods [35]. The results of
this paper may also be extendable to these situations, although this would require
further analysis. In particular, all of these methods require (in some way) a quantity
corresponding to formula y1 in (3.2), for which the problem-dependent structure must
be incorporated. The computation of this quantity must be accurate and efficient and
require considerable problem-specific attention.

Acknowledgement. We thank Johan Karlsson for discussion and input regard-
ing the Cayley transformation in Section 4.1 and the referees for careful reading of the
manuscript and constructive comments.

Appendix A. Proof of Lemma 2.2. We consider the exterior problem on S+ in
(2.5). The proof corresponding to S− is analogous. To simplify the notation we write
βk = β+,k(γ) and assume, without loss of generality, that x+ = 0. By Remark 2.1 the
solutions of (2.5) are in C1 and every vertical trace can then be expanded in a Fourier
series. Therefore we can express

w(x, z) =
∑
k∈Z

wk(x)e2πikz, g(z) =
∑
k∈Z

gke
2πikz.

By again using Remark 2.1, we have that the solutions to the exterior problem are in
C∞ if x > 0 and satisfy (2.5a). Therefore, the coefficients wk satisfy∑
k∈Z

(
w′′k − (2πk)2wk + 4πγiwk + (γ2 + κ2

+)wk
)
e2πikz =

∑
k∈Z

(w′′k + βkwk) e2πikz = 0,

where βk is given in (2.3). Thus, in order for w to satisfy (2.5a), we have

w′′k + βkwk = 0,

for all k. We now claim that there are constants C,C ′ independent of k such that

(A.1) |βk| ≤ C(1 + (2πk)2), | Im
√
βk| ≥ C ′

√
1 + (2πk)2.
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In particular, βk 6= 0 and

wk(x) = cke
isign(Im(βk))

√
βkx + dke

−isign(Im(βk))
√
βkx.

To determine ck and dk we have two boundary conditions. First, since w ∈ H1(S+),
then |wk(x)| can not grow as x → ∞. This means that dk = 0. Second, at x = 0,
we have w(0, z) = g(z), so ck = gk. Hence, we have the explicit solution wk(x) =

gke
isign(Im(βk))

√
βkx. Existence is thus proved, and the relationship (2.7) for the DtN

maps follows directly for this solution by differentiating wk(x) and evaluating at x = 0.
We also have T+,γ [g] ∈ L2(0, 1) since

||T+,γ [g]||2L2(0,1) =
∑
k∈Z
|βk| |gk|2 ≤ C

∑
k∈Z

(1 + (2πk)2) |gk|2 = C||g||H1([0,1]).

Finally, the estimate (2.6) is given by

||w||2H1(S+) = ||w||2L2(S+) + ||∇w||2L2(S+) =
∑
k∈Z

[(
1 + (2πk)2

)
||wk||2L2(0,∞) + ||w′k||2L2(0,∞)

]
=
∑
k∈Z
|gk|2

(
1 + (2πk)2 + |βk|

) ∫ ∞
0

e−2sign(Im(βk)) Im
√
βkxdx

=
∑
k∈Z

|gk|2

2| Im
√
βk|

(
1 + (2πk)2 + |βk|

)
≤ C + 1

2C ′

∑
k∈Z
|gk|2

√
1 + (2πk)2

=
C + 1

2C ′
||g||2H1/2([0,1]).

Uniqueness follows from this estimate. It remains to show the claim (A.1). The
estimate for |βk| is straightforward. For the second estimate we note that | Imβk| =
2|Re γ(2πk + Im γ)| 6= 0 for all k from the assumptions Im γ 6∈ 2πZ and Re γ 6= 0. It
follows that also Im

√
βk 6= 0 for all k and since

lim
|k|→∞

ak := lim
|k|→∞

Im
√
βk√

1 + (2πk)2
= Im

√
lim
|k|→∞

βk
1 + (2πk)2

= 1,

the sequence {1/ak} is bounded. Hence, there is a C ′ such that (A.1) holds, which
concludes the proof.

Appendix B. Matrices of the FEM–discretization. The matrices (Ai)
2
i=0

and (C1,i)
2
i=0 are stem from to the Ritz–Galerkin discretization of the bilinear forms

a, b and c. They can be decomposed and expressed as

A0 := Dxx +Dzz +K, C1,0 := D̃xx + D̃zz + K̃,

A1 := 2Dz, C1,1 := 2D̃z,

A2 := B, C1,2 := B̃.

Now we need to define the following tridiagonal Toeplitz matrices. Let Em be the
tridiagonal Toeplitz matrix with diagonals consisting of ei+1,i = −1, ei,i = 2 and
ei,i+1 = −1. Let Fm be the tridiagonal Toeplitz matrix with diagonals consisting of
fi+1,i = 1, fi,i = 4 and fi,i+1 = 1. Let Gm be the anti-symmetric tridiagonal Toeplitz
matrix consisting of gi+1,i = 1, gi,i = 0 and gi,i+1 = −1.
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Then, we have

Dxx = −
hz

6hx
Enx ⊗

(
Bnz + enz e

T
1 + e1e

T
nz

)
, D̃xx = −

hz

6hx
− (e1, enx )⊗

(
Fnz + enz e

T
1 + e1e

T
nz

)
,

Dzz = −
hx

6hz
Fnx ⊗

(
Enz − enz e

T
1 − e1eTnz

)
, D̃zz = −

hx

6hz
(e1, enx )⊗

(
Enz − enz e

T
1 − e1eTnz

)
,

Dz = −
hx

12
Fnx ⊗

(
Gnz + enz e

T
1 − e1eTnz

)
, D̃z = −

hx

12
(e1, enx )⊗

(
Gnz + enz e

T
1 − e1eTnz

)
,

B =
hxhz

36
Gnx ⊗

(
Gnz + enz e

T
1 − e1eTnz

)
, B̃ =

hxhz

36
(e1,−enx )⊗

(
Gnz + enz e

T
1 − e1eTnz

)
.

The matrices K and K̃ arise from the Ritz–Galerkin discretization of the bilinear form

f(u, v) =

∫ 1

0

∫ x+

x−

κ(x, z)2u(x, z)v(x, z) dx dz.

The elements of such matrices are obtained integrating the product of two basis func-
tions against the square of the wavenumber. We can split the integral over the elements.
Recall that κ(x, z) is piecewise constant, then the final task is to compute, for each
element, the integral of a piecewise polynomial function. Such integral is given in an
explicit form by quadrature formulas.

Appendix C. Computation of the derivatives in DtN-map. In the com-
putation of y1 described in section 4.2, we need the coefficients α±,j,`. They can be
computed with the following three-term recurrence.

Lemma C.1 (Recursion for α±,j,`). Suppose γ0 6∈ iR. Then the coefficients in
(4.7) are explicitly given by

(C.1)


α±,j,0 = iwjf±,j,0 + d0

α±,j,1 = iwjf±,j,1 − d0

α±,j,` = iwjf±,j,``! ` ≥ 2,

where coefficients f±,j,` satisfy the following three-term recurrence

(C.2)


f±,j,` = −2a±,j(`− 3)f±,j,`−2 + b±,j(2`− 3)f±,j,`−1

2`c±,j
` ≥ 2,

f±,j,0 =
√
c±,j ,

f±,j,1 =
b±,j

2
√
c±,j

,

with 
a±,j = γ̄0

2 − 4πijγ̄0 − 4π2j2 + κ2
±,

b±,j = 2γ0γ̄0 + 4πij(γ̄0 − γ0) + 8π2j2 − 2κ2
±,

c±,j = 4πijγ0 − 4π2j2 + κ2
± + γ2

0 ,

wj = sign (Re(γ0) (Im(γ0) + 2πj)) .

Proof. By definition (4.7)

α±,j,` =

(
d`

dλ`

(
(1− λ)s±,j

(
γ0 + λγ̄0

1− λ

)))
λ=0

+

(
d`

dλ`
((1− λ)d0)

)
λ=0

.

The computation of the second term is straightforward. The first term can be com-
puted as follows. In order to compute the derivatives in zero, we now derive formulas
for the Taylor expansion
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(1− λ)s±,j

(
γ0 + λγ̄0

1− λ

)
=

+∞∑
`=0

f±,j,`λ
`.

Since all functions are analytic in the origin, there exists a neighborhood of the origin
N , such that when λ ∈ N ,

(1− λ)s±,j

(
γ0 + λγ̄0

1− λ

)
= wj

√
a±,jλ2 + b±,jλ+ c±,j .

Hence, we have reduced the problem to computing the power series expansion of√
a±,jλ2 + b±,jλ+ c±,j . To this end we use the well known formula involving the

Gegenbauer polynomials and their generating function. See e.g. [27]. We have that

√
a±,jλ2 + b±,jλ+ c±,j =

√
c±,j

[(√
a±,j
c±,j

λ

)2

+
b±,j√
a±,jc±,j

(√
a±,j
c±,j

λ

)
+ 1

]− 1
2

=

+∞∑
`=0

√√√√a`±,j

c`−1
±,j

C
(−1/2)
`

(
− b±,j

2
√
a±,jc±,j

)
λ`,

where C` is the `-th Gegenbauer polynomial. Consequently, the coefficients in the
power series expansion are

f±,j,` =

√√√√a`±,j

c`−1
±,j

C
(−1/2)
`

(
− b±,j

2
√
a±,jc±,j

)
.

The recursion (C.2) follows from substitution of the recursion formula for Gegenbauer
polynomials.
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