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Abstract—In this paper, a new approach to robotic mapping
is presented that uses modified spherical coordinates in a robot-
centered reference frame and a bearing-only measurement model.
The algorithm provided in this paper permits robust delay-
free state initialization and is computationally more efficient
than the current standard in bearing-only (delay-free initialized)
simultaneous localization and mapping (SLAM). Importantly,
we provide a detailed nonlinear observability analysis which
shows the system is generally observable. We also analyze the
error convergence of the filter using stochastic stability analysis.
We provide an explicit bound on the asymptotic mean state
estimation error. A comparison of the performance of this filter
is also made against a standard world-centric SLAM algorithm
in a simulated environment.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a well

researched problem within robotics. Many implementations
and scenario variations exist using a variety of different
filters [1]–[4]. However, it is surprising that within the SLAM
literature, there is relatively little research on the use of,
and subsequent performance surrounding, different coordinate
systems or on the analysis of the filter error convergence. In
the closely related field of target tracking, research has shown
that coordinate transforms that linearize the measurement
model may improve error convergence [5], [6]. Indeed, in
traditional target tracking [5] the system dynamic model is
often originally linear in Cartesian coordinates. However, by
changing coordinates in order to derive an analytically linear
measurement model we typically sacrifice this linearity of the
system model. Nevertheless, overall estimation performance
is often improved as discussed in [5], [6]. In robotic mapping
and localization algorithms we typically start with a nonlinear
system model in any case. Moreover, in the typical world-
centric SLAM formulation we start with an unobservable
[7], [8] nonlinear (in both system and measurements) state
estimation problem.
The unobservability of the world-centric SLAM problem

[7], [8] suggests that a robot-centric formulation may be more
appropriate. Moreover, estimator inconsistencies caused by
accumulated linearization errors [9]–[11] are exasperated in
world-centric coordinates, particularly for extended Kalman
filter-like (EKF) algorithms. In [12] the concept of robocentric
mapping is introduced and shown to better deal with lineariza-
tion errors than the traditional SLAM formulation.
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One contribution of this paper is an algorithm for robo-
centric bearings-only SLAM which uses a modified spherical
coordinate system. The problem of bearing-only SLAM is of
interest since many sensors are capable only of providing
the bearing of target-points-of-interest. For example, single
camera, vision-based, measurement systems provide only the
bearings to particular points in three-dimensional space [13].
Similarly, passive sensing technology often provides only
target bearing information. By building a map in a relative
spherical-like framework, we eliminate the nonlinearities asso-
ciated with the measurement equation. Moreover, we eliminate
the problems associated with the unobservable states [7] and
the inconsistencies caused by the EKF linearizations (which
alter the unobservable subspace [7]).
Another important contribution of this paper is the inclusion

of a rigorous observability analysis. We show that in general,
our robocentric system state is observable, i.e. the relative
location of the landmarks are observable, given only relative
bearing measurements. We go further than this and provide
conditions under which the state estimation error of an EKF-
like algorithm is bounded. The convergence analysis in this
paper is actually conservative, with the particular asymptotic
properties of the mean estimation error dependent on the exact
robot trajectory; e.g. see [14], [15]. The analysis in this paper is
provided in order to justify the modified spherical coordinates
considered, and the wide application of the EKF in mapping
(and, in particular, in mapping in this coordinate framework).
The work in this paper differs from that in the target

tracking literature since we consider a nonlinear robot dynamic
model. We then rigorously analyze the observability and
convergence of an EKF-like algorithm given the particular
nonlinear dynamics, bearing-only measurements and the mod-
ified coordinate system. We differ from related work in the
robot mapping and localization literature by introducing a
new coordinate system, within which a number of distinct
advantages are shown to exist. We also differ from existing
robotic mapping papers by introducing a rigorous convergence
and observability analysis for the estimation problem. This
analysis will be of interest to roboticists employing similarly
structured algorithms.

II. PRELIMINARIES
We assume a robot moving on a planar surface according

to the unicycle motion model. The robot state is described by
the vector xr = [xr yr zr φr]

T. The robot is steered using



the inputs vr and ωr, which are the translational and angular
velocities. The robot’s motion is described by the following
system of nonlinear equations

ẋr = vr cosφr

ẏr = vr sin φr

żr = 0

φ̇r = wr

(1)

These inputs are disturbed by the noise components vn

and ωn, which are assumed to be uncorrelated zero-mean
Weiner processes with standard deviations σv and σω . The
full stochastic motion model for the robot is described by

d

⎡⎢⎢⎣
xr

yr

zr

φr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
vr cosφr

vr sin φr

0
ωr

⎤⎥⎥⎦ dt+

⎡⎢⎢⎣
σv cosφr 0
σv sin φr 0

0 0
0 σω

⎤⎥⎥⎦[ dvn

dωn

]
(2)

The robot moves through an environment populated by n
point landmarks, which it is capable of observing through
bearing measurements. We denote by V the set of all such
landmarks and by G(t) ⊂ V the set of landmarks observable
at time t. Let the Cartesian coordinates of the ith landmark be
denoted by pi = [xi yi zi]

T. Then the true measurements of
the ith landmark can be expressed as

αi = arctan
yi − yr

xi − xr

− φr

βi = arcsin
zi − zr√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2
(3)

or concisely using the measurement vector yi(t) =
[αi(t) βi(t)]

�. Let z = [x�
r p�

i . . . p�
n ]� denote a traditional

SLAM state vector. The measurements yi(t) are typically
corrupted by a noise process n(t) such that

dy(t) � ψdt = h(z)dt + E(t)n(t) (4)

in continuous-time. Here, we assume that n(t) is a zero-mean
Weiner process and E(t) is a measurement noise weighting
matrix that can be dependent on the true state. The mea-
surements and robot dynamics are nonlinear in the chosen
Cartesian coordinate system.

III. ROBOCENTRIC MAPPING IN MODIFIED SPHERICAL
COORDINATES

The contribution of this paper is a novel robocentric algo-
rithm for mapping and localization which takes advantage of
the spherical-like nature of the relative bearing measurements.
There does not appear to be any similar (spherical-like)
algorithms in the SLAM or robocentric mapping literature.
The spherical coordinates of landmark i in the robot’s

reference frame is given by

αi = arctan
yi − yr

xi − xr

− φr

βi = arcsin
zi − zr√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2

di =
√

(xi − xr)2 + (yi − xr)2 + (zi − zr)2 (5)

which we write succinctly as ri = [αi βi di]
�. Using (5)

together with the unicycle motion model (1) of the robot yields

α̇i =
vr sin αi

di cosβi

− ωr

β̇i =
vr

di

cosαi sinβi (6)

ḋi = −vr cosαi cosβi

Taking the previously defined noise processes vn and ωn

into account, we get the following stochastic motion model

d

⎡⎣ αi

βi

di

⎤⎦ =

⎡⎣ vr sin αi

di cos βi

− ωr
vr

di

cosαi sin βi

−vr cosαi cosβi

⎤⎦ dt +⎡⎣ σv sin αi

di cos βi

−σω
σv

di

cosαi sin βi 0

−σv cosαi cosβi 0

⎤⎦[ dvn

dωn

] (7)

We thus have a nonlinear system (7) and linear measure-
ments (9). However, we go one step further and modify the
dynamic system (7) slightly. In particular, we will not consider
the range di of each landmark i but rather the inverse range
ρi = 1/di, see [5], [13]. In this case, we have ρ̇i = −ρ2

i ḋi or
taking account of the input noise we have

dρi = vrρ
2
i cosαi cosβidt + σvρ2

i cosαi cosβidvn (8)

and thus the modification of the dynamic system (7) is
obvious. The reason for using ρi instead of di is related to the
initialization and is explained in the subsequent subsection.
We redefine ri = [αi βi ρi]

� and z = [r1 . . . rn]�.
The measurements (3) are linear in ri or more generally in
z = [r1 . . . rn]� and can then be given by the continuous-
time measurement equation

dy(t) � ψdt = H(G(t))zdt + E(t)n(t) (9)

where E(t) is not required to be independent of z. Here,
H(G(t)) is a time-varying linear matrix which is dependent
only on the set G(t) of currently sensed landmarks.
The function fi(·) which captures the dynamics of the

subspace ri is

fi(ẑ, vr, wr) = fi(r̂i, vr, wr) =

⎡⎣ vrρi sin αi

cos βi

− ωr

vrρi cosαi sin βi

vrρ
2
i cosαi cosβi

⎤⎦
(10)

and where f(·) is thus a vertical concatenation of the fi(·).
For latter use we introduce the following Taylor expansion of
f(·) about the estimate ẑ,

f(z, vr , wr)− f(ẑ, vr, wr) = A(t)(z − ẑ) + 	(z, ẑ, vr, wr)
(11)

whereA(t) is the Jacobian of f(·) and 	(z, ẑ, vr, wr) accounts
for the higher order terms. The JacobianAi(t) of fi(·) is given
by

Ai = vrρ
2
i

⎡⎢⎣
cos αi

ρi cos βi

sin αi sin βi

ρi cos2 βi

sin αi

ρ2

i
cos βi

− sinαi sin βi

ρi

cos αi cos βi

ρi

cos αi sin βi

ρ2

i

− sinαi cosβi − cosαi sinβi
2 cos αi cos βi

ρi

⎤⎥⎦
(12)



and is evaluated at an estimate r̂i. For any time-varying matrix
M(t) we introduce the following notation

‖M(t)‖ = sup{‖M(t)‖ : mij ∈ R} (13)

for all t and for some norm ‖ · ‖. Moreover, we make the
following standing assumption for simplicity.
Assumption 1: The robot does not travel directly over or

directly underneath a true landmark location or the estimated
location of a landmark, i.e. βi �= ±π/2 or β̂i �= ±π/2.
Assumption 1 is a technical requirement of the chosen

coordinate system but not strong in practice. In fact, landmarks
are often not chosen automatically to lie directly above or
below the robot’s trajectory and if indeed they were then we
could subsequently alter the robot trajectory to avoid this. As
a consequence of the assumption, the following bound holds

‖A(t)‖ = a < ∞ (14)

for all t given a particular robot trajectory. The error ζ = z− ẑ

is the so-called state estimation error. We will also need the
following lemma concerning the growth of 	(z, ẑ, vr, wr).
Lemma 1: The following inequality holds

‖	(z, ẑ, vr, wr)‖ = ‖f(z, ·)− f(ẑ, ·)−A(t)(z − ẑ)‖

≤ 2a‖ζ‖ (15)

for with probability 1 when Assumption 1 holds.
Proof: From the triangle inequality we obtain

‖f(z, vr, wr)− f(ẑ, vr, wr)−A(t)(z − ẑ)‖ ≤

‖f(z, vr, wr)− f(ẑ, vr, wr)‖+ ‖ −A(t)ζ‖ ≤

‖f(z, vr, wr)− f(ẑ, vr, wr)‖+ aζ (16)

which follows using (14). Now if f(·) is Lipschitz then
‖f(z, vr, wr)−f(ẑ, vr, wr)‖ ≤ c‖z−ẑ‖ for some 0 < c <∞.
Actually, we know that if ‖A(t)‖ is bounded by a then f(·)
is Lipschitz with Lipschitz coefficient a.
Note also that 	(z, ẑ, vr, wr) = 0 when ζ(t) = 0.

A. Initialization in Modified Spherical Coordinates
Since the location of the landmarks, or even their number,

is not known beforehand, we will need to augment our state
with the parameters for each new landmark when they are first
observed. This presents a problem, since we only observe the
two bearings, α and β, in any single measurement, and not
the depth (or inverse depth).
This problem is particularly severe in Cartesian coordinates,

since the conic region of uncertainty will not be well approxi-
mated by a Gaussian distribution. One way to get around this is
to use so called delayed initialization [16], where a landmark is
not added to the state until it has been observed sufficiently for
the depth to be estimated. However, this adds to the complexity
of the implementation, requiring the provisional landmarks to
be handled as a separate case.
Civera et al. [13] proposed a method for undelayed ini-

tialization for global SLAM by parameterizing the landmarks
using the robot pose in Cartesian coordinates together with the

two observed bearings and the inverse depth. In our robocen-
tric formulation, we will only use the latter three parameters.
The bearings are trivially initialized using the measurement
values and measurement statistics. The uncertainty in the
inverse depth can be reasonably well approximated using a
Gaussian function [13]. Also, by using the inverse depth ρi

instead of di, we can better account for a very large range of
initial di values (including∞) in the uncertainty region given
a reasonable value for ρi(0) and σρ(0).

B. Observability of the Proposed Estimation Problem
When discussing the observability of the proposed SLAM

algorithm, we will use the property of local weak observabil-
ity, as defined by Hermann and Krener in [17]. The same
method was previously applied to the global SLAM problem
in [8] to prove its fundamental unobservability.
A system Σ is said to be locally weakly observable at a

point x0 if we can instantaneously distinguish x0 from its
neighbors. To test for this property, we use the observability
rank condition, which is a sufficient condition for local weak
observability. For simplicity, we will only consider a system
with a single landmark i. We define our system Σ as

Σ :
ẋ = f(x, vr, ωr) =

⎛⎝ fα

fβ

fρ

⎞⎠ =

⎛⎝ vrρi sin αi

cos βi

− ωr

vrρi cosαi sinβi

vrρ
2
i cosαi cosβi

⎞⎠
y = h(x) =

(
h1

h2

)
=

(
αi

βi

)
where x ∈ M and M is a 3-dimensional C∞ connected
manifold and f and h are C∞ functions.
Let OΣ be the matrix whose rows consist of repeated Lie

derivatives of one-forms dhi(x) with respect to the Lie algebra
F of vector fields generated by f(x, vr, ωr) on M. These
repeated Lie derivatives are defined recursively as

L0
fdhi(x) =

∂hi(x)

∂x
(17)

and given an iterative index q ∈ N we have

Lq
fdhi(x) = Lq−1

f dhi(x)∂f(x,vr ,ωr)
∂x

+

[
∂

∂x

(
LD−1

f dhi(x)
)T

f(x, vr , ωr)

]T

(18)
For our system Σ, we have

L0
fdh1 = [1 0 0], L0

fdh2 = [0 1 0] (19)

L1
fdh1 = vr

[
ρi cosαi

cosβi

ρi sin αi sin βi

cos2 βi

sinαi

cosβi

]
(20)

L1
fdh2 = vrρi[

− sinαi sinβi

vr

cosαi cosβi cosαi sin βi]

(21)

L2
fdh1(x) =

⎡⎢⎢⎣
4v2

r
ρ2

i
cos2 αi

cos2 βi

−
2v2

r
ρ2

i

cos2 βi

+ vrωrρi sin αi

cos βi

4v2

r
ρ2

i
sin αi cos αi sin βi

cos2 βi

− vrωrρi cos αi sin βi

cos βi

4v2

r
ρi sin αi cos αi

cos2 βi

− vrωr cos αi

cos βi

⎤⎥⎥⎦
�

(22)



L2
fdh2(x) =

⎡⎢⎢⎣
2v2

r
ρ2

i
sin αi cos αi sin βi

cos βi

− 4v2
rρ2

i sin αi cosαi sin βi cosβi + vrωiρi cosαi sin βi

4v2
rρ2

i cos2 αi cos2 βi − 2v2
rρ2

i cos2 αi −
v2

r
ρ2

i
sin2 αi

cos2 βi

+ vrωr cosαi sin βi

4v2
rρi cos2 αi sin βi cosβi −

2v2

r
ρi sin2 αi sin βi

cos βi

+ vrωr sin αi sin βi

⎤⎥⎥⎦
�

(23)

If rank(OΣ) = 3, for some point x0, the system fulfills the
observability rank condition at this point, and is thus locally
weakly observable at this point [17].
Note by inspection, if vr = 0, OΣ will never be full rank

since the third column will be zero. Intuitively, the robot is
stationary and can never observe any change in the landmark
bearings and thus cannot observe depth. If vr �= 0 and ωr = 0
then (20) and (21) ensure that the observability rank condition
will hold as long as αi and βi are not both equal to zero. This
means that Σ will be locally weakly observable for all x with
αi �= 0 and βi �= 0. This also agrees with intuition, since if
the robot was moving directly towards the landmark, it would
not observe any change in bearing.
Finally, if both vr �= 0 and ωr �= 0 then (22) ensures that

the observability rank condition will hold for every x ∈ M
and thus Σ will be locally weakly observable. Intuitively,
this corresponds to the robot traveling on an arc, so that no
landmark will remain on the indistinguishable line.

C. The Estimator
The behavior of an estimate ẑ of z depends on the particular

estimator. Thus we consider an estimator of the form

dẑ = f(ẑ, vr, wr)dt + K(t) (dy(t) −H(G(t))ẑdt) (24)

The gain K(t) is given by

K(t) = P(t)H�(G(t))R−1(t) (25)

and P(t) is the solution to the following Riccati differential
equation

dP(t) =
[
A(t)P(t) + P(t)A�(t) + Q(t)

]
dt−

P(t)H�(G(t))R−1(t)H(G(t))P(t) (26)

where Q and R are positive-definite tuning matrices. For
completeness we state the following common assumption.

Assumption 2: The following Q(t) ≥ qI, R(t) ≥ rI
and P(t0) ≥ p0I are given for some q, r, p0 > 0 such
that ‖Q(t)‖ ≥ q and ‖R(t)‖ ≥ r. Moreover, Q(t) and
R(t) are chosen to be bounded by ‖Q(t)‖ ≤ q < ∞ and
‖R(t)‖ ≤ r < ∞ for all t. Also, we have E(t) ≤ e < ∞
with E(t) ≥ eI.

The analysis in this paper will consider the propagation of
the estimation error ζ(t) = z(t)− ẑ(t) for all t > t0 given an
initial estimation error ζ(t0) which we will assume belongs to
the set

‖ζ(t0)‖ ≤ b in the state space (27)

for some constant b < ∞. We assume initially that G̃(t) =
G for all t > t0. It is common to assume a full landmark
measurement vector for analysis [3], [11].

Note that in general, the continuous time estimator in this
section does not involve a prediction stage. However, by letting
R−1(t) = 0 over the time interval t ∈ [k0, k1] we can easily
allow for the absence of measurements over that interval.

D. On the Convergence of the Feature Estimator
We consider (for simplicity) the case where G̃(t) = G(t)

for all t. We assume an EKF-like algorithm of the form (24)
with Assumptions 1-2 holding. The error ζ = z− ẑ obeys

dζ = [(A(t)−K(t)) ζ + 	(z, ẑ, vr, wr)] dt +

G(t)

[
dvn

dwn

]
−K(t)E(t)dn(t)

dζ = [(A(t)−K(t)) ζ + 	(z, ẑ, vr, wr)] dt +

[G(t) −K(t)E(t)]

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦ (28)

where Gi(t) is given by

‖Gi(t)‖ =

∥∥∥∥∥∥
⎡⎣ σvρi sin αi

cos βi

−σω

ρiσv cosαi sinβi 0
−σvρ

2
i cosαi cosβi 0

⎤⎦∥∥∥∥∥∥ = g < ∞

(29)
and G(t) =

[
G�

1 . . . G�
n

]�. Recall Lemma 1 bounds the
growth of the nonlinear perturbation term 	(z, ẑ, vr, wr). We
need the following assumption.
Assumption 3: The state covarianceP(t) is bounded by

0 < p ≤ P(t) ≤ p <∞ (30)

for all t > t0
Note that Assumption 3 is quite reasonable. In fact, the

lower bound follows from a general controllability argument.
We also conjecture based on the analysis in [18] that it is
possible to formally prove that Assumption 3 holds for all t,
given only that the control inputs ensure the state is observable,
e.g. vr �= 0 for all t, and ‖A(t)‖ is bounded.
Theorem 1: Consider (28) with an initial condition (27) and

G(t) = V(t) for all t. Suppose that Assumptions 1-2 hold. If

‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap/p (31)

then the estimation error is bounded above with

E
{
‖ζ(t)‖2

}
≤ max

{
n(r2g2 + ppe2)

2γr2p
,

p

p
‖ζ(t0)‖

2

}
(32)

where

γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p−
4ap

p
(33)

and E
{
‖ζ(t)‖2

}
as t→∞ is bounded by n(r2g2+ppe2)

2γr2p
.

3



Proof: Let B(t, ζ(t)) = ζ�(t)P−1(t)ζ(t) > 0 and note
that

dB =

[
∂B

∂t
+

∂B

∂ζ
(A(t) −K(t)) ζ +

∂B

∂ζ
	(z, ẑ, ·)

]
dt +

1

2
tr
(
hess(B)Ξ(t)Ξ�(t)

)
dt−

∂B

∂ζ
Ξ(t)

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦ (34)

where Ξ(t) = [G(t) −K(t)E(t)] and where we have em-
ployed Itos differential formula. Evaluating the terms and re-
arranging leads to

dB =
[
ζ�

[
P−1(t)Q(t)P−1(t) + R−1(t)

]
ζ
]
dt +

2ζ�P−1(t)	(z, ẑ, vr, wr)dt +
1

2
tr
(
P−1(t)G(t)G�(t)

)
dt +

1

2
tr
(
P−1(t)K(t)K�(t)

)
dt−

2ζ�P−1(t)Ξ(t)

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦
≤

[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

n(r2g2 + ppe2)

2γr2p

]
dt−

2ζ�P−1(t)Ξ(t)

⎡⎣ [
dvn

dwn

]
dn(t)

⎤⎦ (35)

where we have explicitly employed Lemma 1 and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (36)

Now noting that p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 and
using the Bellman-Gromwall lemma [19] we come to

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t− t0))−

2

∫ t

t0

ζ�(τ)P−1(τ)Ξ(τ)

⎡⎣ [
dvn(τ)
dwn(τ)

]
dn(τ)

⎤⎦+

n(r2g2 + ppe2)

2γr2p
−

n(r2g2 + ppe2)

2γr2p
exp (−γ(t− t0)) (37)

where γ =
(
αp− 4ap

p

)
with γ > 0 if and only if αp > 4ap

p
.

Taking the expectation of (49) and rearranging gives

E
{
‖ζ(t)‖2

}
≤ max

{
n(r2g2 + ppe2)

2γr2p
,

p

p
‖ζ(t0)‖

2

}
(38)

for all t if γ > 0. The error E
{
‖ζ(t)‖2

}
as t→∞ is bounded

by n(r2g2+ppe2)

2γr2p
. This completes the proof.

Importantly, we have provided conditions under which an
EKF-like algorithm will yield an exponentially bounded and
converging mean-square estimation error.

IV. NUMERICAL ANALYSIS
The proposed algorithm is now illustrated via simulation.

We compare the performance of the spherical robot-centric
SLAM algorithm against a global SLAM algorithm similar to
the one used in [13] in a simulated environment.
The state of the global SLAM algorithm takes the form g =

[xr yr zr φr b�
1 . . . b�

n ]� with bi = [x∗

ir y∗

ir z∗ir α∗

i β∗

i ρ∗i ]
�

for a single landmark i. The x∗
ir , y∗

ir and z∗ir state components
are the position of the robot in global coordinates when the
landmark i is first initialized (or observed). Here α∗

i , β∗

i and
ρ∗i are the αi, βi and ρi values relative to the robot’s position
when landmark i is first initialized, i.e. [x∗

ir y∗

ir z∗ir]
� and the

position of landmark i. The reason for this parametrization
[13] is that it enables us to do single step initialization of
the landmarks, which would be very difficult using a purely
Cartesian representation.
A typical map and robot trajectory is shown in Fig 1. In
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Fig. 1. A typical map layout and robot trajectory.

each simulation run, the landmarks are distributed randomly
in a square pattern along the x and y axes, and uniformly on
the z-axis. The robot moves along a randomly generated path
in the center of the environment.

A. Example Scenario
In this case, the robot can sense landmark i if and only if

αi(t) ∈ (−π/4, π/4) and βi(t) ∈ (−π/4, π/4). The process
noise is σv = 0.42, σω = 1.06 and the measurement noise
has standard deviation 0.0873 radians for both bearings. Each
simulation runs for 1500 time steps.
Since the robocentric algorithm does not estimate the robot’s

global position, we cannot compare the trajectories produced
by the two algorithms. Thus, for the global algorithm, we
generate a relative map by computing the estimated spherical
landmark position relative to the estimated robot pose. The
RMS errors are shown in Fig 2 over 1000 simulations. For
both algorithms, the errors converge to a steady value and
both perform well in terms of the relative map.
Note that Fig 2 does not illustrate the error in the robot pose

or its effect on the global map. In some simulations, both the
global map and the pose estimate were offset by a significant
amount. Fig 3 shows a birds-eye view of such a case and
highlights the flaws of world-centric mapping.
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Fig. 2. The RMS error for the relative α bearings, β bearings and inverse
distance ρ respectively.
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Fig. 3. This figure shows the global SLAM map and estimated robot
trajectory is rotated and displaced quite significantly. The error in the global
coordinates occurs despite, as shown in Fig 2, the fact that an accurate relative
map can be derived from the global state.

This distortion of the global map is caused by an unobserv-
able state in global SLAM, as was shown in [8].

V. A NOTE ON COMPLEXITY
When analyzing the computational complexity of a SLAM

algorithm, one critical factor is the size of the state. One of the
costliest operations in the EKF is the multiplication of large
matrices, which is typically O(m3) for m-by-m matrices.
This gives the spherical robot-centric algorithm a significant

speed boost over the global SLAM algorithm, since the size
of the state is effectively cut in half. This speed boost was
also notably observed in every simulation.

VI. CONCLUDING REMARKS
In this paper we proposed a computationally efficient robo-

centric mapping algorithm that can be implemented using
a linear measurement equation. We further highlighted the
problems caused by the unobservable state components in
traditional, world-centric SLAM, i.e. Fig 3. We have illustrated

(and suspect it is well known) that a relative map computed
using the global SLAM state vector can perform comparably
with a dedicated robocentric algorithm even if the actual global
map is quite inaccurate. Given that only the relative state
components are observable and the increased computational
cost in maintaining a global map, we question the utility in
doing so, and thus further motivate the work in this paper.
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