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Abstract

In this paper we study some modifications of the
CONDENSATION algorithm. The case studied is fea-
ture based mobile robot localization in a large scale en-
vironment. The required sample set size for making
the CONDENSATION algorithm converge properly can
in many cases require too much computation. This is
often the case when observing features in symmetric
environments like for instance doors in long corridors.
In such areas a large sample set is required to resolve
the generated multi-hypotheses problem. To manage
with a sample set size which in the normal case would
cause the CONDENSATION algorithm to break down,
we study two modifications. The first strategy, called
“CONDENSATION with random sampling”, takes part
of the sample set and spreads it randomly over the
environment the robot operates in. The second strat-
eqy, called “CONDENSATION with planned sampling”,
places part of the sample set at planned positions based
on the detected features. From the experiments we con-
clude that the second strategy is the best and can reduce
the sample set size by at least a factor of 40.

1 Introduction

Mobile robot localization is a field that has at-
tracted much interest from researchers the past few
years. For a long time the dominating approach was to
approximate the probability density function (PDF)
of the robot position with a uni-modal Gaussian dis-
tribution which could be propagated using a standard
Kalman filter [1, 8]. In most cases these methods were
used for robot pose tracking. In recent years methods
have been applied that make use of multi-modal rep-
resentation of the PDF, to enable global robot local-

ization in a large-scale environment. A wide range of
different world representations have been used when
working with a multi-modal PDF. Nourbakhsh used
a topological model for the world [4] and in [9] a grid
based representation is used. Recently the CONDEN-
SATION algorithm [5], which use a sample based rep-
resentation of the PDF, has become popular [2]. The
method shows convergence properties when using a
large enough sample set. The necessary sample set size
depends on the application, and for certain cases the
required sample set size can be too large with respect
to computational complexity. In this paper we study
CONDENSATION applied to feature based localization.
The experiments are carried out in a large scale en-
vironment, with areas containing feature symmetries,
e.g. corridors. In such areas we conclude from the ex-
periments that the CONDENSATION algorithm has un-
acceptable performance when using a sample set size
which is on the limit of what could be handled on a
450MHz PC. To be able to cope with a smaller sam-
ple set size, we study two strategies for modifying the
CONDENSATION algorithm. The first strategy is not
to wait for the sample set to diffuse to new interesting
locations, but instead take part of the sample set and
spread it randomly over the area the robot operates
in. In this way new modes in the PDF are introduced
faster and can prevent the algorithm from converging
to a false location. However, too much random sam-
pling will prevent the CONDENSATION algorithm from
converging at all. The second strategy is to take part
of the sample set and spread it at planned positions
based on associating observed features to a world map
of features.

The paper is outlined as follows. First the notation
used in the paper is explained and the assumptions we
make for doing feature based localizations are stated.



In section 3 the CONDENSATION algorithm is reca-
pitulated for convenience and in section 4 and 5 the
CONDENSATION algorithm is augmented with random
sampling and planned sampling respectively. The pa-
per ends with an experimental section comparing the
different versions of the CONDENSATION algorithm on
a common data set taken from a large scale environ-
ment.

2 Problem statement and assumptions

In the mobile robot localization problem stated
here, a (W)orld and a (R)obot coordinate system are
present (figure 1). The task is to find the robot loca-
tion (z(™),y()) in world coordinates and the orienta-
tion difference a between the two coordinate systems.
The following assumptions are made to deal with this
problem:

e The robot can measure its position (2%, y(*)) in
robot coordinates using odometry.

e The robot can make external measurements in
robot coordinates of features from the surround-
ing world. The set of features measured in the
time interval [t,t + T]' is denoted F and the size
of F is denoted |F|. The set F can be divided
into K disjoint subsets F(1), F?)  FK) cor-
responding to K different feature types. Hence F
can be written

F o= FOUr@u.. . ur®
F® = {ff,fg,...,fl’;(k)l} k=1,...,K
In the coming sections the set F; will denote an

ordered version of F with respect to the feature
time stamps t1,%s,. .., 7, i.e.

ft:{fla f27f|.7:|}
t <t <t2<...<t‘}-‘§t+T

e There is a map M available in world coordinates
that contains the same type of features that can
be measured by the robot. Using the same nota-
tion as introduced for F we have that

M = MOUMDU.. .UM
M(k) = {m’f,mg,...,mlkM(k)‘} k:]-;:K

The position information of each map feature
m € M is stored in a pre-defined world coordi-
nate system that is assumed to be related to the
robot coordinate system as described in figure 1.

n the experiments we use 7' = 5 sec.

Figure 1: The mobile robot localization problem is
here to find the robot pose in world coordinates by
using odometry readings (z(), y(®) and external fea-
ture measurements f that are associated with a world
map M.

e There is a sample set

5= {07, (50,7}

that represents our distribution of possible robot
Et) = (a:z(»W),yz(W),ai)(t) suggests
that the robot was at position (a:gW),yZ(W)) at
time ¢ and that the orientation difference be-
tween the world and robot coordinate system is
a;. Each sample sgt) has an attached weight 71'1@
that shows its importance relative to the other
samples.

poses. Here s

3 CONDENSATION

Given the assumptions stated in section 2, the
CONDENSATION algorithm could be used for updat-
ing the sample set S; based on feature measurements
f € F that correspond to a map feature m € M. The
CONDENSATION algorithm is given in pseudo code
format in figure 2.

We have modeled the prediction and diffusion term py
that appears in the CONDENSATION algorithm as

(t5-1) T
D(1+ D;)cos(e;’ ™" + )
pi=| D(1+D,)sin(a""") + B)
Da,
where
D = i - el + Wi - )2
(R) (R)
_ ynew - yold
8 = arctan(i(R) (R))

Tnew — T4



STEP 1:

Draw samples s;(to) 1 =1,2,...,N based on the
current distribution 7r§t°),7r§t°), .. ,71'%0) and
put sl(»to) = s;(to), 7T§t0) =%, i=1,...,N
STEP 2:

for j =1 — |F| { (cronologic loop)
for i =1 — N { (loop over all samples)
Predict and diffuse each sample position:
sgtj) = sgtj_l) + Da
Update the sample weight based on the
observed feature f;:
t; ti— t;
mi1) = w5 p(f s
}
}

STEP 3:
Put ty := t|7 and wait for new features (Fiir).

Figure 2: The CONDENSATION algorithm applied to
feature based localization of a mobile robot.

Here (:vgf;)u, yégq)ﬂ) is the odometry reading taken at

time ¢; when feature f; was detected, and (mgﬁd),ygﬁi))
is an odometry reading taken at the time ¢;_; when
feature f;_; was detected. The diffusion parameters
D, and a, are modeled as independent normally dis-
tributed random variables with zero mean and stan-
dard deviations op and o,. The standard deviations
were chosen so that the diffusion will be at least of the
same order as the odometry drift of the robot plat-
form. Hence op and o, could be determined experi-
mentally for a specific platform?.

In the update stage of the CONDENSATION algorithm
the probability p(fj|sgtj)) needs to be computed. We
refer to [6] for an example.

The sample set representation of conditional density
used in the CONDENSATION algorithm asymptotically
approaches the true distribution as the size NV of the
sample set size goes to infinity [5, 3]. However, from an
implementation point of view, this can be a problem
if the computational burden for running the CONDEN-
SATION algorithm becomes too large when using the

2In our experiments (conducted on a Nomad 200) op =
0.005 and oo = 0.025 rad/m

required sample set size N. One such case that we
will study is global robot localization in large scale
symmetric environments. Corridors can for instance
be classified as symmetric because of their tendency to
repeat various kind of features like doors and windows.
In such areas the CONDENSATION algorithm will be
dependent on a large sample set size N to resolve the
multi-hypotheses-problem that is generated by the ob-
served features. If N is too low, the CONDENSATION
algorithm is likely to break down, i.e.not converge at
all or converge to a false pose hypothesis . In this pa-
per we experimentally investigate how modifications
of the CONDENSATION algorithm can improve the con-
vergence properties. In particular, we wish to improve
the convergence of CONDENSATION for smaller sample
set sizes. We will consider two strategies in the coming
sections, CONDENSATION with random sampling and
CONDENSATION with planned sampling.

4 CONDENSATION with random sam-
pling

When using the CONDENSATION algorithm on a
small sample set size N in a large scale environment
it is likely that the sample set does not give support
where the true PDF has support. As a consequence
of this, the time it takes for the sample set to dif-
fuse to the correct location can become unacceptably
long. An idea is then to use part of the sample set
for initiating new pose hypotheses of the robot. The
CONDENSATION algorithm can then be modified as in
figure 3. The degree of random sampling is here de-
termined by a parameter p, € [0,1]. If p, = 1 then
the algorithm will in each iteration spread all sam-
ples uniformly over the known environment. Such a
strategy will of course prevent the algorithm from ever
converging and hence a more moderate degree of ran-
dom sampling should be used. The optimal parameter
choice on p, will be dependent on the kind of features
that can be detected. In section 6 we will experimen-
tally evaluate different degrees of random sampling.

5 CONDENSATION with planned sam-
pling

An alternative to random sampling is to put p,N
(pp € [0,1]) samples at planned positions by drawing
from the PDF p(x|F), which represent the distribu-
tion of probable robot positions when mapping F(*)



STEP 1:

Draw samples s;(tO) i=(p-N+1),...,N randomly
based on the distribution wgto),wéto), .. .ﬂ](\t,o) and
put sgto) = s;(to).

Draw completely new samples sgto) i1=1,...,p.N

from a uniformly distribution over the environment
the robot operates in.
Assign all samples the same weight;:

=L =12 N.

K3

STEP 2 & 3:
Same as in figure 2.

Figure 3: CONDENSATION algorithm augumented with
random sampling

to M®) k =1,2,..., K. By assuming independence
between the detected features we have

K |_7:(k)|

p(F) = [T TI »Ifh) (1)

k=1 j=1

and hence a total of p, N planned samples are drawn
from

pxlf), feF 2)

rather than p(x|F). A relative quality number? g
is introduced to decide how many planned samples
that should be drawn from p(x|f]’-“). If for instance
the feature set F only holds two features, one of
type k1 and one of type kg, i.e. F = {flkl, 1’“2}, then
Gk PpIN/ (g, + qk,) planned samples are drawn from
p(x|f{*) and gr,ppN/(ar, + qr,) lanned samples are
drawn from p(x| flkz) More generally, if there are sev-
eral features of the same type in F, there are

qdk
np=— 2 ___p N (3)
Y alFO”

planned samples drawn from p(x|f*) where f* €
F&*) C F. The CONDENSATION algorithm with
planned sampling is given in pseudo code format* in
figure 4. The degree of planned sampling (p,) that

3A discussion of how to determine the relative quality num-
bers qx, k=1,2,...,K is found in [6].

4This is not an optimal implementation since we are actually
predicting, diffusing and performing measurement update on
samples which later on are overwritten by planned samples. The
pseudo code however becomes easier to read in this manner.

STEP 1:
Same as in figure 2.

STEP 2:
Ng 1= 0
for j =1 — |F| { (cronologic loop)
for i =1 — N{ (loop over all samples)
Predict, diffuse and perform measurement update
as in figure 2.
}
Compute n, (eq (3)).

for i =no+1— ng +n, { (planned sampling)
(

Draw a planned sample s;
give it weight +p(f;[x).

}

Ng :=Mng + Ny

%) from p(x|f;) and

}

STEP 3:
Same as in figure 2.

Figure 4: The CONDENSATION algorithm with
planned sampling.

should be used is dependent on the kind of features
that can be detected. In section 6 the parameter p,, is
experimentally determined. It is obvious that a too
large degree of planned sampling (p, = 1 extreme
case) would make the algorithm “jump” between dif-
ferent pose hypotheses. Another issue is that planned
sampling can detract from the CONDENSATION algo-
rithm if many features in F lack a correspondance in
the map M. Such features can arise either from false
measurements (outliers) or correct measurements of
features that have not been modeled in the map. Of
course such feature measurements would also hinder
in the original version of the CONDENSATION algo-
rithm or the version using random sampling, but in
the planned sampling case the negative effect is more
instantaneous.

6 Experiments

The experiments for comparing the algorithms pre-
sented in section 3,4 and 5 were performed on two
floors in an old hospital building. A map of the build-
ing is shown in figure 5. The robot used in the experi-
ments was a Nomad 200 robot equipped with 16 sonars




mounted in a ring and a SICK laser scanner. The
sonars were used to detect stable point features in the
environment by using a method called Triangulation
Based Fusion (TBF) [11, 10]. The point features were
recorded manually by joysticking the robot around in
the building, and subsequently saved in world coordi-
nates in the world map M. The laser scanner was
used to detect line features as well as doors. The
line features in the map M correspond to walls in
the rooms and were measured by hand. Since a rect-
angular model was used for each room, only four wall
lines per room were saved in the world map M. The
door features were also measured by hand.

Ten data sets were collected with the robot in differ-
ent parts of the building as a base for the experiments.
In figure 5 the ten data sets can be associated with a
particular robot trajectory. During the collection of
each data set an explore behavior was used to move
the robot around in the environment. The behavior
had no memory of where the robot had been before
and was designed to take the robot to open space ar-
eas. To evaluate the performance, the true pose of
the robot was also stored in each data set using a well
established laser based pose tracker [7] (accuracy =5
cm). A search was done for the first iteration where
PN samples had converged to a blob less than 1 me-
ter in radius. The threshold parameter p,, was set
according to the formula®

DPin = 0-9(1 —Pr — pp): (4)

where p, and p,, are the degree of random and planned
sampling respectively. As a success indicator of an
experiment it was checked if the “sample blob” cor-
responded to the “true” robot pose (specified by the
laser pose tracker). If this was not the case the ex-
periment was classified as false converging. Another
failure type was the algorithm not converging at all.
In the coming subsections no distinction is made be-
tween these two failure types.

CONDENSATION

The first experiment that was done was to run the
original CONDENSATION algorithm (section 3) on the
ten data sets varying the sample set size N. FEach
run over a data set was repeated 10 times to get some
statistics to base our conclusions on®. The result from
the experiment is documented in table 1. From the

5Random and planned sampling were tested separately in
the experiments. Hence either p, = 0 or pp = 0.

6Remember that the diffusion part in the CONDENSATION
algorithm involves randomization and hence repeated experi-
ments on the same data set will generate different results.

3 A
.-r : ;4_

0 20m

Figure 5: The drawing of the building where the ex-
periments took place. Two floors in the building were
used in the experiments. The thick lines are the doors
that were used as one of the feature types in the world
map M. The robot trajectories show where the ex-
periments took place in the building. Each experi-
ment has got a number attached to it in the figure.
The map covers over 200 meters of corridor (with an
almost constant width of 2.5 m).

table it is clear that the CONDENSATION algorithm
converges better when increasing the sample set size
N. At N = 100000 the convergence result is on aver-
age 61%. When looking closer to the table it is noted
that the corridors corresponding to data sets 3 and
4 (figure 5) were particularly difficult to localize in.
The reason for this was the low density of features in
these areas and the fact that all doors were closed and
hence not detected by the laser scanner. Regarding
data set 3, no true convergence was seen in any of
the experiments presented in this paper”. Hence 90%
was the maximum convergence result obtained in the
experiments.

“Including some undocumented ones at N = 200000.



CONDENSATION

CONDENSATION with planned sampling (N = 10000)

[Exp | N=10000 [ 20000 | 50000 [ 100000 | [Exp [ pp,=0.01 ] 0.02 [ 0.05 [ 0.1
T ] 20% (21) | 40% (30) | 60% (45) | 70% (33) T 50% (47) | 80% (32) | 100% __ (40) | 100% (42)
P) 0% ) [ 60% (38) | 80% (32) | 100% (35) 2 | 100% (31) | 100% (27) | 100% _ (30) | 100% _ (36)
3 % O 0% () 0% ) % () 3 % () % () 0% @) % ()
! 0% () | 20% (62) | 10% (46) | 40% (71) 1 50% (64) | 70% (64) | 90% __ (68) 0% O
5 | 10% (44) | 30% (27) | 50% (23) | 40% (27) 5 80% (23) | 100% (28) | 100%  (24) | 90 % (27)
6 | 40% (33) | 10% (19) | 90% (33) | 100% (31) 6 | 100% (29) | 100% (31) | 60%  (33) 0% O
7 0% ) | 10% (56) | 30% (64) | 40% (67) 7 80%  (93) | 100% (82) | 80% (122) 0% O
8 | 50% (35) | 90% (18) | 100% (16) | 100% (14) 8 | 100%  (9) | 100%  (8) | 100%  (10) | 100% (22)
9 | 20% (34) | 40% (46) | 60% (38) | 90% (26) 9 | 100% (25) | 100% (18) | 100% _ (19) | 100%  (29)
0 | 10% (42) | 0% O | 20% (20) | 30% (18) 10 70%  (34) | 100% (36) | 100%  (23) | 100% (27)

[Avg [ 15% (34 [ 30% (33) | 50% (33) ] 61% (33 | [Ave | 73% (37) | 85% (36) | 83% _ (40) | 59% (31)

Table 1: Result when running the CONDENSATION al-
gorithm over varying sample set sizes N. The nota-
tion % (y) occurring in the table means that % of
the runs converged to the true position and that the
convergence took on average y iterations.

CONDENSATION with random sampling (N = 50000)

[ Exp [ pr =0.01 ] 0.1 [ 0.2 [ 0.4
1 20%  (16) 50%  (40) 60%  (38) | 100% (55)
2 90%  (36) 90% (34) | 100% (34) | 100% (52)
3 0% ) 0% ) 0% ) 0% )
4 20%  (42) 40%  (55) 30%  (57) 40%  (65)
5 30%  (20) 30%  (40) 60% (36) | 100%  (48)
6 80%  (24) | 100%  (37) 90%  (59) 0% )
7 30%  (78) 40%  (99) 70%  (82) 20%  (88)
8 100%  (16) | 100% (17) | 100%  (16) | 100% (19)
9 60%  (31) 80%  (20) 90%  (43) 90%  (67)
10 20%  (24) 70%  (41) 90%  (39) 80% (24)

[Avg [ 45% (30) [ 60% (38) | 69% (43) | 63% (48)

Table 2: Result when varying the degree of random
sampling p, when N = 50000. The notation in the
table is the same as in figure 1. A clear improvement
is seen when comparing the best column in this table
(pr = 0.2) with the N = 50000 column in table 1.

CONDENSATION with random sampling

The second experiment was to run the CONDENSA-
TION algorithm with random sampling. In this exper-
iment we used a fixed sample set size N = 50000 and
instead varied the degree of random sampling p,.. The
results are shown in table 2 and should be compared
with the N = 50000 column of table 1 (pure CON-
DENSATION). From the bottom row (average values)
of table 2 it is clear that an improved performance can
be gained at random sampling degrees p, : 0.1 = 0.4.
The best result was obtained at p, = 0.2 with an av-
erage convergence result of 69%.

CONDENSATION with planned sampling

The third experiment was to run the CONDENSATION
algorithm with planned sampling. The sample set size
in this experiment was fixed at N = 10000 and the
degree of planned sampling p, was varied. The out-
come of the experiment is shown in table 3. From

Table 3: Result when varying the degree of planned
sampling p,. The notation in the table is the same as
in figure 1. The best column in this table (p, = 0.02)
is superior to any column in tables 1 and 2 although
the sample set size IV is only 10000.

the table it is clear that planned sampling is superior
to pure CONDENSATION (table 1) and CONDENSATION
with random sampling (table 2). The best result was
obtained at p, = 0.02 with an average convergence re-
sult of 85%. When increasing p, to 0.1 the algorithm
tended to give “jumpy” results and hence there was a
decrease in performance.

Comparing the methods

In the fourth experiment the three different versions
of the CONDENSATION algorithm were compared by
varying the sample set size N from 1000 to 100000.
Based on the earlier presented results, the parameter
pr was set to 0.2 when running the CONDENSATION al-
gorithm with random sampling, and p, to 0.02 when
running the CONDENSATION algorithm with planned
sampling. A graph comparing the methods is shown
in figure 6. From the graph it is evident that random
sampling performs better than pure CONDENSATION
at all tested sample set sizes IV, and that planned sam-
pling performs much better than random sampling.
When studying the graph more closely, for instance by
fixing the convergence result to a number above 50%
and measuring the corresponding sample set sizes for
the different curves , it is found that CONDENSATION
with random sampling can manage with about 2 — 2.5
times less sample set size than pure CONDENSATION.
For CONDENSATION with planned sampling the corre-
sponding factor is 40 — 50.

Conclusions

In this paper the CONDENSATION algorithm was
augumented with random and planned sampling for




100

10°

Figure 6: Convergence to true position (%) vs sample
set size N. The solid line represents pure CONDENSA-
TION, the dashed-dotted line represents CONDENSA-
TION with random sampling and the dashed line rep-
resents CONDENSATION with planned sampling. The
maximum level that could be reached was 90% be-
cause of that one of the ten data sets contained too
few detectable features. Hence no convergence at all
was seen on this data set.

mobile robot localization in a large scale environment
covered by a world map of features. The features used
were doors and lines filtered from a laser scanner and
stable point landmarks filtered from sonar data. The
outcome of the experiments was that CONDENSATION
with random sampling can reduce the sample set size
at least 2 times compared to using pure CONDENSA-
TION. When using CONDENSATION with planned sam-
pling the sample set size can be reduced at least a
factor 40 compared to pure CONDENSATION.
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