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Abstract

In this paper we study some modi�cations of the

Condensation algorithm. The case studied is fea-

ture based mobile robot localization in a large scale en-

vironment. The required sample set size for making

the Condensation algorithm converge properly can

in many cases require too much computation. This is

often the case when observing features in symmetric

environments like for instance doors in long corridors.

In such areas a large sample set is required to resolve

the generated multi-hypotheses problem. To manage

with a sample set size which in the normal case would

cause the Condensation algorithm to break down,

we study two modi�cations. The �rst strategy, called

\Condensation with random sampling", takes part

of the sample set and spreads it randomly over the

environment the robot operates in. The second strat-

egy, called \Condensation with planned sampling",

places part of the sample set at planned positions based

on the detected features. From the experiments we con-

clude that the second strategy is the best and can reduce

the sample set size by at least a factor of 40.

1 Introduction

Mobile robot localization is a �eld that has at-
tracted much interest from researchers the past few
years. For a long time the dominating approach was to
approximate the probability density function (PDF)
of the robot position with a uni-modal Gaussian dis-
tribution which could be propagated using a standard
Kalman �lter [1, 8]. In most cases these methods were
used for robot pose tracking. In recent years methods
have been applied that make use of multi-modal rep-
resentation of the PDF, to enable global robot local-

ization in a large-scale environment. A wide range of
di�erent world representations have been used when
working with a multi-modal PDF. Nourbakhsh used
a topological model for the world [4] and in [9] a grid
based representation is used. Recently the Conden-
sation algorithm [5], which use a sample based rep-
resentation of the PDF, has become popular [2]. The
method shows convergence properties when using a
large enough sample set. The necessary sample set size
depends on the application, and for certain cases the
required sample set size can be too large with respect
to computational complexity. In this paper we study
Condensation applied to feature based localization.
The experiments are carried out in a large scale en-
vironment, with areas containing feature symmetries,
e.g. corridors. In such areas we conclude from the ex-
periments that the Condensation algorithm has un-
acceptable performance when using a sample set size
which is on the limit of what could be handled on a
450MHz PC. To be able to cope with a smaller sam-
ple set size, we study two strategies for modifying the
Condensation algorithm. The �rst strategy is not
to wait for the sample set to di�use to new interesting
locations, but instead take part of the sample set and
spread it randomly over the area the robot operates
in. In this way new modes in the PDF are introduced
faster and can prevent the algorithm from converging
to a false location. However, too much random sam-
pling will prevent the Condensation algorithm from
converging at all. The second strategy is to take part
of the sample set and spread it at planned positions
based on associating observed features to a world map
of features.
The paper is outlined as follows. First the notation
used in the paper is explained and the assumptions we
make for doing feature based localizations are stated.



In section 3 the Condensation algorithm is reca-
pitulated for convenience and in section 4 and 5 the
Condensation algorithm is augmented with random

sampling and planned sampling respectively. The pa-
per ends with an experimental section comparing the
di�erent versions of the Condensation algorithm on
a common data set taken from a large scale environ-
ment.

2 Problem statement and assumptions

In the mobile robot localization problem stated
here, a (W)orld and a (R)obot coordinate system are
present (�gure 1). The task is to �nd the robot loca-
tion (x(W ); y(W )) in world coordinates and the orienta-
tion di�erence � between the two coordinate systems.
The following assumptions are made to deal with this
problem:

� The robot can measure its position (x(R); y(R)) in
robot coordinates using odometry.

� The robot can make external measurements in
robot coordinates of features from the surround-
ing world. The set of features measured in the
time interval [t; t+ T ]1 is denoted F and the size
of F is denoted jFj. The set F can be divided
into K disjoint subsets F (1);F (2); : : : ;F (K) cor-
responding to K di�erent feature types. Hence F
can be written

F = F (1) [ F (2) [ : : : [ F (K)

F (k) =
n
fk1 ; f

k
2 ; : : : ; f

k
jF(k)j

o
k = 1; : : : ;K

In the coming sections the set Ft will denote an
ordered version of F with respect to the feature
time stamps t1; t2; : : : ; tjFj, i.e.

Ft = f f1; f2; : : : fjFj g

t � t1 < t2 < : : : < tjFj � t+ T

� There is a mapM available in world coordinates
that contains the same type of features that can
be measured by the robot. Using the same nota-
tion as introduced for F we have that

M = M(1) [M(2) [ : : : [M(K)

M(k) =
n
mk

1 ;m
k
2 ; : : : ;m

k
jM(k)j

o
k = 1; : : : ;K

The position information of each map feature
m 2 M is stored in a pre-de�ned world coordi-
nate system that is assumed to be related to the
robot coordinate system as described in �gure 1.

1In the experiments we use T = 5 sec.
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Figure 1: The mobile robot localization problem is
here to �nd the robot pose in world coordinates by
using odometry readings (x(R); y(R)) and external fea-
ture measurements f that are associated with a world
map M.

� There is a sample set

St =
n
(s

(t)
1 ; �

(t)
1 ); : : : ; (s

(t)
N ; �

(t)
N )
o
;

that represents our distribution of possible robot

poses. Here s
(t)
i = (x

(W )
i ; y

(W )
i ; �i)

(t) suggests

that the robot was at position (x
(W )
i ; y

(W )
i ) at

time t and that the orientation di�erence be-
tween the world and robot coordinate system is

�i. Each sample s
(t)
i has an attached weight �

(t)
i

that shows its importance relative to the other
samples.

3 Condensation

Given the assumptions stated in section 2, the
Condensation algorithm could be used for updat-
ing the sample set St based on feature measurements
f 2 F that correspond to a map feature m 2 M. The
Condensation algorithm is given in pseudo code
format in �gure 2.
We have modeled the prediction and di�usion term pd
that appears in the Condensation algorithm as

pd =

0
B@

D(1 +Dr) cos(�
(tj�1)
i + �)

D(1 +Dr) sin(�
(tj�1)
i + �)

D�r

1
CA
T

where

D =

q
(x

(R)
new � x

(R)
old )

2 + (y
(R)
new � y

(R)
old )

2

� = arctan(
y
(R)
new � y

(R)
old

x
(R)
new � x

(R)
old

)



STEP 1:

Draw samples s
;(t0)
i i = 1; 2; : : : ; N based on the

current distribution �
(t0)
1 ; �

(t0)
2 ; : : : ; �

(t0)
N and

put s
(t0)
i := s

;(t0)
i ; �

(t0)
i := 1

N
; i = 1; : : : ; N

STEP 2:

for j = 1! jFtj f (cronologic loop)
for i = 1! N f (loop over all samples)

Predict and di�use each sample position:

s
(tj)
i := s

(tj�1)
i + pd

Update the sample weight based on the
observed feature fj :

�
(tj)
i := �

(tj�1)
i p(fj js

(tj)
i )

g
g

STEP 3:

Put t0 := tjFj and wait for new features (Ft+T ).

Figure 2: The Condensation algorithm applied to
feature based localization of a mobile robot.

Dr � N(0; �D)

�r � N(0; ��)

Here (x
(R)
new ; y

(R)
new) is the odometry reading taken at

time tj when feature fj was detected, and (x
(R)
old ; y

(R)
old )

is an odometry reading taken at the time tj�1 when
feature fj�1 was detected. The di�usion parameters
Dr and �r are modeled as independent normally dis-
tributed random variables with zero mean and stan-
dard deviations �D and ��. The standard deviations
were chosen so that the di�usion will be at least of the
same order as the odometry drift of the robot plat-
form. Hence �D and �� could be determined experi-
mentally for a speci�c platform2.
In the update stage of the Condensation algorithm

the probability p(fj js
(tj)
i ) needs to be computed. We

refer to [6] for an example.
The sample set representation of conditional density
used in the Condensation algorithm asymptotically
approaches the true distribution as the size N of the
sample set size goes to in�nity [5, 3]. However, from an
implementation point of view, this can be a problem
if the computational burden for running the Conden-
sation algorithm becomes too large when using the

2In our experiments (conducted on a Nomad 200) �D =
0:005 and �� = 0:025 rad/m

required sample set size N . One such case that we
will study is global robot localization in large scale
symmetric environments. Corridors can for instance
be classi�ed as symmetric because of their tendency to
repeat various kind of features like doors and windows.
In such areas the Condensation algorithm will be
dependent on a large sample set size N to resolve the
multi-hypotheses-problem that is generated by the ob-
served features. If N is too low, the Condensation
algorithm is likely to break down, i.e. not converge at
all or converge to a false pose hypothesis . In this pa-
per we experimentally investigate how modi�cations
of the Condensation algorithm can improve the con-
vergence properties. In particular, we wish to improve
the convergence of Condensation for smaller sample
set sizes. We will consider two strategies in the coming
sections, Condensation with random sampling and
Condensation with planned sampling.

4 Condensation with random sam-

pling

When using the Condensation algorithm on a
small sample set size N in a large scale environment
it is likely that the sample set does not give support
where the true PDF has support. As a consequence
of this, the time it takes for the sample set to dif-
fuse to the correct location can become unacceptably
long. An idea is then to use part of the sample set
for initiating new pose hypotheses of the robot. The
Condensation algorithm can then be modi�ed as in
�gure 3. The degree of random sampling is here de-
termined by a parameter pr 2 [0; 1]. If pr = 1 then
the algorithm will in each iteration spread all sam-
ples uniformly over the known environment. Such a
strategy will of course prevent the algorithm from ever
converging and hence a more moderate degree of ran-
dom sampling should be used. The optimal parameter
choice on pr will be dependent on the kind of features
that can be detected. In section 6 we will experimen-
tally evaluate di�erent degrees of random sampling.

5 Condensation with planned sam-

pling

An alternative to random sampling is to put ppN
(pp 2 [0; 1]) samples at planned positions by drawing
from the PDF p(xjF), which represent the distribu-
tion of probable robot positions when mapping F (k)



STEP 1:

Draw samples s
;(t0)
i i = (prN + 1); : : : ; N randomly

based on the distribution �
(t0)
1 ; �

(t0)
2 ; : : : �

(t0)
N and

put s
(t0)
i := s

;(t0)
i .

Draw completely new samples s
(t0)
i i = 1; : : : ; prN

from a uniformly distribution over the environment
the robot operates in.
Assign all samples the same weight:

�
(t0)
i = 1

N
i = 1; 2; : : : ; N .

STEP 2 & 3:

Same as in �gure 2.

Figure 3: Condensation algorithm augumented with
random sampling

to M(k) k = 1; 2; : : : ;K. By assuming independence
between the detected features we have

p(xjF) =

KY
k=1

jF(k)jY
j=1

p(xjfkj ) (1)

and hence a total of ppN planned samples are drawn
from

p(xjf ); f 2 F (2)

rather than p(xjF). A relative quality number3 qk
is introduced to decide how many planned samples
that should be drawn from p(xjfkj ). If for instance
the feature set F only holds two features, one of
type k1 and one of type k2, i.e.F = ffk11 ; fk21 g, then
qk1ppN=(qk1 + qk2) planned samples are drawn from

p(xjfk11 ) and qk2ppN=(qk1 + qk2) planned samples are

drawn from p(xjfk21 ). More generally, if there are sev-
eral features of the same type in F , there are

np =
qkPK

l=1 qljF
(l)j

ppN (3)

planned samples drawn from p(xjfk) where fk 2
F (k) � F . The Condensation algorithm with
planned sampling is given in pseudo code format4 in
�gure 4. The degree of planned sampling (pp) that

3A discussion of how to determine the relative quality num-
bers qk; k = 1; 2; : : : ;K is found in [6].

4This is not an optimal implementation since we are actually
predicting, di�using and performing measurement update on
samples which later on are overwritten by planned samples. The
pseudo code however becomes easier to read in this manner.

STEP 1:

Same as in �gure 2.

STEP 2:

n0 := 0
for j = 1! jFtj f (cronologic loop)

for i = 1! Nf (loop over all samples)
Predict, di�use and perform measurement update
as in �gure 2.

g
Compute np (eq (3)).
for i = n0 + 1! n0 + np f (planned sampling)

Draw a planned sample s
(tj)
i from p(xjfj) and

give it weight 1
N
p(fj jx).

g
n0 := n0 + np

g

STEP 3:

Same as in �gure 2.

Figure 4: The Condensation algorithm with
planned sampling.

should be used is dependent on the kind of features
that can be detected. In section 6 the parameter pp is
experimentally determined. It is obvious that a too
large degree of planned sampling (pp = 1 extreme
case) would make the algorithm \jump" between dif-
ferent pose hypotheses. Another issue is that planned
sampling can detract from the Condensation algo-
rithm if many features in F lack a correspondance in
the map M. Such features can arise either from false
measurements (outliers) or correct measurements of
features that have not been modeled in the map. Of
course such feature measurements would also hinder
in the original version of the Condensation algo-
rithm or the version using random sampling, but in
the planned sampling case the negative e�ect is more
instantaneous.

6 Experiments

The experiments for comparing the algorithms pre-
sented in section 3,4 and 5 were performed on two

oors in an old hospital building. A map of the build-
ing is shown in �gure 5. The robot used in the experi-
ments was a Nomad 200 robot equipped with 16 sonars



mounted in a ring and a SICK laser scanner. The
sonars were used to detect stable point features in the
environment by using a method called Triangulation
Based Fusion (TBF) [11, 10]. The point features were
recorded manually by joysticking the robot around in
the building, and subsequently saved in world coordi-
nates in the world map M. The laser scanner was
used to detect line features as well as doors. The
line features in the map M correspond to walls in
the rooms and were measured by hand. Since a rect-
angular model was used for each room, only four wall
lines per room were saved in the world map M. The
door features were also measured by hand.
Ten data sets were collected with the robot in di�er-
ent parts of the building as a base for the experiments.
In �gure 5 the ten data sets can be associated with a
particular robot trajectory. During the collection of
each data set an explore behavior was used to move
the robot around in the environment. The behavior
had no memory of where the robot had been before
and was designed to take the robot to open space ar-
eas. To evaluate the performance, the true pose of
the robot was also stored in each data set using a well
established laser based pose tracker [7] (accuracy �5
cm). A search was done for the �rst iteration where
pthN samples had converged to a blob less than 1 me-
ter in radius. The threshold parameter pth was set
according to the formula5

pth = 0:9(1� pr � pp); (4)

where pr and pp are the degree of random and planned
sampling respectively. As a success indicator of an
experiment it was checked if the \sample blob" cor-
responded to the \true" robot pose (speci�ed by the
laser pose tracker). If this was not the case the ex-
periment was classi�ed as false converging. Another
failure type was the algorithm not converging at all.
In the coming subsections no distinction is made be-
tween these two failure types.

Condensation

The �rst experiment that was done was to run the
original Condensation algorithm (section 3) on the
ten data sets varying the sample set size N . Each
run over a data set was repeated 10 times to get some
statistics to base our conclusions on6. The result from
the experiment is documented in table 1. From the

5Random and planned sampling were tested separately in
the experiments. Hence either pr = 0 or pp = 0.

6Remember that the di�usion part in the Condensation

algorithm involves randomization and hence repeated experi-
ments on the same data set will generate di�erent results.
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Figure 5: The drawing of the building where the ex-
periments took place. Two 
oors in the building were
used in the experiments. The thick lines are the doors
that were used as one of the feature types in the world
map M. The robot trajectories show where the ex-
periments took place in the building. Each experi-
ment has got a number attached to it in the �gure.
The map covers over 200 meters of corridor (with an
almost constant width of 2.5 m).

table it is clear that the Condensation algorithm
converges better when increasing the sample set size
N . At N = 100000 the convergence result is on aver-
age 61%. When looking closer to the table it is noted
that the corridors corresponding to data sets 3 and
4 (�gure 5) were particularly diÆcult to localize in.
The reason for this was the low density of features in
these areas and the fact that all doors were closed and
hence not detected by the laser scanner. Regarding
data set 3, no true convergence was seen in any of
the experiments presented in this paper7. Hence 90%
was the maximum convergence result obtained in the
experiments.

7Including some undocumented ones at N = 200000.



Condensation

Exp N = 10000 20000 50000 100000

1 20% (21) 40% (30) 60% (45) 70% (33)
2 0% (-) 60% (38) 80% (32) 100% (35)
3 0% (-) 0% (-) 0% (-) 0% (-)
4 0% (-) 20% (62) 10% (46) 40% (71)
5 10% (44) 30% (27) 50% (23) 40% (27)
6 40% (33) 10% (19) 90% (33) 100% (31)
7 0% (-) 10% (56) 30% (64) 40% (67)
8 50% (35) 90% (18) 100% (16) 100% (14)
9 20% (34) 40% (46) 60% (38) 90% (26)
10 10% (42) 0% (-) 20% (20) 30% (18)

Avg 15% (34) 30% (33) 50% (33) 61% (33)

Table 1: Result when running the Condensation al-
gorithm over varying sample set sizes N . The nota-
tion x% (y) occurring in the table means that x% of
the runs converged to the true position and that the
convergence took on average y iterations.

Condensation with random sampling (N = 50000)
Exp pr = 0:01 0.1 0.2 0.4

1 20% (16) 50% (40) 60% (38) 100% (55)
2 90% (36) 90% (34) 100% (34) 100% (52)
3 0% (-) 0% (-) 0% (-) 0% (-)
4 20% (42) 40% (55) 30% (57) 40% (65)
5 30% (20) 30% (40) 60% (36) 100% (48)
6 80% (24) 100% (37) 90% (59) 0% (-)
7 30% (78) 40% (99) 70% (82) 20% (88)
8 100% (16) 100% (17) 100% (16) 100% (19)
9 60% (31) 80% (20) 90% (43) 90% (67)
10 20% (24) 70% (41) 90% (39) 80% (24)

Avg 45% (30) 60% (38) 69% (43) 63% (48)

Table 2: Result when varying the degree of random
sampling pr when N = 50000. The notation in the
table is the same as in �gure 1. A clear improvement
is seen when comparing the best column in this table
(pr = 0:2) with the N = 50000 column in table 1.

Condensation with random sampling

The second experiment was to run the Condensa-

tion algorithm with random sampling. In this exper-
iment we used a �xed sample set size N = 50000 and
instead varied the degree of random sampling pr. The
results are shown in table 2 and should be compared
with the N = 50000 column of table 1 (pure Con-

densation). From the bottom row (average values)
of table 2 it is clear that an improved performance can
be gained at random sampling degrees pr : 0:1! 0:4.
The best result was obtained at pr = 0:2 with an av-
erage convergence result of 69%.

Condensation with planned sampling

The third experiment was to run the Condensation
algorithm with planned sampling. The sample set size
in this experiment was �xed at N = 10000 and the
degree of planned sampling pp was varied. The out-
come of the experiment is shown in table 3. From

Condensation with planned sampling (N = 10000)
Exp pp = 0:01 0.02 0.05 0.1

1 50% (47) 80% (32) 100% (40) 100% (42)
2 100% (31) 100% (27) 100% (30) 100% (36)
3 0% (-) 0% (-) 0% (-) 0% (-)
4 50% (64) 70% (64) 90% (68) 0% (-)
5 80% (23) 100% (28) 100% (24) 90 % (27)
6 100% (29) 100% (31) 60% (33) 0% (-)
7 80% (93) 100% (82) 80% (122) 0 % (-)
8 100% (9) 100% (8) 100% (10) 100% (22)
9 100% (25) 100% (18) 100% (19) 100% (29)
10 70% (34) 100% (36) 100% (23) 100% (27)

Avg 73% (37) 85% (36) 83% (40) 59% (31)

Table 3: Result when varying the degree of planned
sampling pp. The notation in the table is the same as
in �gure 1. The best column in this table (pp = 0:02)
is superior to any column in tables 1 and 2 although
the sample set size N is only 10000.

the table it is clear that planned sampling is superior
to pure Condensation (table 1) and Condensation
with random sampling (table 2). The best result was
obtained at pp = 0:02 with an average convergence re-
sult of 85%. When increasing pp to 0:1 the algorithm
tended to give \jumpy" results and hence there was a
decrease in performance.

Comparing the methods

In the fourth experiment the three di�erent versions
of the Condensation algorithm were compared by
varying the sample set size N from 1000 to 100000.
Based on the earlier presented results, the parameter
pr was set to 0:2 when running the Condensation al-
gorithm with random sampling, and pp to 0:02 when
running the Condensation algorithm with planned
sampling. A graph comparing the methods is shown
in �gure 6. From the graph it is evident that random
sampling performs better than pure Condensation

at all tested sample set sizesN , and that planned sam-
pling performs much better than random sampling.
When studying the graph more closely, for instance by
�xing the convergence result to a number above 50%
and measuring the corresponding sample set sizes for
the di�erent curves , it is found that Condensation
with random sampling can manage with about 2�2:5
times less sample set size than pure Condensation.
For Condensation with planned sampling the corre-
sponding factor is 40� 50.

Conclusions

In this paper the Condensation algorithm was
augumented with random and planned sampling for
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Figure 6: Convergence to true position (%) vs sample
set size N . The solid line represents pure Condensa-
tion, the dashed-dotted line represents Condensa-
tion with random sampling and the dashed line rep-
resents Condensation with planned sampling. The
maximum level that could be reached was 90% be-
cause of that one of the ten data sets contained too
few detectable features. Hence no convergence at all
was seen on this data set.

mobile robot localization in a large scale environment
covered by a world map of features. The features used
were doors and lines �ltered from a laser scanner and
stable point landmarks �ltered from sonar data. The
outcome of the experiments was that Condensation
with random sampling can reduce the sample set size
at least 2 times compared to using pure Condensa-
tion. When using Condensation with planned sam-
pling the sample set size can be reduced at least a
factor 40 compared to pure Condensation.
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