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Abstract

Much attention has been given to Condensation

methods for mobile robot localization. This has re-

sulted in somewhat of a breakthrough in representing

uncertainty for mobile robots. In this paper we use

Condensation with planned sampling as a tool for

doing feature based global localization in a large and

semi-structured environment. This paper presents a

comparison of four di�erent feature types: sonar based

triangulation points and point pairs, as well as lines

and doors extracted using a laser scanner. We show

experimental results that highlight the information

content of the di�erent features, and point to fruit-

ful combinations. Accuracy, computation time and the

ability to narrow down the search space are among the

measures used to compare the features. From the com-

parison of the features, some general guidelines are

drawn for determining good feature types.

1 Introduction

The problem dealt with in this paper is the problem
of Mobile Robot Localization (MRL), a problem as
old as the �eld of mobile robotics. In short we de�ne
the problem as �nding the pose1 of the robot using a
map of the environment and sensor data. The map
of the environment is not assumed to be complete, in
the sense that every single detail is present, but it is
assumed that localization is only performed within the
area covered by the map.

Being a fundamental problem in mobile robotics,
localization is covered by a wide range of literature.
We refer to surveys on the topic (e.g. [1]), for a more
general discussion of di�erent methods. A brief sum-
mation of the history is that uni-modal Kalman �l-

1By pose we mean position and orientation of the robot in
the plane. Position refers to the (x; y)-coordinates of the robot.

ter based techniques (e.g. [2, 3]) dominated during
the 1980's and until recently. These approaches dealt
mostly with pose tracking, that is, maintaining an es-
timate of the pose of the robot. The main assumption
of these methods is that the probability density func-
tion (PDF) can be approximated with a single Gaus-
sian. In [4] multiple Gaussians are used to represent
the PDF, thereby enabling a multi-modal representa-
tion at the same time as staying within the framework
of the well understood Kalman �lter.

This paper focuses on what in [5] is called Con-

densation and later in [6] Monte Carlo Localization
(MCL). The key idea is to use a set of samples to rep-
resent the PDF encoding the robots knowledge about
its position. In [7] a grid was used to represent the
PDF, the drawback of this being the tradeo� between
accuracy and computational e�ort to keep it updated.
For large search spaces where the probability density
is low over much of the space, a sample based repre-
sentation is more eÆcient [6]. For the set of samples
to be a good approximation of the true PDF it is im-
portant that the samples give support where the PDF
di�ers signi�cantly from zero. In this paper an al-
gorithm from [8] called Condensation with planned
sampling is used. In Section 2 the algorithm is de-
scribed brie
y.

In this paper we will discuss the use of di�erent
environmental features as landmarks for localization.
We will emphasize the problem of understanding what
properties a feature should have to be \good" for local-
ization. Hence, we will conduct a comparative study
of four di�erent features. In Section 3 some measures
are introduced for comparing the features. The dif-
ferent features in the comparison will be presented in
Section 4 along with general comments regarding some
implementational details, followed by Section 5 where
the experimental results are presented. Conclusions
are drawn in the �nal section.



2 Condensation

Let the pose of the robot be given by x = (x; y; �)T ,
F the set of detected features and fk a feature of
type k, where k = 1; : : : ;K. The number of di�er-
ent feature types is K. The task is to determine the
PDF p(xjF), which is represented by a set of samples
f(si; �i)g; i = 1; : : : ; N when using Condensation.
The weight of each individual sample is �i. The sam-
ple set is initialized using prior information about the
PDF. When doing global localization, the prior PDF is
typically a uniform distribution over the entire known
environment.

There are three main steps in the Condensa-

tion algorithm that will update the sample set so as
to represent the PDF at the next time instant.

1. Re-sampling Phase

Create a new sample set by repeated sampling
from the previous set of samples, such that the
probability of picking one of the previous samples,
si, is proportional to its weight, �i. The new
samples are normalized by setting their weights
to 1

N
.

2. Predict and Di�usion Phase

In the predict and di�usion phase odometric in-
formation is used, along with a model thereof,
to determine how the PDF changes as the robot
moves. Moving without using feature information
has the intuitive result that we lose information,
and the PDF will approach a uniform distribu-
tion.

3. Update Phase
In the update phase, sensor information (exter-
nal sensors) is incorporated into the PDF. Let
F be the set of all new features detected dur-
ing the time interval [t; t + T ], F = ffkj ; j =

1; :::; jF (k)j; k = 1; :::;Kg, where K is the number
of di�erent types of features and jF (k)j denotes
the number of detected features of type k. The
update is done by multiplying the weight of each
sample, si by the probability of observing F at
the position given by si,

�
(t)
i := �

(t�T )
i � p(Fjsi):

Assuming independence of the features, the prob-
ability can be factored into p(Fjsi) = p(f11 jsi)�: : :�
p(fK

jF(K)j
jsi).

The basic mechanism is that samples representing
poses where p(Fjsi) is high will be given more weight

and therefore will be re-sampled more often in theRe-
sampling Phase of the next iteration. Regions where
p(Fjsi) is signi�cant will thus attract many samples,
gathering support for a good approximation of the
PDF. Having said this, it follows that if there are no
samples in an area where the PDF is signi�cant, no
samples can be attracted there, and hence the esti-
mate of the PDF in that area will not be good. A
special, and crucial case, is when there are no samples
close to the true pose of the robot when the sample
set is initialized. No matter how many features that
are detected, the true pose of the robot will not be
found, unless some samples di�use to the true pose.
One simple way to increase the chance of sample sup-
port where needed, is to draw some of the samples
in the Re-sampling Phase, not from the previous
sample set but rather from a uniform distribution [8].
However, the probability of success with random sam-
pling is still low in a large environment or when work-
ing in a high dimensional space. In [8] this problem
is approached by instead drawing some samples from
p(xjfkj ). This algorithm is calledCondensation with
planned sampling and is used in the experiments later
in this paper. A sample set size of 10000 with 200
planned samples in each iteration is used.

Note that, since the PDF is only updated with de-
tected features, missed detections do not adversely im-
pact the PDF. However, missed detections will slow
the convergence. As a result the false positive de-
tections are the most signi�cant error that we must
consider.

3 Performance Measures

In this paper we use four measures for comparing
the di�erent features.

Computation Time A simple measure is the com-
putational time that is spent on a particular feature,
both for detecting it and to use it in updating the PDF
(that is to evaluate p(fkj jx)).

Accuracy The computation time measure alone will
only tell us to use simple features, and not anything
about what information they provide. There is thus
a need for other measures as well, for instance the
accuracy that is obtained in localization, using the
di�erent features.

Convergence Along with accuracy, the e�ect of a
feature on the convergence is also a possible measure.



That these two last factors might not always point in
the same direction is clear from a simple example with
two lines forming a corner. Assuming approximate
knowledge about the pose of the robot, a very exact
estimate can be found using these lines, but if on the
other hand the pose is not known at all, there will
be many places in a typical indoor environment which
will match two lines forming a corner and hence the
convergence using lines alone might not be good.

Planned Sample Quality In Section 2 we intro-
duced the idea of planned sampling, that was based
on drawing a fraction of the samples directly from
the distribution p(xjfkj ). The ideal feature, fkj , has

a p(xjfkj ) with support only in very small areas, so
that sampling from it will result in a high probability
of adding a sample where p(fkj jx) is signi�cant. This
e�ect can also be used when evaluating the e�ective-
ness of the feature.

In this paper the relative quality measure, qk, is
based on the probability that a single planned sample
will be placed within 0.5 m from the true pose.

4 Implementation

Each feature fkj is given access to a world map,

M(k) = fmk
l ; l = 1; : : : ; jM(k)jg, where mk

l is a map
feature of type k and jM(k)j is the number of such
features in the map. Each fkj can evaluate p(fkj jx)

and p(xjfkj ), where p(fkj jx) is used in the Update

Phase and p(xjfkj ) to produce planned samples [8].
When combining di�erent features, a relative quality
measure, qk, is given to each feature type. This quality
measure is used when determining how many planned
samples each feature should be allowed to produce.

No feature detector is perfect and the map will
never be complete, therefore p(fkj jx) is never zero.
The better the detector, the lower the minimum value
�k = minx p(f

k
j jx) will be. �k thus incorporates un-

certainty both in detecting a feature and the fact that
the map is incomplete. �k is here approximated as a
global constant, despite the fact that the map has vari-
able quality. A low �k corresponds to a feature which
can be extracted with very few false positives. It is im-
portant that �k is not made lower than is warranted,
as excessively low values might result in the true pose
being removed if a false measurement is received. The
values �k are experimentally determined.

The value 1��k is a measure of the probability that
a detected feature actually corresponds to a map fea-
ture. This in combination with an \average" feature

of each type is used when calculating qk.

4.1 Sonar Based Triangulation Points

In [9] and [10] a triangulation based method for
ultrasonic sensor data is introduced. In a typical in-
door environment, some objects will give rise to very
robust responses from the sonar. By using a trian-
gulation technique, these strong response points can
be detected and used as map features, mTriPoint

l . In
the following the triangulation points will simply be
referred to as TriPoints. Figure 1 illustrates the ba-
sic idea of the TBF (Triangulation Based Fusion) al-
gorithm, and Figure 2 shows the map used in the

Object

Figure 1: The TBF algorithm associates multiple
sonar readings and fuses them into an estimate of the
position of the re
ecting object.

experiments. The TriPoint features are marked with
small dots and typically originate from various kinds of
vertical edges, e.g. door posts. The TriPoint map fea-
turesM(TriPoint) represent part of the environmental
model,M, that the robot has access to. The TriPoint
landmarks are numerous (jM(TriPoint)j = 850) and
hence provide limited information about the position
of the robot. p(fj jx) is modeled as

p(fj jx) / � + (1� �)e
� 1

2 ((
d

�
d
)2+( a

��
)2)

(1)

where d is the di�erence between the distances from
sample position to map feature and robot to detected
feature and a is the corresponding di�erence in angle.
By comparing the data from the TriPoint detector
with the map, a measure of the reliability can be esti-
mated. This measure varies between di�erent parts of
the environment. Averaging at about 70% true posi-
tives, with about 50% in the worst case, �TriPoint is
set to 0.5.

Planned Sampling The TriPoints have little value
for planned sampling, �rst of all because a TriPoint

feature will always match all map features of that type
and second because each TriPoint has a large probable
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Figure 2: The map of features. The map consists
of two 
oors connected by an elevator. Note that
the rooms are modeled as rectangles. The doors are
marked as thick lines and the TriPoints as small dots.
The robot trajectories during the experiments are also
shown.

area for the placement of planned samples (an annulus
around the TriPoint).

A detected TriPoint is on average 1.5 m away from
the robot, which gives

qTriPoint �
(1� �TriPoint) � 0:5

jM(TriPoint)j � (2�1:5)
� 3 � 10�5:

4.2 Triangulation Point Pairs

By combining two triangulation points we obtain
a more powerful feature, called TriPair henceforth.
p(fTriPairj jx) has two distinct peaks, resulting from
intersecting the two annular PDFs from the TriPoints.
The bene�t of the TriPair feature is that it is better
at producing planned samples, as each feature-map
correspondence results in only two hypotheses, with
small support areas. For ease of computation we have
chosen to model the two intersections as Gaussians in
the x-y-� plane, each centered at one of the intersec-
tion points of the two triangulation PDFs (compare
Eq. 1). A TriPair is created if two TriPoints are fur-
ther apart then dTriPairmin = 1:0 m and closer to each

other than dTriPairmax = 10:0 m. The map constructed
using this criteria results in jM(TriPair)j = 16696.
Given that the TriPoint feature has �TriPoint = 0.5,
�TriPair = 1� (1� �TriPoint)

2
= 0:75.

Correspondence between map and detected feature
is deemed possible if the di�erence in distance is lower
than a threshold which depends on the uncertainty in
the position of the triangulation points.

Using TriPairs and TriPoints simultaneously in the
update phase of the Condensation algorithm clearly
violates the assumption about independence between
features. Thus, we used the TriPoints for updating
the PDF and the TriPairs for creating planned sam-
ples.

Planned Sampling On average a TriPair is
matched with 1300 map features which gives

qTriPair �
1� �TriPair

1300
� 2 � 10�4

4.3 Lines

As seen in Figure 2, we assume that each room
can be modeled as a rectangle. This is a very crude
approximation, but one that has proven suÆcient for
pose tracking with good results in indoor oÆce envi-
ronments [11]. There are 31 rooms, giving jM(Line)j =
124. Despite the fact that each room is modeled sim-
ply as a rectangle most of the Lines that are extracted
from laser scans by a Hough transformation, corre-
spond to lines that are in the map (approximately 50%
which gives �Line � 0:5).

The length of the line is used to determine possi-
ble correspondences between detected feature and the
map features. The criteria for a match is

length(fLinej ) < length(mLine
l ) + length uncertainty:

p(fLinej jx) is high close to a line at the same distance
from all matching map lines as the distance to the
detected line (same as in [4]).

Planned sampling When the lines are used to pro-
duce planned samples, they result in samples being
spread along lines parallel to all walls for which the
above condition is ful�lled. On average 70 map fea-
tures are matched, producing on average a 7 m long
line along which the samples are spread.

qLine �
(1� �Line) � 0:5

jM(Line)j � 7
� 5 � 10�4:



4.4 Doors

The extraction of doors from laser data is based
on a series of door models that capture di�erent open
door con�gurations. Only open doors can be detected.
The doors that are in the map can be seen in Fig-
ure 2 as thick line segments on the walls. The map,
M(Door), does not capture the fact that some doors
are very unlikely to be open. A more complete model
of a door would involve the probability of the door
being open.

We represent each door as two objects, one for each
side of the door. This allows us to represent the fact
that some doors can only be detected from one side
(because the other side is inaccessible to the robot).
Thus a physical door may correspond to one or two
Door features in the map. The set of door map fea-
tures has size jM(Door)j = 100 (for 71 physical doors).

A simplifying Gaussian assumption is made for
p(fDoorl jx). The door is simply treated as a short line
with direction from the right to the left door post. The
same PDF is used as for lines, with the exception of a
higher uncertainty in the position perpendicular to a
line connecting the door post. This extra uncertainty
corresponds to the wall thickness of approximately 0.5
m.

The Door detector produce up to 30% false posi-
tives in some environments. Therefore we set �Door =
0.3.

Planned Sampling The door is by far the most
powerful feature for planned sampling both because
there are relatively few doors in the environment
(jM(Door)j = 100), but also because there will be
only one, rather distinct, peak in the PDF per map
door feature (remember each physical door that can
be passed through is represented by two map door
features).

qDoor �
1� �Door

jM(Door)j
� 7 � 10�3

5 Experiments

To investigate how di�erent combinations of fea-
ture types perform together or alone using Conden-

sation with planned sampling (see [8]), a series of
runs with our Nomad200 robot equipped with sonar
and laser sensors was conducted in di�erent parts of an
old hospital. The size of the sample set was 10000 and
the number of planned samples was 200 per iteration.

Feature jM(k)j qk Detection Update
TriPoints 850 3 � 10�5 5 ms 48 �s

TriPairs 16696 2 � 10�4 5 ms 9.1 �s

Lines 124 5 � 10�4 20 ms 9.5 �s

Doors 100 7 � 10�3 5 ms 16 �s

Table 1: Size of the feature map, the relative quality
measure and the computation time for detection and
for updating the weight of one sample for the di�erent
features.

5.1 General Observations

The left part of the building, where run 3 was per-
formed (see Figure 2), is almost completely without
features, besides the two walls. Wall features con-
strain only two degrees of freedom and will not be
suÆcient for �nding the pose of the robot. The same
is true for the lower horizontal corridor next to the
distance scale in Figure 2. This also applies to a lesser
degree to all of the corridors in the map, in total over
200 m of corridor. A further property of corridors is
that they tend to be less cluttered, o�ering fewer Tri-
Points. In our building in particular, the TriPoints

in the corridor correspond largely to door posts and
windows and are hence highly periodic.

5.2 Computation Time

In Table 1 the approximative computational time
is given for extracting the di�erent features as well as
using them for updating the PDF. The detection time
is for detecting all of a certain type of features from
a data set, i.e. all lines in a laser scan or all trian-
gulation points using the latest sonar readings. The
update time is given for updating the weight of one
sample. These values depend heavily on the represen-
tation being used. The TriPairs is a good example
of this, having by far the largest map size, but still
not using much time to update the PDF. However, we
have not optimized the representation for TriPoints

and so these are slower. Since the representation for
the TriPoint-map can be improved in the same fashion
as the TriPair -map, this di�erence must be considered
small.

5.3 Accuracy

The accuracy that a feature will provide for the lo-
calization is to a large degree a question of how many
dimensions it can establish conditions on. Let us con-
sider a corridor wall again, this Line feature on its



Trajnfeat L D T P LD TP DP DT LT LP DTP LTP LDP LDT LDTP

1 10% 0% 10% 0% 10% 30% 0% 20% 100% 0% 20% 80% 10% 90% 80%
2 100% 0% 30% 0% 100% 100% 0% 90% 90% 100% 80% 100% 100% 100% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 0% 0% 0% 0% 0% 0% 70% 40% 0% 70% 70% 80% 70%
5 80% 0% 10% 0% 70% 70% 0% 0% 100% 100% 0% 100% 100% 100% 100%
6 0% 0% 0% 0% 30% 0% 0% 0% 100% 40% 10% 100% 90% 100% 100%
7 60% 0% 10% 0% 30% 20% 0% 0% 100% 90% 20% 90% 70% 80% 100%
8 100% 0% 40% 20% 40% 100% 0% 0% 100% 100% 40% 100% 100% 100% 100%
9 20% 0% 0% 0% 90% 30% 0% 0% 90% 80% 60% 90% 100% 100% 100%

10 10% 0% 0% 0% 10% 0% 0% 20% 70% 30% 20% 100% 70% 80% 100%

avg. 38% 0% 10% 2% 38% 35% 0% 13% 82% 57% 25% 83% 71% 83% 85%

Table 2: Summary of running 10 experiments for each trajectory (from Figure 2) and feature combination, in
total 1500 experiments. As no combination of features was enough to successfully localize along trajectory 3, 90%
can be considered as the maximal achievable average. Character codes: L - Line, D - Door, T - TriPoint and P
- TriPair.

own will only provide information about the perpen-
dicular distance to that wall and the orientation of the
robot, and it will do so with very high accuracy. Us-
ing Line features in environments where non-parallel
Lines can be detected will provide excellent accuracy.
Doors do not provide very good accuracy because of
the thick walls in the old hospital building. TriPoints
can provide excellent accuracy if the matching prob-
lem is solved, i.e. the correct map feature is matched
to the detected feature, but this is diÆcult since the
TriPoint map features have very little separation in
some areas.

5.4 Convergence

For the convergence we check if the estimate con-
verged to the correct pose and also how long time it
took, using di�erent combinations of features. Table 2
shows the results of running the Condensation algo-
rithm with planned sampling on di�erent feature com-
binations (columns). The data was collected along the
trajectories marked as 1 to 10 in Figure 2. The charac-
ter combinations in the table indicate which features
were used, L for Line, D for Door, T for TriPoint

and P for TriPair. Trajectory 3 contained very few
features (closed doors, little clutter, etc) and thus no
combination of features provided enough information.
The Line feature is clearly the best single feature.
This is because Lines are easily detected and because
there are few Lines in the map (in comparison to Tri-

Points and TriPairs). Unsurprisingly, the best results
are achieved with a combination of features from dif-
ferent sensors.

5.5 Planned Sample Quality

The strength of the planned sampling modi�cation
of the Condensation algorithm is in its ability to
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Figure 3: Each sub-�gure shows the result of 10 at-
tempts to perform global localization along trajectory
9 using di�erent combinations of features (same no-
tation as in Table 2). For each experiment the per-
centage of the total weight of the samples within 1 m

of the true pose is shown on the vertical axis. The
dashed lines mark the threshold used for a successful
localization (see [8] for more details).



quickly gain sample support where p(xjF) is signif-
icant. Once support has been obtained at the true
pose, the Condensation algorithm handles the rest
by itself. To get a high probability of placing a sam-
ple at the true pose, a feature should thus provide a
peaked p(xjfkj ). The result of high quality planned
samples is that the algorithm starts to converge fast.

Judging from the relative quality measures of the
di�erent features (see Table 1), Doors are by far the
best at producing planned samples. This is supported
by Figures 3(a) and (e) where we can see that the
combination of Lines and Doors converges to the true
pose much faster than Lines alone.

5.6 Summary

From Figures 3(a)-(d) it is clear that one feature
on its own does not provide enough information. In
Figures 3(e)-(j) two features are used. All but the
combination of Doors and TriPairs have improved the
performance. The reason for the failure when combin-
ing Doors and TriPairs is that these features are not
detected as frequently as the two other feature types.
Lines and TriPoints have their strength in making the
algorithm converge once support is given at the true
pose. Thus, combining Lines or TriPoints with either
Doors or TriPairs yields good results. The perfor-
mance increases even more when using more features,
with the best results when using all features.

As an example that the performance is improved by
combining di�erent features and sensors, we see from
Table 2 that Lines on their own only give successful
localization in 38% of the tests. The corresponding
value for TriPoints is 10%, but when we combine them
we get 82%.

6 Conclusions

In this paper we have presented four di�erent fea-
tures to be used with the Condensation algorithm in
combination with the planned sampling scheme pre-
sented in [8]. We conclude that all features require
about the same amount of computation time. From
the experimental comparison we conclude that Lines
are the best single feature because they are frequently
detected, but are not too common in the map. Tri-

Points are the next best feature because of ease of de-
tection. There are few Doors and thus they are very
good at providing the initial sample support at the
true pose through planned sampling. TriPairs also
have their strength mostly as a producer of planned
samples.

For good results, features that are able to place
samples close to the true pose are needed along with
features that provide convergence. This might be one
and the same feature, but in our case these qualities
are given by di�erent features. It is clear from the ex-
perimental results that it is very important to use dif-
ferent sensors to achieve robustness as a single sensor
might not provide valuable information in the whole
environment.
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