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1 Introduction

A fundamental component of any mobile robot system is
methods for localization and navigation. Almost all deliber-
ative tasks that a robot must carry out has as an underlying
assumption that the system can answer the three questions:
”Where am I?”, ”Where am I going?”, and ”How do I get
there?” [1]. The first question is termed localization, while the
second questions implicitly is termed localization and/or place
recognition, while the third question is termed path planning.

The localization problem can roughly be divided into three
parts, pose initialization, pose tracking and map acquisition.
This separation is to a large extent based on the way people
have approached the problem. The first two problems are of-
ten what people mean when they talk about localization, the
latter is referred to as mapping. Studying the problem in more
detail soon makes it clear that localization and mapping cannot
be separated. Since localization requires a map and mapping
requires known pose, there is a “chicken and egg” problem.
Which comes first? The answer to the question is that they
have to be carried out concurrently. The process of building
a map at the same time as estimating the pose of the robot
is called Simultaneous Localization And Mapping (SLAM) or
Concurrent Mapping and Localization (CML). SLAM is dif-
ferent from ordinary map acquisition since the uncertainty in
the robot pose is accounted for when building the map. The
correlation between the estimate of the robot pose and the map
that is being constructed is thus explicitly modeled.

Three main directions can be identified in the literature for
SLAM: topological, grid-based and feature-based approaches.
In topological techniques the environment is modeled as
a graph, in the extreme case completely without geomet-
ric information. Localization is achieved by recognizing
places/nodes. Topological mapping scales well to large en-
vironments since the amount of information that is stored is
limited to the description of the places/nodes. One of the ma-
jor disadvantages with topological SLAM is that it typically is
quite difficult to reliably recognize a place.

Ever since the introduction of the occupancy grid by Moravec
and Elfes [2], the grid based mapping techniques have been
widely used for mapping and localization. A typical imple-
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mentation of grid-based SLAM is to keep a local and a global
grid. The global grid is where the overall map is stored and the
local map is used to update it. By matching the local map to
the global map a measurement is given of the position of the
robot. The local map can also be used to improve the global
map. An inherent problem with grid based methods is that they
are computationally expensive and consume much memory.

The idea of trying to extract features from the environment is
quite natural, this is for example how most city maps are con-
structed. Extreme examples of features are labels on doors,
which specify the room it is leading to, but other less discrimi-
native features can also be found. In a structured environment,
which most office environments are examples of, lines, corners
and edges are common features. The features can be param-
eterized by, for instance, their color, length, width, position,
etc. A feature based map can in general be written

M � � f j � j � 1� � � � �N�� (1)

where f j is a feature and N is the number of features in the
map.

Leonard, Durrant-Whyte and Cox are quite firm in their belief
that feature-based methods are the way to go, when they say:
“we believe that navigation requires a feature-based approach
in which a precise, concise map is used to efficiently gener-
ate predictions of what the robot should “see” from a given
location” [3].

Localization using artificial landmarks is well understood and
reliable, but requires modified environments. When using nat-
ural landmarks for localization, one of the problems is to find
suitable candidates for such. In [4] a polygonal map is used
to predict the readings from a laser range finder. Drumheller
also uses the line primitive for doing sonar based localization
[5]. Arras and Tomatis complement horizontal lines extracted
from laser range data with vertical lines extracted from vision
[6]. Leonard and Durrant-Whyte use natural geometric bea-
cons in [7]. Examples of geometric beacon are lines, corners
and edges. The beacons are extracted from densely sampled
sonar data.

Historically, papers dealing with mapping have said little
about how the map is later used for localization. In many
applications the robot is required to make a map of the en-
vironment the first time it visits an area. At this point map-
ping is the primary objective and other tasks will have lower



priority and will thus not be given computational resources.
However, once the area has been covered and a map has been
constructed the other tasks will be important. To reduce the
computational cost the localization part of the system should
shift to maintenance mode, both for mapping and pose estima-
tion. To achieve this we argue that it is an advantage to chose a
map representation that focuses on capturing the highly static
part of the environment. This way the need for map mainte-
nance will not be as great.

Most approaches reported in the literature operate in a contin-
uous mode SLAM. To cope with error situations it is however
necessary to consider detection of “track failure” and “initial-
ization”. In principle the operation of a SLAM method can
be divided into “global pose estimation” (for initialization and
recovery), “error detection” and normal operation. There is
consequently a need to embed SLAM methods into a com-
plete framework that allow integration of all three modes into
a unified model.

In this paper the basic SLAM problem in introduced (Sec-
tion 2). Subsequently it is outlined how multiple representa-
tions are integrated to provide an efficient framework for map-
ping (Section 3). In this context the issue of error recovery
is discussed (Section 4). With a suitable framework in place
the use of multiple sensory modalities is outlined (Section 5),
before a number of systems used for evaluation are outlined
(Section 6). These systems have been used for extensive ex-
periments, of which some basic results are described in Sec-
tion 7. Finally the overall concept is discussed and future is-
sues of research are outlined (Section 8).

2 The Basic SLAM Problem

The basic problem of SLAM can be defined as constructing
a map, M , of the environment while the robot is moving and
at the same time using M to do localization. This problem
can be casted as a traditional estimation problem using a Least
Square minimization approach. When formulated as a recur-
sive system it is natural to use a Kalman basis as outlined be-
low. A notorious problem is computational complexity which
calls for careful consideration of methods for management of
complexity.

2.1 The Kalman formulation
Most of the work on feature-based SLAM can be traced back
to [8], where stochastic mapping is presented, which is an ex-
tended Kalman filter based approach to SLAM. The robot pose
and the location of all map features are collected in one large
state vector. Both the robot pose and the location of the map
features are updated when mapped features are re-observed.
In essence, localization is performed within the current map,
and when the robot enters new areas the state vector is aug-
mented with new features. The two main steps of stochastic
mapping are prediction and update. In the prediction step the
control signals to the robot or odometric information is used to

predict the state at the next time step. In the update step mea-
surements of features are used to update the robot pose and the
mapped features.

The state vector, xk, incorporates the location of all N mapped
features, �xi

k� i � 1� � � � �N� as well as the robot pose and is
thus given by

xk �
�

xr
k x1

k � � � xN
k

�T
� (2)

The SLAM problem can, in the feature-based setting, be
formulated as augmenting and estimating xk given measure-
ments of the environment, i.e. estimating both x r

k and �xi
k� i�

1� � � � �N� and adding new features if needed.

Let x̂k�k denote the estimate of the state vector at time k. The
corresponding estimation error covariance matrix can be de-
composed as

Pk�k �

�
����

Prr Pr1
� � � PrN

P1r P11
� � � P1N

...
...

. . .
...

PNr PN1
� � � PNN

�
���� � (3)

where Prr is the covariance matrix of the robot pose estimate,
and Pii the covariance matrices for the features. The correla-
tions between different features and the robot pose are given
by the off-diagonal sub-matrices. The estimated state vector
x̂k�k together with the covariance matrix Pk�k is the stochastic
map. This term highlights the fact the the map is not fixed, it
is being estimated as the robot moves along.

The equations covering the stochastic map in its standard form
can be found in for example [7].

3 From theory to practice

3.1 Embracing the pros of the topological map
An inherent problem with a brute force implementation of
SLAM is the curse of dimensionality. The computational cost
grows quadratic with the number of features in the map. This
limits a typical implementation to have in the order of hundred
features[9]. In [10] a technique called decoupled stochastic
mapping in introduced. The idea is to take advantage of the
topological representation and let the world be represented by
a set of sub-maps. The computational cost can then be ad-
justed by selecting the size of the sub-maps.

3.2 Exploration Strategy
Burgard et al. [11] addressed the problem of exploration with
a grid based approach, achieving good results by basing the
decision of where to explore on minimization of the expected
future entropy of the hypotheses distribution. Unfortunately
the required processing power is proportional to the size of the
area and to the resolution of the grid. In [12] it is instead pro-
posed to use a feature-based approach, only considering the

p. 2



Figure 1: The SuperScout Louie with a PTU mounted SICK.

Figure 2: 3D model of the living-room at CAS.

relevant part of the map when taking a decision. This elimi-
nates the problem of being dependent of the map size and is
thus less costly in processing power.

3.3 Expanding the sensor view
In a typical indoor environment you will find that many of the
stable structures that result in features in the map are present at
different heights and not only at the height of the sensor. The
lines associated with walls is one such example, door frames
is another example. What is occluded at sensor height is often
free higher up. By mounting the laser sensor at a pan-tilt unit
this can be utilized. One of our Nomad Scout robots equipped
accordingly is shown in Figure 1.

4 Techniques for error detection and handling

Anyone who has done real world experiments knows that
sometimes things do not always go according to plans. For
a truly autonomous system to handle these situations, it must
have means to counter act. The problem is two-fold, detecting
that an error has occurred and taking the appropriate action,
both which are tough problems.

In an EKF approach to localization or mapping there are typi-

Figure 3: Hand measured model of the living room is shown in
dashed lines and the automatically generated ones are in
solid lines. Left: Searching for lines in the horizontal
plane from one position. Right: Actively moving the plat-
form and using the PTU.

Figure 4: Photos from the living-room when Figure 3 was built.

cally two main courses of failure, one is erroneous data associ-
ations between sensor data and the map the other is large unex-
pected perturbations of the robot. When dealing with mapping
in the EKF frame work, map slippage must also be considered.

4.1 Detecting a failure
An effective, way to detect a failure is presented in [13]. By
paying attention to weather or not the features that are ex-
pected to be seen are actually detected failure situation can be
identified. When features predicted to be seen stay undetected
for a long enough time, a recovery strategy is initialized. This
strategy will fail if; chance has it that measurements match an
incorrect predicted feature or the the environment changes so
that the visibility of some features are blocked. The detection
of can be achieved through use of validation gates as explained
for example in [14].

4.2 Recovery from a failure
The recovery strategy is based on using the last verified map,
Mv. As long as enough predicted features are detected the ver-
ified map is updated, Mv �M . When the map no longer can
be verified the Mv is left unchanged. Recovery is divided into
two steps: localization and restoration. In the localization step
the robot localizes itself with respect to Mv. In the restora-
tion step the method used in [13] when changing sub-map is
utilized, now with the pose found in the previous localization
step acting as a measurement.
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5 Multi-sensory maps

As already discussed in Section 1 many different features has
been suggested and used in the feature based localization com-
munity. The choice of feature depends on the sensors being
used. In this paper we will focus on three different features
extracted from sonar and laser scanner data. From the laser
scanner lines and door features are extracted [15, 16]. The
sonar sensor give stable point landmarks extracted using the
triangulation based fusion technique [17].

5.1 Sonar based feature detection
To improve the quality of the sonar data triangulation is used.
Sonar data typically suffers from, for example, specular reflec-
tions and cross talk. To get more accurate information, inte-
gration over time is necessary. Keeping in mind the physics
of the sonar sensor, the information about the position of the
target which reflected the sound is limited to knowing that it
is somewhere on an arc (2D assumption about the world). By
associating multiple sensor readings to the same target, trian-
gulation can be used to find the true position of the target. The
true position is given by the intersection of the circular arcs
as illustrated in Figure 5. The method is described in detail in
[18].

Object

Figure 5: Triangulation based fusion (TBF) of sonar data.

5.2 Laser based feature detection
A typical laser scanner’s main characteristics is the high angu-
lar resolution that comes with using a laser beam to measure
distances. In experiments presented in this paper the SICK
laser scanner is used. It has come close to be a standard sensor
for modern mobile robots. The high angular resolution makes
lines a natural choice. Using an adaptive Hough transform it is
relatively easy to extract robust line segments. Door openings
can also be extracted. Both types of features are used here.
The details of feature extraction and basic pose estimation are
outlined in [16].

6 Integrated systems

6.1 ISR system
For evaluation of navigation systems in domestic settings a
range of different platforms are used. The techniques pre-
sented earlier have been implemented in the Intelligent Ser-
vice Robot project [19], which is a software system available
on a Nomadic Scout, A Nomadic 200 platforms and the No-
madic XR4000 system. The robots are equipped with 16-48

sonars, SICK LMS 200 scanners, and basic odometry. These
robots have been used for extensive experiments as outlined
in the next section. In total these platforms have driven more
than 500 km with the described software system.

6.2 Augmentation of SLAM with geometric constraints
Recently robot platforms for the domestic consumer market
have appeared. These robots utilize very limited sensory feed-
back. This poses a new challenge. Operation in a domestic
environment does however at the same time provide addition
information. Most houses are constructed according to well
defined architectural rules. In many cases such houses have
long wall and walls met at well defined angles (typically 90Æ).
In addition furniture is often placed along the walls or away
from the walls. Utilizing such information it is possible to feed
these constraints into the estimation process. The geomet-
ric constraints allow automatic correction of odometric drift
which results in a significant improvement in performance as
outlined in [13].

6.2.1 The Electrolux example: As an example of a
commercial platform that has to rely on SLAM for it opera-
tion is the Electrolux vacuum cleaner. The platform is shown
in figure 6. The robot uses ultrasonic ranging and odometry
for navigation in regular houses. To allow for operation in
regular houses a combination of regular SLAM and geometric
constraints is utilized.

Figure 6: The Electrolux Trilobite vacuum cleaner, for domestic
use, that is commercially available.

7 Experimental Results

7.1 Choice of sub-maps
As has already been stated the standard formulation of the
EKF approach to SLAM scales badly to large environments.
Figure 7 shows the result of running the algorithm in the lower
floor at CAS. The total distance traveled is 388 m. The map
consists of 114 lines and the total computational time to build
it was 340 s. This was only 12% of the total time of the ex-
periment, but due to the complexity it becomes increasingly
difficult to maintain real-time performance when the number
of features increases.
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Figure 7: The resulting map when using the standard SLAM algo-
rithm. The position of the robot is marked with an arrow
every 50 m. The raw odometric data is also shown.

If sub-maps are used instead the computation time can be re-
duced. Figures 8 and 9 show the resulting map when 20 by
20 m sub-maps with 2 m overlap are used for two different
placements of the sub-maps. The two figures clearly high-
lights the need to think about how the sub-maps are defined as
it effects the quality of the map. The reduction in total com-
putation time is 50% compared to standard SLAM. More im-
portantly, no more than 43 features are processed at the same
time which allows for some margin to the real-time threshold.

Picking the right location for the sub-map is difficult when the
robot has no knowledge about the world. In Figure 10 the sub-
maps are instead defined by rooms and the gateways between
the sub-maps are doors. Thus the sub-maps do not have the
same size but is instead defined by the environment. In many
indoor environments the rooms are small enough for the robot
to handle in one sub-map.

7.2 Recovery from errors
To test the ideas for error detection and recovery presented
in Section 4 an experiment was performed where a large per-
turbation was introduced by hand. The system only uses the
sonar landmarks presented in Section 5.1. Figure 11 shows
the trajectory followed by the robot with the arrow indicating
the point at which the perturbation is introduced. Figures 12
shows the pose error made by the SLAM algorithm as a func-
tion of time together with the 2σ-bounds. The error is es-
timated by comparing the pose with the result from a pose
tracking algorithm running on the side. The perturbation is
clearly visible in the lower sub-figure showing the orientation
estimate. At iteration 920 the robot realizes that something is
wrong and it successfully performs the recovery step and can
continue on with mapping the environment.

0 20m

Figure 8: Square sub-maps with poorly picked orientation

0 20m

Figure 9: Square sub-maps align with environment

7.3 Utilizing geometric constraints
In many typical indoor environments it is possible to use geo-
metric constraint to simplify the task of localization as many
structures have right angles with respect to each other. This
is the case not only for the main walls, but we tend to furnish
the room by placing book shelves, tables, etc, parallel to the
walls. The newly released autonomous vacuum cleaner from
Electrolux starts its cleaning cycle by following the walls of
a room as well as it can. It will stop the procedure when it
estimates to be at the start position again. The vacuum cleaner
is equipped with an odometric system as well as short range
sonar system for avoiding obstacles and following the wall.
The performance of current system is limited by the drift accu-
mulated by the odometry under normal conditions and suffers
badly from large perturbations that happens when the robot
drives over things that are on the floor. By utilizing geometric
constraints the robot can reduce the uncertainty substantially.
Figure 13 shows the result with and without using the geomet-
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Figure 10: Room based square sub-maps

−
10

00
0

10
00

20
00

30
00

40
00

50
00

60
00

−
10

000

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
M

ap
 in

 r
ob

ot
 c

oo
rd

 s
ys

te
m

 (
pu

re
 o

do
m

et
ry

)

Figure 11: A perturbation is introduced at the arrow.

ric constraints for wall following.

8 Summary and discussion

In this paper the basic use of SLAM has been outlined and it
has been outlined how the method may utilize hybrid repre-
sentations to provide an overall system that has scalable com-
plexity. In addition it has been described how the method may
detect and recover from error situations. Finally the use of ge-
ometric constraints may be used for automatic correction of
odometric slippage so as to limited the updating rate of the
SLAM method. The presented methods have been extensively
tested on in-door environment on four different platforms.

For large scale SLAM there is still a need for methods for au-
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Figure 12: Error and 2σ-bound for x, y and orientation. The pertur-
bation is clearly visible in the orientation plot.

tomatic generation of topological maps that can be used for
overall planning and embedding of the local geometric maps.
Future research will thus emphasize methods for automatic hy-
brid mapping to ensure bounded complexity for operation in
truly large scale environments.
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