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Abstract

This paper presents an algorithm for active exploration
of the environment by a mobile robot when performing
global localization. During the localization process inter-
esting regions for future exploration are selected based on
already detected features and on the hypotheses generated
by the localization algorithm. The localization process is
improved by presenting it a richer set of features. The pro-
posed algorithm provides highly robust global localization
in real world environments with very low computational
effort spent in finding exploration goal points. Experimen-
tal results are given, demonstrating the effectiveness of the
algorithm in a number of different situations.

1 Introduction

This paper proposes an algorithm for active exploration
(AE) in the field of global localization. Global localiza-
tion is the problem where a robot, holding a map of the
environment, should determine its position and orientation
(pose), without prior knowledge. The basic idea of this
work is to improve the performance of an existing passive
global localization algorithm (PGL) [1]. The existing PGL
uses an open space explore behavior for exploration, driv-
ing the robot around randomly in the environment. This
paper proposes a more intelligent solution, which actively
moves the robot platform during the localization process to
collect better information for determining the pose. With
AE, localization can be achieved in more complex situa-
tions and it takes less time on average to find the correct
pose. The algorithm can be applied in any system having
a feature based PGL, delivering pose hypotheses and their
respective weight (probability).

When only using the open space explore behavior to
search the environment, doors are unlikely to be passed.
The robot stays in the initial room and is not able to local-
ize when similar rooms exist in the map. The AE selects a
region of interest for exploration. The selection is based on
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Figure 1: Closed loop exploration possible through the ac-
tive exploration algorithm

I

|

I

I

o

Pose v = :
hypotheses Active exploration |
I

I

I

I

I

I

how much information a certain region contains and what
the cost is to get there. Neighboring rooms are also con-
sidered and a change of room can hence be imposed. The
algorithm selects the most promising region, decides how
to get there and where to face the sensors. Once the region
is explored a new decision is taken.

An enhanced localization performance is achieved by
the indirect feedback from the AE to the PGL through the
sequence of detected features. The AE does not insist on
observing an expected feature, since its existence and vis-
ibility are not certain. The approach of having the AE as
an independent module allows easy integration into other
systems. Figure 1 shows the structure and relationships in
the localization system with AE.

The PGL is responsible for delivering a set of pose hy-
potheses to the AE. The number of hypotheses internal to
the PGL strongly depends on the localization method. Dur-
ing the exploration, the hypotheses are updated based on
sensor data. The PGL reports that localization has been ac-
complished when a single pose hypothesis gets dominant
enough based on its weight.

A set of the strongest hypotheses is communicated from
the PGL to the AE. To evaluate these pose hypotheses the
algorithm also needs access to the global map. Observed
features can be compared to the map, allowing AE to se-
lect interesting exploration targets based on not yet de-



tected features. The algorithm’s output is a sequence of
motion commands for exploring the selected target regions
and features.

2 Related Work

Variations of this problem have already been addressed
by different authors. Dudek et al. [2] decomposed the map
into visibility regions defined by polygons. The concept
was extended to visibility skeleton matching in [3] and [4].
Localization is not possible in a visibility polygon unless
it is unique. A pre-computed path is followed to loca-
tions that can rule out hypotheses until there is only one
left. This algorithm can be unstable because it assumes two
things: i) when inside a visibility region, we can match this
region to a set of identical regions in the map; ii) each set
of regions of identical visibility polygons can be identified
based on the map. If one of these assumptions is not ful-
filled, the robot will take exploration decisions, which are
not meaningful in reality, or it will eliminate the correct
hypothesis by accident.

Burgard et al. [5] addressed the problem using a grid
based approach, achieving good results by basing the deci-
sion of where to explore on minimization of the expected
future entropy of the hypotheses distribution. Unfortunately
the required processing power is proportional to the area
and to the resolution of the grid. Our proposition is a
feature-based approach, only considering the relevant part
of the map when taking a decision. This eliminates the
problem of being dependent of the map size and is thus
less costly in processing power.

3 Algorithm: Three Stages

The AE algorithm goes through three stages during the
localization process:

1. Initialization
2. Hypotheses elimination
3. Hypothesis strengthening

During the initialization stage, the robot collects informa-
tion to generate a set of pose hypotheses. False hypotheses
are ruled out in the elimination stage and finally the be-
lief of the best hypothesis is improved in the strengthening
stage until the robot is considered localized.

The stage of the AE is selected based on the weights of
the current pose hypothesis delivered by the PGL. Thus, it
is not forced to follow the sequence shown above, instead
it always adapts according to the current pose hypotheses.

Two thresholds are responsible for this selection. A first
threshold on the total weight of the best hypotheses de-
cides if enough information has been gathered to switch to
the second stage and a second threshold decides if there is
only one (but not strong enough) hypothesis left and the
algorithm goes into the last stage.

Initialization The robot has no initial information regard-
ing the pose and hence the initial hypotheses generated by
the PGL are all very weak and unreliable. In this stage
the exploration is controlled by the open space explore be-
havior previously used with the PGL. This behavior starts
driving into the direction with the least obstacles and main-
tains the direction while avoiding obstacles until the path
is blocked. At this point it restarts the procedure.

Hypotheses elimination Based on a set of hypotheses
the robot can direct its exploration and eliminate false hy-
potheses by guiding the robot to discriminative locations.
This leads us to the central idea of our algorithm. The de-
cision is based on overlaying the different hypotheses and
matching the features. The rooms, which the robot is in
according to the hypotheses, are mapped into layers within
the same robot centered coordinate system. The features
are matched between these layers, and the most promis-
ing region is selected by a measure of information con-
tents. When the differences between the rooms are small,
the robot needs to change room. This decision is taken in a
consistent manner using the same algorithm.

Hypothesis strengthening Only one dominant hypothe-
sis is left, but it has not yet accumulated enough evidence.
Overlaying hypotheses are no longer possible with only
one hypothesis. Instead the decisions are based on the dis-
covered features. These features are collected in a map dur-
ing the entire exploration. The decision is computed as if
the map containing the features were a second hypothesis.
This approach makes it possible to use the same algorithm
as in hypotheses elimination. Regions with unseen features
and not yet visited rooms are the most interesting.

4 Algorithm: Select Explore Region

The generation of a target region based on the hypothe-
ses coming from the PGL is explained below using a top
down approach.

Overlaying hypotheses The map consists of rooms which
are topologically connected. The features are compared on
a room by room basis to reduce the computation of the
matching process. In the first place these are the rooms



Figure 2: The left image shows a part of the map with two
pose hypotheses [1,2]. The right image shows the resulting
overlaid maps.

Figure 3: A robot observes two line features with differ-
ent covariance on its position (1 and 2). In case 1 the lines
cannot be distinguished and thus do not contain informa-
tion helpful to the localization process.

where the hypotheses are located. The overlaid maps are
then recursively extended with rooms whenever a passable
door exists in all layers at a given position (Figure 2).

Matching rooms Matching the features through all as-
sociated rooms is not done in one step but every room is
compared with every other room. When matching features
between two rooms every feature is matched with all fea-
tures of the same type in the other room. The best match for
that feature is retained and accumulated by multiplication
over all room-to-room-matches as the general match, my,
of that feature. The matching function is an exponential
function where a perfect match results in 1 and no match at
all is weighted 0. Thus the general match of a feature will
also be between 0 and 1.

The computation time for making a decision depends
on the location and number of the hypotheses. For n hy-
potheses, n(n — 1) /2 pairs of rooms need to be matched.

Matching features The PGL uses different feature types.
Pairs of the same feature type are matched to each other
based on their parametric description. Rooms with a larger
number of features require a significantly higher number
of comparisons, since f features in both rooms require

F(f = 1) comparisons. The feature matches will depend
on the hypothesis (or layer) because of differing odometry
covariances under which the features would be observed
(see Figure 3).

A closed form covariance model [6] was implemented,
this allows to efficiently compute the predicted robot pose
covariance for any feature. The parameter difference in-
volved in the match computation is reduced by the corre-
sponding standard deviation before the match is computed.

Feature information The explore region is mainly se-
lected by its information content but is also guided by time
constraints. Our heuristic evaluating the information con-
tent 7 of a single feature is defined by the following product:
i=(1—mg)-fa-wn-q

The smaller a feature’s general match m, to other features,
the more information it provides. Furthermore, objects
closer to the robot are more interesting, we express this
with the factor f; (explained below). Interesting features
with a high probability of existence should be selected first,
thus the associated weight of the hypothesis wy, (from PGL)
is also taken into account. Finally to compare the informa-
tion content of different feature types, we use a relative
quality measure g (see Section 5).

In a first approximation the traveling time from the robot’s
location to a specific feature is proportional to the traveling
distance. The distance d; used in our computation has an
additional component:

d; = path length+ #door passes - door distance

An artificial door distance penalizes door passing, to pre-
vent the robot from changing room too early. The distance
factor f; is defined as:

d
search range

fa=1

where the search range parameter is a constant value. Fea-
tures with a traveling distance exceeding the search range
will have a negative information value and will not attract
any attention. In the third stage, where the detected fea-
tures are treated as the second hypothesis, wy, is set to zero
for that artificial hypothesis. This will prevent the detected
features being selected as targets by the AE algorithm.

Selecting target region The detection of a feature cannot
be guaranteed. Thus, it is better to select an interesting
region rather than a single feature. We obtain this effect
by using a Gauss filter. The filtered information i z;;; of all
features is computed at each feature location.

Ifilr = Y iem (@)

features,layers



where d is the distance from current feature to other feature
and r is the filter radius (in our case: 2m).

When only the filtered information is used, features in
the center of the room and clusters of small features would
get too much attention. We obtained good results when
using i and normalized is;;; in equal parts.

max (i)

ifinal=i+ifilzm
fi

5 Implementation

Before describing the implementation of the AE, a few
words about the PGL. It is a version of the MCL algo-
rithm [7], where the probability density function (PDF) for
the robot position is represented by a set of particles. Ini-
tially, without any knowledge, these particles are spread
uniformly over the environment. When updating the PDF
using sensor data, hypotheses are formed when particles
form clusters. The robot is supposed localized when 90%
of the particles are inside a circle of 1 m.

Matching functions Our PGL is uses three types of fea-
tures: lines, doors extracted from laser scans and sonar tri-
angulation points (tripoints) [8].

Lines are defined by their distance d to the robot and
their orientation o.. When comparing two lines we base the
match on the difference of these parameters: Ad and Ac.

—(ladl, Jaal
match=e 1 ' <

where ¢ and c; are selected as ¢; =5 m and ¢, = Tt/2 rad.

Doors are matched using the distance between the cen-
ter points Ad and the relative orientation Ac.. Where Aot is
between 0 and 7/2.

_(ladl |ad]
match = e Gra)
where we use ¢3 =2 m, ¢4 = /2 rad.
Tripoints are compared by their relative distance Ad.

|Ad|

match=e ¢

where we use ¢ = 5 m.

The parameters cy,...,cs must be of similar order of
magnitude, as well as being selected with respect to the
PGL. The algorithm is not sensitive to these parameters,
which has been verified through off-line experiments using
real data.

cost™! | value

detect q
Lines | 0.95 1 0.6 0.57
Doors 0.6 0.8 1 0.48
Tripoints 0.5 0.5 0.3 | 0.075

Table 1: Feature weight criteria

Different feature types To be able to compare different
feature types a quality measure ¢ is introduced for each
type. The quality measure takes into account several fac-
tors; probability of detection, inverse cost of detection and
value of detected feature. All factors are given relative val-
ues between 0 and 1, where 1 corresponds to high quality.
The quality measure is then given by the product of these
factors, see Table 1.

Path planning In the beginning, when the weight of the
best hypotheses is very low, we have a high risk to com-
mand the robot through a wall. Sensing the blocking wall
will improve its set of hypotheses, but insisting on reaching
a goal point behind that wall is pointless. To reduce the risk
of issuing such commands, two heuristic limitations have
been introduced: i) a new decision is taken before issuing
a motion command when obstacles block the immediate
path ii) the trajectory lengths is first limited to a maximum
of 20 meters and then multiplied with the weight of the best
hypothesis. A high tolerance is allowed in reaching a goal
point: 20% of the trajectory length to allow for odometry
drift and errors on the hypotheses. When the end of the
trajectory is reached, a new decision is taken.

Details in the implementation of the motion commands
can change from one platform to another. Motion com-
mands should be selected to meet the requirements of the
PGL. For example, probabilistic localization methods may
require that the robot moves between observations of the
same feature to guarantee statistical independence.

Thresholds We have two thresholds that decide the stage
of the algorithm. The first is based on the sum of the
weights of the best 10 hypotheses. When this total weight
is above 40%, the algorithm enters the second stage and de-
cisions are based on those hypotheses. The second thresh-
old is the minimum weight of a pose hypothesis for being
accepted. In our implementation it is set to 3%. The al-
gorithm is not sensitive to these thresholds, but for optimal
convergence they should be selected or computed accord-
ing to the environment. They depend on the degree of sym-
metry and on the total area of the building. For example in
a hospital with 400 identical rooms we will probably never
reach the 40% threshold when we start inside one of those



rooms. We propose two approaches to solve this problem,
either we lower the threshold or we add a timeout to the
algorithm.

Abandon target Obstacles or decisions based on false
hypotheses can make it impossible to reach a computed
goal point. In this case two problems need to be solved:
1) we need to detect this failure and ii) we need to avoid
repeating mistakes. We detect a failure either before the
motion starts based on current sensor inputs or later by re-
port of a motion command fail after a timeout. An avoid
past function has been implemented to avoid the repetition
of mistakes. The target point p;, which lead to the mo-
tion failure is added to the set of avoid points . Regions
around these points are made less interesting in future de-
cisions. The information of every feature is multiplied with
the filter factor f7.

2
fr=11 (1 —e_(;"z))
pEP

where d is the distance from the feature to the center of
avoid region and r is the filter radius (in our case: 1m).

6 Experiments

In this section we will experimentally show how the
overall localization performance is improved when using
AE. We begin by illustrating the decision process of AE
through an example.

Shortly after starting the localization, when only a few
features have been detected, there will be many weak hy-
potheses. Figure 5 shows the overlaid map that the decision
is based on. The correspondence in one corner is good but
poor in the others. At this point the map is not extended
through the doors because of the large difference between
the layers. After some time we are left with only two strong
hypotheses, corresponding to two almost identical rooms.
This was the situation introduced in Figure 2 and shown in
greater detail in Figure 7.

Localization is unlikely to take place in room R (see
Figure 7) as well as in the connected hallway. The map
is automatically extended through the matching doors and
reveals the most relevant features two rooms away in the
region around the door D. The decision of going to the
right and not to the left is based on the distance factor. On
its way to the target D, the robot localizes upon receiving
the first features from the target room T. Using only open
space explore in this situation, would mean that it would
be very unlikely that the robot would leave the first room
and it would be difficult for the PGL to disambiguate the
two hypotheses.
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Figure 4: Map of the CAS laboratory

Figure 5: Overlay map Figure 6: Experimental situa-
with many hypotheses. tion
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Figure 7: Overlay map with two hypotheses.

Run PGL PGL + AE
1 4min 24s (0) - wrong | 7min 54s (1) - correct
2 10min (0) - failure 3min 43s (1) - correct
3 10min (0) - failure 4min 47s (1) - correct
4 10min (0) - failure 58s (0) - correct
5 3min 34s (0) - wrong | 4min 32s (1) - correct

Table 2: Time to localize starting in room 1, number of
door traversals in brackets

To strengthen the claim for better performance we now
present a comparison over five real world experiments. The
time is measured until the robot believes it is localized, al-
lowing for a maximum of 10 minutes. The initial position
of the robot is the same in all experiments, but the orienta-
tion is different. Figure 6 shows the experimental situation,
where room 1 is the true initial room. Rooms 1 and 2 are
very similar, the only difference being tripoints. For reli-
able localization it is beneficial to leave the room. Table
2 summarizes the results and it is evident that AE indeed
greatly improves the performance.

Without AE the PGL did not provide a single successful
localization. Three times out of the five it did not localize
within the time limit. In the other two runs it reported suc-
cessful localization, but indicated the wrong room. This
can be avoided when relevant features are observed based
on the hypotheses. The same test setup, with the AE run-
ning, localized correctly in all five experiments. In all but
one case the AE guided the robot through the door into the
corridor. In the exceptional case, run 4, the robot localized
rapidly obviating the need to go out of the room.

Table 3 shows the number of decisions made in these
five experiments. The total time spend for decision com-
putation is also given in seconds and as fraction of the total
time of the experiment.

On our system, running on a Pentium 550MHz, exper-

Run | # Decisions | Total comp. [s] | % of exp. time
1 12 14.730 3.1%
2 4 0.954 0.4%
3 6 2.040 0.7%
4 3 0.175 0.3%
5 4 1.040 0.4%

Table 3: Computation times for experiment 1

Run | PGL | PGL + AE
1 36s Imin 11s
2 28s 41s
3 16s 39s
4 18s 32s
5 31s 39s

Table 4: Time to localize in the living room

iments have shown that the number of features per feature
type and room should not exceed 200 to keep the decision
taking computation below a worst case of 10 seconds.

A second series of five test was run in the so called living
room. This room is unique in size and thus good localiza-
tion performance is obtained without the AE.

As we can see from the times in Table 4, the open space
explore performs better than AE. This is because it does
not lose time for taking decisions and stopping and accel-
erating motions.

7 Conclusion and Further Work

Overall we can say that the exploration using the pre-
sented algorithm is very intuitive. A localization process
which previously was running without feedback, now runs
in a closed loop, where the loop is closed over the motion
commands through the environment to the sensors.

We have been able to increase the performance of the
localization process. Now even highly symmetrical situa-
tions are handled correctly and the localization process can
converge rapidly. The algorithm fulfills the goal of being
able to take decisions with low processing power.

One limitation of this approach is that the computation
grows proportionally to the square of the number of fea-
tures. A second limitation is the greedy single step search
approach which cannot predict optimal search sequences.
The search horizon is truncated because of the exploding
computational burden and because of the limited utility of
long-range planning based on noisy sensor data.

The quality measure g for features should not be con-



stant per feature type. We expect better performance when
this factor is individually set per feature. This could, for
example, take into account the probability of an individual
door being open or closed.

In some systems, including ours, we should take into
account that not all rooms are in the global map. When
the robot drives into such a room during exploration, that
hypothesis is destroyed when the passive global localiza-
tion receives features without correspondence to the map.
Thus, in situations where a door does not lead to a mapped
room in all hypotheses, it would be useful to save those
hypotheses. Then we can later regenerate these hypothe-
ses as soon as the robot is back in a mapped room. This
requires a bi-directional communication with the passive
global localization.
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