
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 1Pose Tra
king Using Laser S
anning andMinimalisti
 Environmental ModelsPatri
 Jensfelt and Henrik I. ChristensenAbstra
t| Keeping tra
k of the position and orientationover time using sensor data, i.e. pose tra
king, is a 
entral
omponent in many mobile robot systems. In this paperwe present a Kalman �lter based approa
h utilizing a min-imalisti
 environmental model. By 
ontinuously updatingthe pose, mat
hing the sensor data to the model is straight-forward and outliers 
an be �ltered out e�e
tively by vali-dation gates. The minimalisti
 model paves the way for alow-
omplexity algorithm with a high degree of robustnessand a

ura
y. Robustness here refers both to being able totra
k the pose for a long time, but also handling 
hangesand 
lutter in the environment. This robustness is gainedby the minimalisti
 model only 
apturing the stable andlarge s
ale features of the environment. The e�e
tivenessof the pose tra
ker will be demonstrated through a numberof experiments, in
luding a run of 90 minutes whi
h 
learlyestablishes the robustness of the method.Keywords|Lo
alization, Pose Tra
king, Minimalist
Mod-els, Sensor ModelingI. Introdu
tionTHERE are many 
hallenging problems whi
h have tobe solved before we have all the methods needed fordeployment of robots in ordinary domesti
 environments.One of them is lo
alization. Lo
alization is the pro
ess of�nding the position and orientation of the robot, i.e. thepose. Knowing the 
orre
t pose of the robot is a 
onditionfor the su

essful 
ompletion of many of the tasks whi
h arobot might be required to perform.Lo
alization 
an be thought of as 
onsisting of two parts,initialization and maintenan
e. Initialization is often re-ferred to as global lo
alization and 
onsists of �nding thepose of the robot without any prior knowledge but a map.Building the map 
an also be viewed as part of the initial-ization. On
e the pose is found, lo
alization be
omes thetask of maintaining the estimate of the pose, i.e. tra
kingthe pose. In this paper we will fo
us on the latter, that ispose tra
king.Mu
h e�ort has been spent on modeling the world verya

urately, to a
hieve better performan
e. We 
hose toturn this upside down and instead ask ourselves how sim-ple 
an the map be and still be useful for solving the lo-
alization problem? Therefore, one design 
riteria is to useas simple a model as possible. A simple model has the po-tential of being very robust over time and provide meansfor having an eÆ
ient tra
king system that �ts well in anautonomous system with limited 
omputational resour
es.The only requirement we pose on the lo
alization systemis that it must not rely on altering the environment in anyway. This requirement rules out methods whi
h rely onP. Jensfelt and H.I. Christensen work within the Centre for Au-tonomous Systems, Royal Institute of Te
hnology, Fiskartorpsv. 15A,SE-100 44 Sto
kholm, Sweden. E-mail:fpatri
,hi
g�nada.kth.se

e.g. bar 
odes or a
tive bea
ons.A. Paper OutlineIn Se
tion II related work on pose-tra
king and lo
al-ization is dis
ussed. The problem is de�ned and the as-sumptions made are dis
ussed in Se
tion III. Se
tion IVdes
ribes the overall stru
ture of the algorithm. A modelfor the odometry is developed in Se
tion V and Se
tion VIis devoted to 
hara
terization of the laser s
anner used andthe method for extra
tion of environmental features. Se
-tion VII 
ontains experimental results and 
on
lusions anda dis
ussion 
an be found in Se
tion VIII.II. Related WorkGIVEN that lo
alization is su
h an important 
ompo-nent in any mobile robot system, it is not surprisingthat many di�erent approa
hes have been suggested in theliterature. In this paper we will only brie
y mention someof them, and we instead refer to for example [1℄ for a morethorough survey. We 
on
lude that there are two prevail-ing 
ategories of approa
hes, depending on the modelingte
hnique being used. These are parametri
 methods andgrid based methods.A. Parametri
 MethodsThe idea of trying to extra
t features from the environ-ment is quite natural. Examples of highly spe
i�
 featureswould be labels on doors whi
h spe
ify the room it is lead-ing to. In stru
tured environments, su
h as most oÆ
eareas, lines, 
orners and edges are 
ommon features. Thefeatures 
an be parameterized by e.g. their 
olor, length,width, position, et
. Leonard, Durrant-Whyte and Cox [2℄are quite �rm in their 
onvi
tion that feature-based meth-ods are superior, when they say: \we believe that naviga-tion requires a feature-based approa
h in whi
h a pre
ise,
on
ise map is used to eÆ
iently generate predi
tions ofwhat the robot should \see" from a given lo
ation". TheKalman �lter is a key 
omponent in most implementationsof parametri
 methods, providing a good setting for posepredi
tion and sensor fusion.An extreme example of feature based lo
alization is thework by Christensen et al [3℄ where a 
omplete CAD modelof the environment is used for lo
alization and pose tra
k-ing through feature mat
hing and 3D re
overy using stereovision.B. Grid Based MethodsThe parametri
 methods have the disadvantage that anexpli
it model is needed for all the information whi
h isused. Another thought is to divide the work spa
e into a
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h 
ell in the grid represents a part of theworld. One advantage of this approa
h 
ompared to theparametri
 is as Hager and Mintz [4℄ points out: \Thegrid-based method is only an approximative solution, but itis mu
h less sensitive to assumptions about the parti
ularform of the sensing system". S
hiele and Crowley [5℄ 
on-
lude that the results using grids \are 
omparable or morea

urate than the ones we obtain with previous work using aparametri
 model of segments extra
ted dire
tly from sensordata". Morave
 and Elfes made the grid based te
hniquespopular with their paper [6℄ in 1985 where the o

upan
ygrid is presented.Burgard et al also use an o

upan
y grid representationfor the map. In [7℄ the knowledge of the robot's position isstored in another grid, a position probability grid, wherethe 
ells 
ontain the probability of the robot being at thatpose. The method has proven su

essful, but requires 
on-siderable amount of 
omputational power. In [8℄, inspiredby work in other resear
h areas, a sample set is used to rep-resent the pose knowledge. Both approa
hes provide themeans to do both pose tra
king and global lo
alization.III. Problem Definition and AssumptionsAS was seen in Se
tion II the problem of pose tra
k-ing is well studied in the literature and further e�ortsmust be weighed against the potential gain. In a systemoperating in a real world setting, where lo
alization is onlya small, but yet important, part of the whole integratedsystem, the 
omputational resour
es are limited. This, to-gether with the fa
t that several tasks must be performedsimultaneously, e.g. lo
alization, planning and obsta
leavoidan
e, means that we should aim for low 
omputa-tional 
omplexity. Arti�
ial landmarks are often used toredu
e the 
omplexity of the lo
alization problem. Herewe do not allow any arti�
ial landmarks or any other formof engineering of the environment. The reason for this isthat the system should be able to operate in a typi
al do-mesti
 or oÆ
e environment.Most robot platforms are equipped with wheel en
oders,odometry, that 
an be used to measure relative motion.This means that if the initial pose is given, odometry 
anbe used to keep tra
k of the pose, under ideal 
onditions.Su
h is not the 
ase in reality, where for example imper-fe
tions in the kinemati
 model of the robot and wheelslippage will 
ause the pose estimation error to grow with-out bounds. Still, odometry is a resour
e that should beutilized to make the problem of lo
alization simpler, as it isknown to be very reliable over short distan
es under normal
ir
umstan
es.To bound the error in the pose estimation, external sen-sors must be used. These sensors 
an provide informa-tion about the absolute position of the robot by asso
iatingmeasurements with parts of the map. Sonar sensors havebeen used extensively in lo
alization resear
h. The sonarsensor is reliable and 
heap, but it has 
lear limitations inits use. Due to the wide beam width it requires heavy post-pro
essing to extra
t the important information. The ex-perimental platform under 
onsideration is equipped with

a s
anning laser sensor, also providing range data, but withmu
h higher angular resolution. Computation power 
anthus be saved at the 
ost of a more expensive sensor. Tomake this de
ision it is important that the in
rease in 
ostis justi�ed. Even if the SICK laser s
anner is more thanan order of magnitude more expensive than the sonars to-day, the pri
e will drop when the market for it in
reases.This will make the arguments for using sonar sensors evenweaker. The reason why we do not even 
onsider vision asa sensor for solving the lo
alization problem is the la
k ofrobustness and the 
omputational 
ost of present vision al-gorithms. We do however a
knowledge the large potentialof vision.A. Environmental ModelTo realize a low 
omplexity pose tra
king system the
hoi
e of environmental model is of 
ourse of great impor-tan
e. We believe that a parametri
 method is the bestway to fully utilize the simpli
ity of the model and proposeto use a re
tangular model for ea
h room. The 
hoi
e of there
tangular model is a design de
ision, aiming to 
aptureonly the most dominant and stable features in the envi-ronment. This 
hoi
e would of 
ourse not be motivatedin an outdoor setting, but as we here 
on
entrate on anindoor environment we �nd that it is justi�ed. The mainbene�t of the re
tangular model is that it is very likelyto be robust over time. The more details that are usedin the environmental model, the less time it is typi
allyvalid. As the sides of the re
tangle 
orrespond to walls,they are highly robust over time. Lines were 
hosen overe.g. points sin
e points are more likely to move than larges
ale lines. Points asso
iated with wall 
orners meet our re-quirements, but most points in the environment stem frommovable obje
ts. Note that we do not assume that the linesare parallel to x or y axes and also allow for the 
ase thatnon-re
tangular models may be required for some rooms.One more very 
lear advantage with using large s
ale stru
-tures su
h as lines is there are not that many of them whi
hmakes the data asso
iation easier.LetM denote the environmental model whi
h is a set oflines mi, i.e. M = fmi; i = 1; : : : ; jMjg:mi is des
ribed by its start point (xs; ys) and end point(xe; ye), whi
h gives it a dire
tion. The dire
tion is usedto de�ne from whi
h side the line 
an be seen. By ourde�nition a line 
an be seen if the dire
tion of the line isfrom right to left when we look at it.B. EstimationGiven that we know the initial pose of the robot, a goodapproximation of the robot at every time instant 
an be
al
ulated using odometri
 information. Knowing the ap-proximate pose of the robot also makes the data asso
iationproblem 
onsiderably easier. Sensor data that is likely tobelong to the walls (the sides of the re
tangle model) 
anbe extra
ted e�e
tively, and be used for updating the poseestimate and thus bound the estimation error.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 3There are many ways to mathemati
ally handle a prob-lem of this nature. It is 
lear that it is an estimation prob-lem and in some sense an optimization problem. How do wein
orporate the information that we get from the sensors,to 
al
ulate the best possible estimate of the pose? In or-der to answer this we need to spe
ify, best in what sense?As is often the 
ase, we 
hose to de�ne best in the leastsquare sense. The use of least square estimation is justi-�ed by the fa
t that outliers are eÆ
iently reje
ted throughuse of narrow validation gates that reje
t noisy data priorto the model mat
hing. We will furthermore assume thatthe probability density fun
tion for the robot's pose 
an berepresented by a unimodal fun
tion, that is one having asingle maximum. This puts high demands on the data as-so
iation. In 
ertain situations, a large un
ertainty in thepose of the robot might introdu
e ambiguities when asso
i-ating data, leading to a need for a multi-modal des
riptionof the probability distribution. Given that the estimate isupdated several times per se
ond, it is however reasonableto assume uni-modality due to the use of a sparse model ofthe environment.C. The State of the SystemWe assume the state of the system to be the pose ofthe robot, x = (x; y; �)T . This means that we assume theworld to be stationary, or at least the everything that is notstationary is to be 
onsidered as noise, and as su
h 
annotbe used for lo
alization.IV. AlgorithmTO perform the least square estimate of the robot posein real-time we need a re
ursive algorithm. The al-ternative would be to keep all the information in a bat
hand do a 
omplete 
al
ulation at every time instant. Thepri
e we pay for real-time performan
e is that on
e a pie
eof information has been used and is in
orporated into theestimate of the pose, it is lost forever. That is, we 
annotgo ba
k and re
onsider a de
ision 
on
erning for exampledata asso
iation.We will use the Kalman �lter framework that has beenused by numerous resear
hers (see e.g. [9℄, [2℄, [10℄, [11℄,[12℄, [13℄, [14℄) and proven to provide a good solution forsensor fusion. The Kalman �lter will give an optimal esti-mate of the pose given the information at hand, assumingthat the model of the system is 
orre
t and that all sour
esof noise are Gaussian. The Gaussian assumption is nor-mally not ful�lled, whi
h yields a sub-optimal estimate.Despite the non-Gaussian nature of most real world noises,the Kalman �lter is still reported to perform very well [2℄,[11℄, [12℄.At our disposal for tra
king the pose of the robot wehave information from odometry and the laser sensor. Theodometry 
an be used for short-time predi
tions of relativemotion and the 180Æ s
an from the laser sensor in 
ombi-nation with our environmental model give eviden
e aboutthe absolute pose of the robot.

Odometry

Line extraction

Laser

Kalman filter (x̂; P ) yM
Fig. 1. The algorithm.
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Fig. 2. Normally only two and in some 
ases three walls in a roomis in the �eld of view of the laser s
anning over 180Æ.A. State Predi
tion Using OdometryLet x̂k denote the estimate of the state x at time k.Let f(x;u) des
ribe how the robot moves given the inputu. This fun
tion is typi
ally nonlinear and asso
iated withsome un
ertainty. The state of the system 
an thus bemodeled as evolving a

ording toxk+1 = f(xk ;uk) +wk (1)where wk is noise, 
apturing the un
ertainty of the odo-metri
 model. This noise is assumed white and Gaussian.See Se
tion V for a more in-depth dis
ussion about thefun
tion f(x;u).B. Feature Des
ription and Sele
tionTo des
ribe the lines asso
iated with the re
tangularmodel extra
ted from laser data we use (�; �; l), where � isthe perpendi
ular distan
e to the line, � is the orientationof the line and l is the length of the line (see Figure 3). Thelength of the line, l, is used to redu
e the risk of makingerrors in data asso
iation. We only 
onsider line measure-ments that ful�ll l � lmin (in our 
ase lmin = 1m).Figure 2 shows a s
ene from of one of the rooms in theenvironment under 
onsideration. As 
an be seen, the re
t-angular model only 
aptures the very large s
ale stru
tureof the room and in most 
ases o�ers only two features fortra
king the pose. In Figure 2 these two features are thelower and the left wall. The upper wall that is also partlyvisible, results in a too short measurement (l < lmin).The laser s
anner is sensitive to o

lusions as all laserbeams stem from a point and thus an obsta
le pla
ed in



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 4front of the sensor will render it more or less blind. There-fore, visible features in neighboring rooms will also be 
on-sidered for tra
king purposes. We have limited us to linesfrom neighboring rooms as this has proven to be enough.The lines are stored in ea
h room and thus we do not haveto loop through all lines every time to determine what linesto 
onsider. A line in the 
urrent room is visible if it ful�llsthe following 
riteria:� angleDi�('(S)e ; '(S)s ) > 0 (dire
tion 
ondition)� (0 � '(S)s � �) _ (0 � '(S)e � �) (in �eld of view)where 's and 'e are the angles to the start and end pointof the line respe
tively and angleDi�('1; '2) 2 (��; �℄ Thesuper s
ript (S) refers to sensor 
oordinates. A line in aneighboring room is visible if it 
an be seen through thedoor leading to that room, i.e.� (angleDi�('(S)e ; '(S)dr ) > 0) ^ (angleDi�('(S)dl ; '(S)s ) > 0)where '(S)dl and '(S)dr are the angles to the left and rightdoor post respe
tively. Additional 
onstraints will have tobe added to handle non-
onvex polygonal line models. ForlX(R)Y (R)
X(W )�
(xe; ye)

�Y (W ) r = (x;y)�m
� ��m (xs; ys)

Fig. 3. The parameters de�ning a line.the pose update in a Kalman �lter framework we need topredi
t the parameters of the line to be extra
ted from the
urrent state of the robot and the environmental model.Introdu
e hi(x;M) as the measurement fun
tion, i.e. yi =(�i; �i)T = hi(x;M) + vi, where vi is the measurementnoise. We here let i = [1; : : : ;M ℄ where M is the numberof measurements. With the same notation as in Figure 3we get:hi(x;M) = � �mi �px2 + y2 
os(� � �mi )�mi � � � (2)where �mi is the distan
e to the line from the origin ofthe world 
oordinate system and �mi is the 
orrespondingangle, i.e. mi = (�mi ; �mi )T . This fun
tion 
an be expressedas the linear term yi = Hix+mi. Hi is given byHi = � H11 H12 00 0 �1 � (3)where H11 = �xr 
os(� � �mi )� yr sin(� � �mi );

H12 = �yr 
os(� � �mi ) + xr sin(� � �mi )and r =px2 + y2.C. The Extended Kalman FilterAs the odometri
 model is non-linear, the standardKalman �lter equation 
annot be applied, instead the ex-tended Kalman �lter has to be used. The extended Kalman�lter is typi
ally divided into two parts, often referred toas time-update and measurement-update. If we let x̂ de-note the estimate of the state x, and P for the 
ovarian
ematrix, the time-update 
an be writtenx̂k+1jk =f(x̂kjk ;uk) (4)Pk+1jk = �f�xPkjk � �f�x�T +Qk (5)where x̂k+1jk should be interpreted as the pose estimate attime (k+1) using sensor data up to and until time k. Qk isthe pro
ess noise matrix, 
apturing the un
ertainty in theodometri
 model, Qk = E[wkwTk ℄.As all lines are extra
ted from the same laser s
an themeasurements are 
orrelated and hen
e the there is a non-zero 
ovarian
e between the measurement noises vi. Tohandle the measurements 
orre
tly this 
ovarian
e mustbe a

ounted for. To redu
e the 
omputational burdenthough, we have 
hosen to negle
t this 
ovarian
e. By do-ing so the measurement-update 
an be done sequentially.Let x̂k+1jk;0 = x̂k+1jk and x̂k+1jk;max(V) = x̂k+1jk+1, withthe 
orresponding notation for the state 
ovarian
e matrixP . The measurement update 
an then be done by loopingover all i 2 V (all visible features) and performing:Kk+1;i = Pk+1jk;i�1HTi �HiPk+1jk;i�1HTi +�i� (6)x̂k+1jk;i = x̂k+1jk;i�1 +Kk+1;i �yi � hi(x̂k+1jk;i�1 ;M)� (7)Pk+1jk;i = (I �Kk+1;iHi)Pk+1jk;i�1 (8)where �i is the measurement noise (dis
ussed in Se
tionVI-D). The 
omplexity of the Kalman �lter update is lin-ear in the number of measurements. The algorithm as awhole is also linear in the number of lines that are visiblein ea
h step as we for ea
h of these lines try to extra
t a
orresponding line from the laser s
an.V. Odometri
 ModelAs with all sensors, a model of the odometry providesvaluable information about performan
e and limitations.The aim is a model that 
an be used in an iterative up-date pro
edure, su
h as the Kalman �lter. The modelshould provide an estimate of the robot motion as well asthe un
ertainty in this estimate. It is also desirable thatthe model be 
onsistent in the sense that it should givethe same result independent of how the path is segmented.In [15℄ su
h a model is developed for a di�erential driverobot. Here as well as in [15℄ we 
onsider robot motionalong ar
s.Let uk = (Dk;�
k) be the input to the odometri
 model,where Dk is the distan
e traveled along the ar
 and �
k
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Fig. 4. The motion of the robot is approximated to be on ar
s.is the 
hange in motion dire
tion. With this notion theradius of the motion is given byrk = Dk�
k : (9)Note that 
k = �k+�k where �k is the steer angle in robot
oordinates, measured by the en
oders and assumed to beknown with negligible errors. A negative rk 
orrespondsto turning 
lo
kwise and a positive rk 
orresponds to turn-ing 
ounter-
lo
kwise. The odometri
 model 
an now bewrittenxk+1 = f(xk ;uk)= 8>>>>>><>>>>>>:
0� xk + Dk�
k (sin(
k +�
k)� sin 
k)yk � Dk�
k (
os(
k +�
k)� 
os 
k)
k +�
k 1A ; j�
kj > 00� xk +Dk 
os
kyk +Dk sin 
k
k 1A ; �
k = 0 (10)We assume that the errors of the two 
omponents of theodometri
 input, uk, are un
orrelated.VI. Line Extra
tionGiven a set of range readings known to originate from amodeled line it is easy to extra
t the line parameters. How-ever, before this 
an be done the data asso
iation problemmust be solved. Assuming we have an estimate of the robotpose, the pose of a modeled line 
an be predi
ted. Thedesign goal is therefore twofold, i) 
lassify ea
h point asbelonging to a parti
ular model line or as being an outlierii) estimate the parameters of the lines. For this task wepropose to use a two step approa
h, 
entered around twodi�erent line extra
tion algorithms in 
ombination withvalidation gates (see Figure 5). The �rst line extra
tionalgorithm is robust against outliers, but provides only lim-ited a

ura
y. The se
ond step provides a

ura
y assumingthat the input data is \
lean". When the pose un
ertaintyof the robot is small, the �rst step 
an be bypassed. In thefollowing subse
tions the di�erent parts of the line extra
-tion algorithm are des
ribed in some detail.

Laser

Val. Gate Val. GateHough LSQ(x̂; P ) yFig. 5. Using the predi
ted pose of the robot in 
ombination withmap information, validation gates 
an be de�ned. The �rst step
ontains a lo
al Range Weighted Hough Transform fed with datavia a validation gate. The se
ond step is a least square methodusing data from a se
ond validation gate.A. Laser Chara
teristi
sBefore designing a method for extra
ting lines from sen-sor data it is important to know the underlying 
hara
ter-isti
s of this data. The sensor we use is a PLS laser s
an-ner from SICK ele
tro-opti
s. It gives 361 range readings,zi = (ri; �i), 
overing a 180Æ �eld of view.The range readings are quantized with step �r = 50 mm.Figure 6 shows a part of a s
an taken against a wall approx-imately 5.5 m away from the sensor. The dis
retization is
learly visible in the right sub-�gure where the same data isshown with di�erent s
aling and 
ir
ular ar
s with 50 mmspa
ing. Due to the gross dis
retization it is not easy to get
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Fig. 6. Segment of a s
an taken of a wall � 5.5 m away from thesensor. A line marking the lo
ation of the wall has been addedto the left sub-�gure. The right sub-�gure shows the range read-ings along with ar
s with 50 mm spa
ing, 
learly showing thedis
retization.an estimate of the underlying range distribution, i.e. giventhat the true range is R what is the probability distributionfun
tion for measuring r. To get a better view of the under-lying range distribution we perform an experiment where100 range readings, qi;j ; i = 1; : : : ; 100, are 
olle
ted atea
h of 50 (j = 1; : : : ; 50), tightly spa
ed positions in frontof a wall. Let �dj , (j = 1; : : : ; 50) be the distan
e traveledtowards the wall a

ording to odometry. Figure 7 shows ahistogram over qi;j+�dj . Assuming the odometry to havenegligible un
ertainty over the short traveled distan
e, thespread in the �gure is due to the error distribution inherentin the laser s
anner. This distribution 
learly resembles aGaussian. Its standard deviation 
an be estimated to � 24mm. The resulting Gaussian is overlaid in Figure 7. As thedistan
e measurements are quantized, only multiples of thequantization step 
an be measured, n�r; n = 0; 1; 2; : : : .Assuming R to be the true distan
e, the pdf for the mea-
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Fig. 7. The middle range reading from 100 s
ans taken at 50 
loselyspa
ed distan
es from a wall. The distan
e traveled towards thewall has been added to the range to get an estimate of the under-lying distribution. The distribution is approximated as Gaussianwith a standard deviation of � 24 mm.surements 
an be writtenp(n�rjR) = e� 12 (n�r�R�r )2Pm e� 12 (m�r�R�r )2 ;that is a sampled Gaussian. The varian
e in a measure-ment error (R � n�r) will, be
ause of the quantization,depend on the true distan
e a

ording to V (R�n�rjR) =Pn(R � n�r)2p(n�rjR). Figure 8 shows the 
orrespond-ing standard deviation as a fun
tion of true distan
e, R.We will make the simplifying assumption that the stan-
950 960 970 980 990 1000 1010 1020 1030 1040 1050

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

Fig. 8. Standard deviation for measurement error as a fun
tion oftrue distan
e.dard deviation for the measurement error is independentof the true distan
e and equal to the worst 
ase, i.e. ap-proximately 26 mm.The laser energy propagates in a 
one, just like the ul-trasoni
 energy of a sonar sensor. The di�eren
e is in thebeam width. The beam width of the laser is less than a de-gree whereas the standard Polaroid sensor has a full beamwidth of approximately 25Æ. To be able to determine thebeam width and hen
e the size of the footprint, we per-formed a series of experiments. The laser sensor is pla
edapproximately 4.7 meters away from two wooden boards.By sliding the boards perpendi
ular to one laser beam andmonitoring the measurement, the size of the beam 
an beestimated. When the boards are not dete
ted, the mea-sured distan
e will be the distan
e to the wall behind. Theboards 
an be separated approximately 20 mm and still bedete
ted. This separation at a distan
e of 4.7 m is equiva-lent to a beam width of approximately 0.25Æ. The size of

the beam that is 
apable of dete
ting that there is some-thing in front of the wall, but not ne
essarily 
orre
tly mea-sure the distan
e, is approximately 0.43Æ. That is, if onlya small fra
tion of the beam is re
e
ted by an obje
t, aphantom measurement might arise with a distan
e 
orre-sponding to a non-existing obje
t at a distan
e somewherebetween the 
losest obje
t and the one behind. As thelaser beams are separated by 0.5Æ, there is a blind regionbetween the beams.Now that we know the 
hara
teristi
s of the measure-ments we formulate our model. We will disregard the phan-tom measurement e�e
t and assume the error in angle to beindependent of the error in range. Furthermore we assumethe error in angle to be Gaussian. The ith measurement isthen modeled aszi 2 (N(Ri; �2�); N(�i; �2�)); (11)where Zi = (Ri;�i) is the true ith measurement, �� = 26mm and �� = 0:125Æ.B. Validation GatesIn target tra
king literature the problem of data asso
i-ation has always been in fo
us. Using validation gates isa 
ommon way to handle the problem. A validation gatede�nes a region around some predi
ted value in whi
h ameasurement will be a

epted as asso
iated to the 
orre-sponding feature. We �rst try to �lter out data points thatare likely to be asso
iated with the walls and then we ex-tra
t parametri
 des
riptions of these walls in the form oflines. Due to 
lutter the walls might be very hard to �ndwithout pre-�ltering. The lo
ation of the gates will be fun
-tions of x̂ andM. The size of the gates will depend on thequality of the sensor data, the method used to extra
t lineparameters, the un
ertainty in the environmental model,quantization step size and P . The gates should open up,i.e. let more data through, when the un
ertainty in the posegrows and vi
e versa. If the sensor data is very noisy, thegates have to be more open than if the sensor data is very\
lean".Let the validation region be des
ribed by the six-tupleG = (�̂; �̂; Æ; 
; '1; '2). Here �̂ is the predi
ted distan
eto the wall and �̂ is the predi
ted angle of normal to theline. These two entities de�ne the pose of the gate. Æ,the smallest width of the gate, and 
, the opening angle,de�ne the size of the gate. '1 and '2 
onstitutes the vis-ibility 
onstraint. The visibility 
onstraint amounts to nottrying to dete
t a wall that is not in the �eld of view of thesensor (
ompare to Figure 2). Figures 9 shows a more de-tailed illustration of the parameters that de�ne the lo
ationand size of the validation gates. Un
ertainty in orientationwill in
rease 
 whereas un
ertainty in position will demandhigher Æ.Figure 2 shows an example of how e�e
tive the validationgates are. The darker spots 
orresponds to s
an points thathave been asso
iated with a map line, whereas the lighteron
e are 
lassi�ed as outliers. As 
an be seen, we do nothave to have a 
lear view of the walls, the only requirementis that we see points of a wall to make a total length of
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2Æ�̂ �̂Fig. 9. Validation gate where the error in the predi
ation of the walland the size of the validation gate were s
aled for illustrationpurposes.lmin. In Figure 2 the right and the lower wall was usedfor update, but not the upper one as enough of it was notseen.C. Range Weighted Hough TransformIn order to tra
k the walls reliably, we need to be able toextra
t them despite a large amount of 
lutter in the room.Just like Crowley et al [5℄ and Wernersson et al [16℄ we usethe Hough Transform. To be spe
i�
, we use the modi-�ed version introdu
ed by Wernersson et al [16℄ 
alled theRange Weighted Hough Transform (RWHT). In our algo-rithm the RWHT is part of the �ltering pro
ess that aimsat providing a least squares based line �tting algorithmwith as 
lean range data as possible. To redu
e 
omputa-tions a lo
al version of the RWHT is used with a limitedHough Spa
e, 
entered around the expe
ted values, �̂ and�̂. That way we do not have to perform all the 
al
ulationsfor lines that are not of interest to us.The main purpose of this �rst �ltering step is to han-dle situations where �̂ and �̂ are only very rough estimatesof the line parameters. That is, when the wall does notfall in the middle of the gate. Standard least squares al-gorithms are sensitive to outliers whi
h 
alls for a narrowgate, whereas the RWHT allows the validation gates to bemore open as it has proven to be very robust with respe
tto outliers.D. Least Square Line Fitting AlgorithmIn [17℄ a least squares algorithm is des
ribed for �ttingrange data to a line by minimizing the sum of squaredperpendi
ular errors between the data points and the line.The distan
e, di, from the point (ri; �i) to the line (�; �)is given by di = ri 
os(�i � �)� � (12)and the best �t (�; �) is thus given byargmin(�;�) Xi (ri 
os(�i � �)� �)2 : (13)

The solution is (see [17℄) tan 2� = pq (14)p =Xi Xj>i rirj sin(�i + �j) +Xi (1�N)r2i sin 2�i (15)q =Xi Xj>i rirj 
os(�i + �j) +Xi (1�N)r2i 
os 2�i (16)� = 1N Xi ri 
os(�i � �) (17)Using a �rst order approximation and assuming indepen-den
e between yi and yj for i 6= j the 
ovarian
e of the lineparameters is given by� �2� �2���2�� �2� � = " ���r �������r ���� # � Cr 00 C� �" ���r �������r ���� #T(18)where Cr = diag(�2ri) and C� = diag(�2�i). The pri
e thatwe pay for modeling the un
ertainty of the individual mea-surement points in polar 
oordinates (as it should) is ahigher 
omputational 
omplexity.If we simplify matters by 
onsidering ea
h data pointto have the same Cartesian un
ertainty, the un
ertainty inthe line parameters 
an be 
al
ulated mu
h more eÆ
ientlya

ording to (Deri
he et al [18℄)�2� = A (19)�2� = A+ d2�2yy 
os2 �+ �2xx sin2 �� 2�2xy sin� 
os�N (20)where�x = 1N Pxi �y = 1N P yia =P(xi � �x)2 b = 2P(xi � �x)(yi � �y)
 =P(yi � �y)2 d = �y sin�+ �x 
os�� = (�+ �2 ) A = a�2yy�b�2xy+
�2xx(a�
)+b2We will 
onsider both these methods and 
ompare theperforman
e they provide. Clearly the �rst one 
apturesthe true un
ertainty of the line better by using a polar de-s
ription of the measurement errors. The se
ond on theother hand is very attra
tive as it has mu
h lower 
om-putational 
omplexity. When modeling the distributionfor the measurement error in Cartesian 
oordinates we as-sume independen
e between x and y (�xy = 0) and let�xx = �yy = �r .VII. Experimental ResultsThe pose tra
king algorithm des
ribed in this paper hasbeen extensively tested as it is part of the lo
alization sys-tem of an ongoing servi
e robot proje
t. In this se
tion wewill present the results of some experiments that aimed atshowing the performan
e of the lo
alization system. Themaps used in the experiments have all been made by hand,
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Fig. 10. View of the south-east and north-west 
orners of the livingroom.either a
quired by a tape measure or from a 
oor plan.The �rst experiment (Se
tion VII-A) will show that be-
ause of the simpli
ity of the re
tangular model, the algo-rithm has no problem in handling 
luttered areas. In these
ond experiment (Se
tion VII-B), a 90 minutes long runwhere the robot moves throughout most of the spa
e ofthe lower 
oor of the building will be presented. In Se
tionVII-C we 
ompare the performan
e that the two di�erentleast squares algorithms from Se
tion VI-D provide. In theabove experiments an update rate of 2 Hz is used. Se
tionVII-D presents results that show how performan
e is af-fe
ted by lowering the update rate. In all experiments thepose tra
king algorithm is run along with the rest of thesystem that provides the 
apability to go from any pointto any other point in the map avoiding obsta
les. No a
-tive 
ontrol of the dire
tion that the sensor is fa
ing is done.Also important to mention is that the experiments were notperformed during the night, i.e. there were people walkingaround and doors opening and 
losing while performing theexperiments.A. Experiment 1The �rst experiment was 
ondu
ted in the so 
alledliving-room whi
h is approximately 8:6 by 5 m. Two pi
-tures, taken from di�erent view points, are shown in Fig-ure 10. As 
an be seen from the pi
tures the living-room isheavily 
luttered with furniture, other robots and people.The robot is given a 
hain of via points to visit, but is notfor
ed to rea
h every point exa
tly, only to 
ome within 100mm of them. At the end position though, the requirementsare harder and the robot is ordered to stop within 5 mmof the start/end point to be able to tell whether or notthe estimated pose is still good. Seven laps in the 
hain isdriven, whi
h takes 
lose to 20 minutes for the robot. Thesum of the distan
es between the points is 180 m in total,giving an average speed of slightly over 0.15 m/s. Theplatform drifts about 30Æ during the run. The pose tra
kerhowever keeps an a

urate estimate of the pose along thewhole path. Given the limited a

ura
y in a hand madeground truth measurement the end point error of �20 mmmight be a result of an imperfe
t map.B. Experiment 2In the se
onds experiment the robustness to di�erent en-vironments and long periods of exe
ution are evaluated.Figure 11 shows the path followed by the robot. The to-tal distan
e traveled is 743 m, average speed is 0.14 m/s

0 20mFig. 11. The tra
k followed by the robot, two loops around the lower
oor of the CVAP building. The upper 
oor is showed in themiddle.
Fig. 12. The 
orridor outside the living room and typi
al oÆ
e inthe CVAP building.and total time is 90 minutes. A 
onsiderable amount oftime is spent on passing between rooms as the robot mustslow down to do so. This is the most 
riti
al part of thelo
alization, as the transformation between two rooms inthe map is less a

urate than the individual rooms andsin
e the risk for slippage is quite high when driving overthe threshold between two rooms. To a

ount for this in-
rease in un
ertainty, noise is inje
ted into the system byin
reasing P , when the robot passes through a door. Alongthe tra
k, di�erent types of environments are en
ountered.Starting from the living room the robot moves through the
orridor to the nearby oÆ
es, whi
h the robot moves into.These rooms are so small that the allowable movements ofthe robot are very limited (see Figure 12). The oÆ
es aredivided by 
ubi
le dividers into two parts, leaving very lim-ited sight of two of the walls. No problems have been foundin these rooms during any of the runs though. The 
orridorat the ground 
oor of the laboratory is approximately 55m long and the width is about 2:3 m (see Figure 12). It is
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orridor is going to be tomaintain a good estimate of the position along the dire
-tion of the 
orridor. With all doors 
losed the only sour
esof information about the position along the 
orridor are theshort end walls. When moving far away (>� 15 � 20 m)from these short walls, they 
an no longer be used reliably,as too few points are a

umulated. The dete
tion of theshort walls are made even more diÆ
ult if there is 
lutterin front of them. Be
ause lines from neighboring rooms areused as well, a good estimate of the position along the 
or-ridor 
an still be maintained if some of the doors are open,providing a view of the walls inside. The standard devia-tion in the position estimate rea
hed a maximum value ofabout 250 mm in the 
orridors.Tra
king is maintained for the duration of the run, thelimiting fa
tor in this experiment being the battery 
apa
-ity and not the tra
king algorithm.C. Experiment 3When 
omparing the performan
e of the pose tra
kingusing the two di�erent methods for 
al
ulating the leastsquares estimate of the lines, no dete
table di�eren
e isfound. Both methods have been run on the same data sets.Ea
h full update 
y
le (all lines) with the polar un
ertaintymodel takes approximately 17 ms when run on a 400 MHzPentium II. The 
orresponding number for the Cartesianun
ertainty model is 4 ms. Given that the method basedon a Cartesian assumption on the measurement points isless 
omputationally intensive and that we ultimately wantan algorithm whi
h has low 
omplexity, we see no reasonnot to use the simpler model for the un
ertainty of the lineparameters.D. Experiment 4In the last experiment we tested how fast the updateroutine must be run to keep the tra
king working. Simplyput, the question does not have an answer if the environ-mental model is not spe
i�ed. What is all 
omes down tois being able to solve the data asso
iation problem. In anenvironment with many large line like stru
tures that areparallel and 
lose, the un
ertainty must be kept small todistinguish between them. However, in most oÆ
e envi-ronments there are four dominating walls in ea
h room. Insu
h a 
ase the un
ertainty 
an be allowed to grow larger.Using the data from 90 minutes run presented in Se
tionVII-B we tested running the algorithm at lower updaterates with the 
on
lusion that even with an update rate ofas low as 0.05 Hz the robot tra
ks the pose. The un
er-tainty now be
omes larger, but not large enough to 
auseerroneous data asso
iations. Somewhere around 0.04 Hz itbreaks down for this data set, when passing from the livingroom out into the 
orridor. 0.04 Hz means one update ev-ery 25 se
onds, during whi
h the robot 
an have moved asigni�
ant distan
e. Updating at this rate does not redu
ethe un
ertainty in the pose enough to maintain tra
king.

E. Additional CommentsBesides the experiments des
ribed above it is also impor-tant to mention that the algorithm has been tested su

ess-fully on four di�erent platforms all having the laser s
annerat di�erent heights; Nomad200 (93
m), Nomad SuperS
out(52
m), Nomadi
s XR4000 (49
m) and a Pioneer2 (30
m).Tests have also been made in environments di�erent to theones used above with very many people walking around therobot.The algorithm needs approximately 4 ms for ea
h itera-tion (line extra
tion a

ounting for almost everything) ona PII 400 MHz. We have performed a 
omparison with amodi�ed version [19℄ of what Fox et al [8℄ 
all the MonteCarlo Lo
alization (MCL) method. Here a set of samples isused to approximate the probability density fun
tion (pdf)instead of the single Gaussian used in a Kalman �lter. The
omplexity of the algorithm is linear in the number of sam-ples in the set. To a
hieve similar tra
king performan
ewith a �xed sample set size we need about 500 samples.The update of the samples set takes 24 ms, not in
ludingextra
tion of lines. Extra
ting lines is more time 
onsumingwhen the approximate positions of the lines are unknown.The 
omputational power needed is thus almost an orderof magnitude higher than for the algorithm presented inthis paper. The a

ura
y is not at all as good, the estima-tion error being in the order of 500 mm at times and farfrom being as a

urate when the robot is moving slowly andhas full-rank measurements (two non-parallel walls). A

u-ra
y is not always that important and the main advantagewith the MCL method is that the sample set 
an representmulti-modal pdfs. Therefore it 
an handle situations wherethe robot due to one reason or the other be
omes very un-
ertain of its position and data asso
iation is a problem.In fa
t, it is 
apable of handling the 
ase of global un
er-tainty. The larger the un
ertainty, the larger the sampleset size and with it the 
omputational demands. Using anadaptive sample set size allows for a smooth transition be-tween global lo
alization and pose tra
king, whi
h 
annotbe a
hieved with a single Gaussian. Multiple Gaussian 
ando it though [20℄.VIII. Dis
ussion and Con
lusionsIn this paper we have presented a low 
omplexity, highlyrobust and a

urate pose tra
king algorithm based on aminimalisti
 environmental model and a realisti
 model ofthe SICK laser s
anner. The minimalisti
 environmentalmodel provides robustness as only the large s
ale stru
-tures, su
h as the four dominating walls of a room, are
aptured. Su
h features are very likely to be robust overtime and are relatively easy to extra
t due to their size,paving the way for low 
omputational 
omplexity. The low
omplexity of the algorithm is parti
ularly important in anintegrated system with limited 
omputational resour
es.Experiments show that the algorithm 
an handle a highdensity of 
lutter and is able to tra
k the position for longperiods of time. The limiting fa
tor being the 
apa
ity ofthe batteries and not the algorithm.
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ertainty of the line parameters is enough and that thealgorithm 
an be run at very low frequen
y (below 0.1 Hz)and still maintains tra
king. It is important to note thatupdating with low frequen
y in
reases the risk of losingtra
k when something whi
h is not 
aptured by the odo-metri
 model o

urs, su
h as slippage. A topi
 for future re-sear
h is therefore to augment the pose tra
ker with meansto dete
t when these events o

ur. This 
ould be done by
omparing relative motion information from a gyro and theodometry. A
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