
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 1Pose Traking Using Laser Sanning andMinimalisti Environmental ModelsPatri Jensfelt and Henrik I. ChristensenAbstrat| Keeping trak of the position and orientationover time using sensor data, i.e. pose traking, is a entralomponent in many mobile robot systems. In this paperwe present a Kalman �lter based approah utilizing a min-imalisti environmental model. By ontinuously updatingthe pose, mathing the sensor data to the model is straight-forward and outliers an be �ltered out e�etively by vali-dation gates. The minimalisti model paves the way for alow-omplexity algorithm with a high degree of robustnessand auray. Robustness here refers both to being able totrak the pose for a long time, but also handling hangesand lutter in the environment. This robustness is gainedby the minimalisti model only apturing the stable andlarge sale features of the environment. The e�etivenessof the pose traker will be demonstrated through a numberof experiments, inluding a run of 90 minutes whih learlyestablishes the robustness of the method.Keywords|Loalization, Pose Traking, MinimalistMod-els, Sensor ModelingI. IntrodutionTHERE are many hallenging problems whih have tobe solved before we have all the methods needed fordeployment of robots in ordinary domesti environments.One of them is loalization. Loalization is the proess of�nding the position and orientation of the robot, i.e. thepose. Knowing the orret pose of the robot is a onditionfor the suessful ompletion of many of the tasks whih arobot might be required to perform.Loalization an be thought of as onsisting of two parts,initialization and maintenane. Initialization is often re-ferred to as global loalization and onsists of �nding thepose of the robot without any prior knowledge but a map.Building the map an also be viewed as part of the initial-ization. One the pose is found, loalization beomes thetask of maintaining the estimate of the pose, i.e. trakingthe pose. In this paper we will fous on the latter, that ispose traking.Muh e�ort has been spent on modeling the world veryaurately, to ahieve better performane. We hose toturn this upside down and instead ask ourselves how sim-ple an the map be and still be useful for solving the lo-alization problem? Therefore, one design riteria is to useas simple a model as possible. A simple model has the po-tential of being very robust over time and provide meansfor having an eÆient traking system that �ts well in anautonomous system with limited omputational resoures.The only requirement we pose on the loalization systemis that it must not rely on altering the environment in anyway. This requirement rules out methods whih rely onP. Jensfelt and H.I. Christensen work within the Centre for Au-tonomous Systems, Royal Institute of Tehnology, Fiskartorpsv. 15A,SE-100 44 Stokholm, Sweden. E-mail:fpatri,hig�nada.kth.se

e.g. bar odes or ative beaons.A. Paper OutlineIn Setion II related work on pose-traking and loal-ization is disussed. The problem is de�ned and the as-sumptions made are disussed in Setion III. Setion IVdesribes the overall struture of the algorithm. A modelfor the odometry is developed in Setion V and Setion VIis devoted to haraterization of the laser sanner used andthe method for extration of environmental features. Se-tion VII ontains experimental results and onlusions anda disussion an be found in Setion VIII.II. Related WorkGIVEN that loalization is suh an important ompo-nent in any mobile robot system, it is not surprisingthat many di�erent approahes have been suggested in theliterature. In this paper we will only briey mention someof them, and we instead refer to for example [1℄ for a morethorough survey. We onlude that there are two prevail-ing ategories of approahes, depending on the modelingtehnique being used. These are parametri methods andgrid based methods.A. Parametri MethodsThe idea of trying to extrat features from the environ-ment is quite natural. Examples of highly spei� featureswould be labels on doors whih speify the room it is lead-ing to. In strutured environments, suh as most oÆeareas, lines, orners and edges are ommon features. Thefeatures an be parameterized by e.g. their olor, length,width, position, et. Leonard, Durrant-Whyte and Cox [2℄are quite �rm in their onvition that feature-based meth-ods are superior, when they say: \we believe that naviga-tion requires a feature-based approah in whih a preise,onise map is used to eÆiently generate preditions ofwhat the robot should \see" from a given loation". TheKalman �lter is a key omponent in most implementationsof parametri methods, providing a good setting for posepredition and sensor fusion.An extreme example of feature based loalization is thework by Christensen et al [3℄ where a omplete CAD modelof the environment is used for loalization and pose trak-ing through feature mathing and 3D reovery using stereovision.B. Grid Based MethodsThe parametri methods have the disadvantage that anexpliit model is needed for all the information whih isused. Another thought is to divide the work spae into a



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 2grid where eah ell in the grid represents a part of theworld. One advantage of this approah ompared to theparametri is as Hager and Mintz [4℄ points out: \Thegrid-based method is only an approximative solution, but itis muh less sensitive to assumptions about the partiularform of the sensing system". Shiele and Crowley [5℄ on-lude that the results using grids \are omparable or moreaurate than the ones we obtain with previous work using aparametri model of segments extrated diretly from sensordata". Morave and Elfes made the grid based tehniquespopular with their paper [6℄ in 1985 where the oupanygrid is presented.Burgard et al also use an oupany grid representationfor the map. In [7℄ the knowledge of the robot's position isstored in another grid, a position probability grid, wherethe ells ontain the probability of the robot being at thatpose. The method has proven suessful, but requires on-siderable amount of omputational power. In [8℄, inspiredby work in other researh areas, a sample set is used to rep-resent the pose knowledge. Both approahes provide themeans to do both pose traking and global loalization.III. Problem Definition and AssumptionsAS was seen in Setion II the problem of pose trak-ing is well studied in the literature and further e�ortsmust be weighed against the potential gain. In a systemoperating in a real world setting, where loalization is onlya small, but yet important, part of the whole integratedsystem, the omputational resoures are limited. This, to-gether with the fat that several tasks must be performedsimultaneously, e.g. loalization, planning and obstaleavoidane, means that we should aim for low omputa-tional omplexity. Arti�ial landmarks are often used toredue the omplexity of the loalization problem. Herewe do not allow any arti�ial landmarks or any other formof engineering of the environment. The reason for this isthat the system should be able to operate in a typial do-mesti or oÆe environment.Most robot platforms are equipped with wheel enoders,odometry, that an be used to measure relative motion.This means that if the initial pose is given, odometry anbe used to keep trak of the pose, under ideal onditions.Suh is not the ase in reality, where for example imper-fetions in the kinemati model of the robot and wheelslippage will ause the pose estimation error to grow with-out bounds. Still, odometry is a resoure that should beutilized to make the problem of loalization simpler, as it isknown to be very reliable over short distanes under normalirumstanes.To bound the error in the pose estimation, external sen-sors must be used. These sensors an provide informa-tion about the absolute position of the robot by assoiatingmeasurements with parts of the map. Sonar sensors havebeen used extensively in loalization researh. The sonarsensor is reliable and heap, but it has lear limitations inits use. Due to the wide beam width it requires heavy post-proessing to extrat the important information. The ex-perimental platform under onsideration is equipped with

a sanning laser sensor, also providing range data, but withmuh higher angular resolution. Computation power anthus be saved at the ost of a more expensive sensor. Tomake this deision it is important that the inrease in ostis justi�ed. Even if the SICK laser sanner is more thanan order of magnitude more expensive than the sonars to-day, the prie will drop when the market for it inreases.This will make the arguments for using sonar sensors evenweaker. The reason why we do not even onsider vision asa sensor for solving the loalization problem is the lak ofrobustness and the omputational ost of present vision al-gorithms. We do however aknowledge the large potentialof vision.A. Environmental ModelTo realize a low omplexity pose traking system thehoie of environmental model is of ourse of great impor-tane. We believe that a parametri method is the bestway to fully utilize the simpliity of the model and proposeto use a retangular model for eah room. The hoie of theretangular model is a design deision, aiming to aptureonly the most dominant and stable features in the envi-ronment. This hoie would of ourse not be motivatedin an outdoor setting, but as we here onentrate on anindoor environment we �nd that it is justi�ed. The mainbene�t of the retangular model is that it is very likelyto be robust over time. The more details that are usedin the environmental model, the less time it is typiallyvalid. As the sides of the retangle orrespond to walls,they are highly robust over time. Lines were hosen overe.g. points sine points are more likely to move than largesale lines. Points assoiated with wall orners meet our re-quirements, but most points in the environment stem frommovable objets. Note that we do not assume that the linesare parallel to x or y axes and also allow for the ase thatnon-retangular models may be required for some rooms.One more very lear advantage with using large sale stru-tures suh as lines is there are not that many of them whihmakes the data assoiation easier.LetM denote the environmental model whih is a set oflines mi, i.e. M = fmi; i = 1; : : : ; jMjg:mi is desribed by its start point (xs; ys) and end point(xe; ye), whih gives it a diretion. The diretion is usedto de�ne from whih side the line an be seen. By ourde�nition a line an be seen if the diretion of the line isfrom right to left when we look at it.B. EstimationGiven that we know the initial pose of the robot, a goodapproximation of the robot at every time instant an bealulated using odometri information. Knowing the ap-proximate pose of the robot also makes the data assoiationproblem onsiderably easier. Sensor data that is likely tobelong to the walls (the sides of the retangle model) anbe extrated e�etively, and be used for updating the poseestimate and thus bound the estimation error.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 3There are many ways to mathematially handle a prob-lem of this nature. It is lear that it is an estimation prob-lem and in some sense an optimization problem. How do weinorporate the information that we get from the sensors,to alulate the best possible estimate of the pose? In or-der to answer this we need to speify, best in what sense?As is often the ase, we hose to de�ne best in the leastsquare sense. The use of least square estimation is justi-�ed by the fat that outliers are eÆiently rejeted throughuse of narrow validation gates that rejet noisy data priorto the model mathing. We will furthermore assume thatthe probability density funtion for the robot's pose an berepresented by a unimodal funtion, that is one having asingle maximum. This puts high demands on the data as-soiation. In ertain situations, a large unertainty in thepose of the robot might introdue ambiguities when assoi-ating data, leading to a need for a multi-modal desriptionof the probability distribution. Given that the estimate isupdated several times per seond, it is however reasonableto assume uni-modality due to the use of a sparse model ofthe environment.C. The State of the SystemWe assume the state of the system to be the pose ofthe robot, x = (x; y; �)T . This means that we assume theworld to be stationary, or at least the everything that is notstationary is to be onsidered as noise, and as suh annotbe used for loalization.IV. AlgorithmTO perform the least square estimate of the robot posein real-time we need a reursive algorithm. The al-ternative would be to keep all the information in a bathand do a omplete alulation at every time instant. Theprie we pay for real-time performane is that one a pieeof information has been used and is inorporated into theestimate of the pose, it is lost forever. That is, we annotgo bak and reonsider a deision onerning for exampledata assoiation.We will use the Kalman �lter framework that has beenused by numerous researhers (see e.g. [9℄, [2℄, [10℄, [11℄,[12℄, [13℄, [14℄) and proven to provide a good solution forsensor fusion. The Kalman �lter will give an optimal esti-mate of the pose given the information at hand, assumingthat the model of the system is orret and that all souresof noise are Gaussian. The Gaussian assumption is nor-mally not ful�lled, whih yields a sub-optimal estimate.Despite the non-Gaussian nature of most real world noises,the Kalman �lter is still reported to perform very well [2℄,[11℄, [12℄.At our disposal for traking the pose of the robot wehave information from odometry and the laser sensor. Theodometry an be used for short-time preditions of relativemotion and the 180Æ san from the laser sensor in ombi-nation with our environmental model give evidene aboutthe absolute pose of the robot.
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Fig. 1. The algorithm.
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Fig. 2. Normally only two and in some ases three walls in a roomis in the �eld of view of the laser sanning over 180Æ.A. State Predition Using OdometryLet x̂k denote the estimate of the state x at time k.Let f(x;u) desribe how the robot moves given the inputu. This funtion is typially nonlinear and assoiated withsome unertainty. The state of the system an thus bemodeled as evolving aording toxk+1 = f(xk ;uk) +wk (1)where wk is noise, apturing the unertainty of the odo-metri model. This noise is assumed white and Gaussian.See Setion V for a more in-depth disussion about thefuntion f(x;u).B. Feature Desription and SeletionTo desribe the lines assoiated with the retangularmodel extrated from laser data we use (�; �; l), where � isthe perpendiular distane to the line, � is the orientationof the line and l is the length of the line (see Figure 3). Thelength of the line, l, is used to redue the risk of makingerrors in data assoiation. We only onsider line measure-ments that ful�ll l � lmin (in our ase lmin = 1m).Figure 2 shows a sene from of one of the rooms in theenvironment under onsideration. As an be seen, the ret-angular model only aptures the very large sale strutureof the room and in most ases o�ers only two features fortraking the pose. In Figure 2 these two features are thelower and the left wall. The upper wall that is also partlyvisible, results in a too short measurement (l < lmin).The laser sanner is sensitive to olusions as all laserbeams stem from a point and thus an obstale plaed in



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 4front of the sensor will render it more or less blind. There-fore, visible features in neighboring rooms will also be on-sidered for traking purposes. We have limited us to linesfrom neighboring rooms as this has proven to be enough.The lines are stored in eah room and thus we do not haveto loop through all lines every time to determine what linesto onsider. A line in the urrent room is visible if it ful�llsthe following riteria:� angleDi�('(S)e ; '(S)s ) > 0 (diretion ondition)� (0 � '(S)s � �) _ (0 � '(S)e � �) (in �eld of view)where 's and 'e are the angles to the start and end pointof the line respetively and angleDi�('1; '2) 2 (��; �℄ Thesuper sript (S) refers to sensor oordinates. A line in aneighboring room is visible if it an be seen through thedoor leading to that room, i.e.� (angleDi�('(S)e ; '(S)dr ) > 0) ^ (angleDi�('(S)dl ; '(S)s ) > 0)where '(S)dl and '(S)dr are the angles to the left and rightdoor post respetively. Additional onstraints will have tobe added to handle non-onvex polygonal line models. ForlX(R)Y (R)
X(W )�
(xe; ye)

�Y (W ) r = (x;y)�m
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Fig. 3. The parameters de�ning a line.the pose update in a Kalman �lter framework we need topredit the parameters of the line to be extrated from theurrent state of the robot and the environmental model.Introdue hi(x;M) as the measurement funtion, i.e. yi =(�i; �i)T = hi(x;M) + vi, where vi is the measurementnoise. We here let i = [1; : : : ;M ℄ where M is the numberof measurements. With the same notation as in Figure 3we get:hi(x;M) = � �mi �px2 + y2 os(� � �mi )�mi � � � (2)where �mi is the distane to the line from the origin ofthe world oordinate system and �mi is the orrespondingangle, i.e. mi = (�mi ; �mi )T . This funtion an be expressedas the linear term yi = Hix+mi. Hi is given byHi = � H11 H12 00 0 �1 � (3)where H11 = �xr os(� � �mi )� yr sin(� � �mi );

H12 = �yr os(� � �mi ) + xr sin(� � �mi )and r =px2 + y2.C. The Extended Kalman FilterAs the odometri model is non-linear, the standardKalman �lter equation annot be applied, instead the ex-tended Kalman �lter has to be used. The extended Kalman�lter is typially divided into two parts, often referred toas time-update and measurement-update. If we let x̂ de-note the estimate of the state x, and P for the ovarianematrix, the time-update an be writtenx̂k+1jk =f(x̂kjk ;uk) (4)Pk+1jk = �f�xPkjk � �f�x�T +Qk (5)where x̂k+1jk should be interpreted as the pose estimate attime (k+1) using sensor data up to and until time k. Qk isthe proess noise matrix, apturing the unertainty in theodometri model, Qk = E[wkwTk ℄.As all lines are extrated from the same laser san themeasurements are orrelated and hene the there is a non-zero ovariane between the measurement noises vi. Tohandle the measurements orretly this ovariane mustbe aounted for. To redue the omputational burdenthough, we have hosen to neglet this ovariane. By do-ing so the measurement-update an be done sequentially.Let x̂k+1jk;0 = x̂k+1jk and x̂k+1jk;max(V) = x̂k+1jk+1, withthe orresponding notation for the state ovariane matrixP . The measurement update an then be done by loopingover all i 2 V (all visible features) and performing:Kk+1;i = Pk+1jk;i�1HTi �HiPk+1jk;i�1HTi +�i� (6)x̂k+1jk;i = x̂k+1jk;i�1 +Kk+1;i �yi � hi(x̂k+1jk;i�1 ;M)� (7)Pk+1jk;i = (I �Kk+1;iHi)Pk+1jk;i�1 (8)where �i is the measurement noise (disussed in SetionVI-D). The omplexity of the Kalman �lter update is lin-ear in the number of measurements. The algorithm as awhole is also linear in the number of lines that are visiblein eah step as we for eah of these lines try to extrat aorresponding line from the laser san.V. Odometri ModelAs with all sensors, a model of the odometry providesvaluable information about performane and limitations.The aim is a model that an be used in an iterative up-date proedure, suh as the Kalman �lter. The modelshould provide an estimate of the robot motion as well asthe unertainty in this estimate. It is also desirable thatthe model be onsistent in the sense that it should givethe same result independent of how the path is segmented.In [15℄ suh a model is developed for a di�erential driverobot. Here as well as in [15℄ we onsider robot motionalong ars.Let uk = (Dk;�k) be the input to the odometri model,where Dk is the distane traveled along the ar and �k
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Fig. 4. The motion of the robot is approximated to be on ars.is the hange in motion diretion. With this notion theradius of the motion is given byrk = Dk�k : (9)Note that k = �k+�k where �k is the steer angle in robotoordinates, measured by the enoders and assumed to beknown with negligible errors. A negative rk orrespondsto turning lokwise and a positive rk orresponds to turn-ing ounter-lokwise. The odometri model an now bewrittenxk+1 = f(xk ;uk)= 8>>>>>><>>>>>>:
0� xk + Dk�k (sin(k +�k)� sin k)yk � Dk�k (os(k +�k)� os k)k +�k 1A ; j�kj > 00� xk +Dk oskyk +Dk sin kk 1A ; �k = 0 (10)We assume that the errors of the two omponents of theodometri input, uk, are unorrelated.VI. Line ExtrationGiven a set of range readings known to originate from amodeled line it is easy to extrat the line parameters. How-ever, before this an be done the data assoiation problemmust be solved. Assuming we have an estimate of the robotpose, the pose of a modeled line an be predited. Thedesign goal is therefore twofold, i) lassify eah point asbelonging to a partiular model line or as being an outlierii) estimate the parameters of the lines. For this task wepropose to use a two step approah, entered around twodi�erent line extration algorithms in ombination withvalidation gates (see Figure 5). The �rst line extrationalgorithm is robust against outliers, but provides only lim-ited auray. The seond step provides auray assumingthat the input data is \lean". When the pose unertaintyof the robot is small, the �rst step an be bypassed. In thefollowing subsetions the di�erent parts of the line extra-tion algorithm are desribed in some detail.

Laser

Val. Gate Val. GateHough LSQ(x̂; P ) yFig. 5. Using the predited pose of the robot in ombination withmap information, validation gates an be de�ned. The �rst stepontains a loal Range Weighted Hough Transform fed with datavia a validation gate. The seond step is a least square methodusing data from a seond validation gate.A. Laser CharateristisBefore designing a method for extrating lines from sen-sor data it is important to know the underlying harater-istis of this data. The sensor we use is a PLS laser san-ner from SICK eletro-optis. It gives 361 range readings,zi = (ri; �i), overing a 180Æ �eld of view.The range readings are quantized with step �r = 50 mm.Figure 6 shows a part of a san taken against a wall approx-imately 5.5 m away from the sensor. The disretization islearly visible in the right sub-�gure where the same data isshown with di�erent saling and irular ars with 50 mmspaing. Due to the gross disretization it is not easy to get
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Fig. 6. Segment of a san taken of a wall � 5.5 m away from thesensor. A line marking the loation of the wall has been addedto the left sub-�gure. The right sub-�gure shows the range read-ings along with ars with 50 mm spaing, learly showing thedisretization.an estimate of the underlying range distribution, i.e. giventhat the true range is R what is the probability distributionfuntion for measuring r. To get a better view of the under-lying range distribution we perform an experiment where100 range readings, qi;j ; i = 1; : : : ; 100, are olleted ateah of 50 (j = 1; : : : ; 50), tightly spaed positions in frontof a wall. Let �dj , (j = 1; : : : ; 50) be the distane traveledtowards the wall aording to odometry. Figure 7 shows ahistogram over qi;j+�dj . Assuming the odometry to havenegligible unertainty over the short traveled distane, thespread in the �gure is due to the error distribution inherentin the laser sanner. This distribution learly resembles aGaussian. Its standard deviation an be estimated to � 24mm. The resulting Gaussian is overlaid in Figure 7. As thedistane measurements are quantized, only multiples of thequantization step an be measured, n�r; n = 0; 1; 2; : : : .Assuming R to be the true distane, the pdf for the mea-
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Fig. 8. Standard deviation for measurement error as a funtion oftrue distane.dard deviation for the measurement error is independentof the true distane and equal to the worst ase, i.e. ap-proximately 26 mm.The laser energy propagates in a one, just like the ul-trasoni energy of a sonar sensor. The di�erene is in thebeam width. The beam width of the laser is less than a de-gree whereas the standard Polaroid sensor has a full beamwidth of approximately 25Æ. To be able to determine thebeam width and hene the size of the footprint, we per-formed a series of experiments. The laser sensor is plaedapproximately 4.7 meters away from two wooden boards.By sliding the boards perpendiular to one laser beam andmonitoring the measurement, the size of the beam an beestimated. When the boards are not deteted, the mea-sured distane will be the distane to the wall behind. Theboards an be separated approximately 20 mm and still bedeteted. This separation at a distane of 4.7 m is equiva-lent to a beam width of approximately 0.25Æ. The size of

the beam that is apable of deteting that there is some-thing in front of the wall, but not neessarily orretly mea-sure the distane, is approximately 0.43Æ. That is, if onlya small fration of the beam is reeted by an objet, aphantom measurement might arise with a distane orre-sponding to a non-existing objet at a distane somewherebetween the losest objet and the one behind. As thelaser beams are separated by 0.5Æ, there is a blind regionbetween the beams.Now that we know the harateristis of the measure-ments we formulate our model. We will disregard the phan-tom measurement e�et and assume the error in angle to beindependent of the error in range. Furthermore we assumethe error in angle to be Gaussian. The ith measurement isthen modeled aszi 2 (N(Ri; �2�); N(�i; �2�)); (11)where Zi = (Ri;�i) is the true ith measurement, �� = 26mm and �� = 0:125Æ.B. Validation GatesIn target traking literature the problem of data assoi-ation has always been in fous. Using validation gates isa ommon way to handle the problem. A validation gatede�nes a region around some predited value in whih ameasurement will be aepted as assoiated to the orre-sponding feature. We �rst try to �lter out data points thatare likely to be assoiated with the walls and then we ex-trat parametri desriptions of these walls in the form oflines. Due to lutter the walls might be very hard to �ndwithout pre-�ltering. The loation of the gates will be fun-tions of x̂ andM. The size of the gates will depend on thequality of the sensor data, the method used to extrat lineparameters, the unertainty in the environmental model,quantization step size and P . The gates should open up,i.e. let more data through, when the unertainty in the posegrows and vie versa. If the sensor data is very noisy, thegates have to be more open than if the sensor data is very\lean".Let the validation region be desribed by the six-tupleG = (�̂; �̂; Æ; ; '1; '2). Here �̂ is the predited distaneto the wall and �̂ is the predited angle of normal to theline. These two entities de�ne the pose of the gate. Æ,the smallest width of the gate, and , the opening angle,de�ne the size of the gate. '1 and '2 onstitutes the vis-ibility onstraint. The visibility onstraint amounts to nottrying to detet a wall that is not in the �eld of view of thesensor (ompare to Figure 2). Figures 9 shows a more de-tailed illustration of the parameters that de�ne the loationand size of the validation gates. Unertainty in orientationwill inrease  whereas unertainty in position will demandhigher Æ.Figure 2 shows an example of how e�etive the validationgates are. The darker spots orresponds to san points thathave been assoiated with a map line, whereas the lighterone are lassi�ed as outliers. As an be seen, we do nothave to have a lear view of the walls, the only requirementis that we see points of a wall to make a total length of
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2Æ�̂ �̂Fig. 9. Validation gate where the error in the prediation of the walland the size of the validation gate were saled for illustrationpurposes.lmin. In Figure 2 the right and the lower wall was usedfor update, but not the upper one as enough of it was notseen.C. Range Weighted Hough TransformIn order to trak the walls reliably, we need to be able toextrat them despite a large amount of lutter in the room.Just like Crowley et al [5℄ and Wernersson et al [16℄ we usethe Hough Transform. To be spei�, we use the modi-�ed version introdued by Wernersson et al [16℄ alled theRange Weighted Hough Transform (RWHT). In our algo-rithm the RWHT is part of the �ltering proess that aimsat providing a least squares based line �tting algorithmwith as lean range data as possible. To redue omputa-tions a loal version of the RWHT is used with a limitedHough Spae, entered around the expeted values, �̂ and�̂. That way we do not have to perform all the alulationsfor lines that are not of interest to us.The main purpose of this �rst �ltering step is to han-dle situations where �̂ and �̂ are only very rough estimatesof the line parameters. That is, when the wall does notfall in the middle of the gate. Standard least squares al-gorithms are sensitive to outliers whih alls for a narrowgate, whereas the RWHT allows the validation gates to bemore open as it has proven to be very robust with respetto outliers.D. Least Square Line Fitting AlgorithmIn [17℄ a least squares algorithm is desribed for �ttingrange data to a line by minimizing the sum of squaredperpendiular errors between the data points and the line.The distane, di, from the point (ri; �i) to the line (�; �)is given by di = ri os(�i � �)� � (12)and the best �t (�; �) is thus given byargmin(�;�) Xi (ri os(�i � �)� �)2 : (13)

The solution is (see [17℄) tan 2� = pq (14)p =Xi Xj>i rirj sin(�i + �j) +Xi (1�N)r2i sin 2�i (15)q =Xi Xj>i rirj os(�i + �j) +Xi (1�N)r2i os 2�i (16)� = 1N Xi ri os(�i � �) (17)Using a �rst order approximation and assuming indepen-dene between yi and yj for i 6= j the ovariane of the lineparameters is given by� �2� �2���2�� �2� � = " ���r �������r ���� # � Cr 00 C� �" ���r �������r ���� #T(18)where Cr = diag(�2ri) and C� = diag(�2�i). The prie thatwe pay for modeling the unertainty of the individual mea-surement points in polar oordinates (as it should) is ahigher omputational omplexity.If we simplify matters by onsidering eah data pointto have the same Cartesian unertainty, the unertainty inthe line parameters an be alulated muh more eÆientlyaording to (Derihe et al [18℄)�2� = A (19)�2� = A+ d2�2yy os2 �+ �2xx sin2 �� 2�2xy sin� os�N (20)where�x = 1N Pxi �y = 1N P yia =P(xi � �x)2 b = 2P(xi � �x)(yi � �y) =P(yi � �y)2 d = �y sin�+ �x os�� = (�+ �2 ) A = a�2yy�b�2xy+�2xx(a�)+b2We will onsider both these methods and ompare theperformane they provide. Clearly the �rst one apturesthe true unertainty of the line better by using a polar de-sription of the measurement errors. The seond on theother hand is very attrative as it has muh lower om-putational omplexity. When modeling the distributionfor the measurement error in Cartesian oordinates we as-sume independene between x and y (�xy = 0) and let�xx = �yy = �r .VII. Experimental ResultsThe pose traking algorithm desribed in this paper hasbeen extensively tested as it is part of the loalization sys-tem of an ongoing servie robot projet. In this setion wewill present the results of some experiments that aimed atshowing the performane of the loalization system. Themaps used in the experiments have all been made by hand,
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Fig. 10. View of the south-east and north-west orners of the livingroom.either aquired by a tape measure or from a oor plan.The �rst experiment (Setion VII-A) will show that be-ause of the simpliity of the retangular model, the algo-rithm has no problem in handling luttered areas. In theseond experiment (Setion VII-B), a 90 minutes long runwhere the robot moves throughout most of the spae ofthe lower oor of the building will be presented. In SetionVII-C we ompare the performane that the two di�erentleast squares algorithms from Setion VI-D provide. In theabove experiments an update rate of 2 Hz is used. SetionVII-D presents results that show how performane is af-feted by lowering the update rate. In all experiments thepose traking algorithm is run along with the rest of thesystem that provides the apability to go from any pointto any other point in the map avoiding obstales. No a-tive ontrol of the diretion that the sensor is faing is done.Also important to mention is that the experiments were notperformed during the night, i.e. there were people walkingaround and doors opening and losing while performing theexperiments.A. Experiment 1The �rst experiment was onduted in the so alledliving-room whih is approximately 8:6 by 5 m. Two pi-tures, taken from di�erent view points, are shown in Fig-ure 10. As an be seen from the pitures the living-room isheavily luttered with furniture, other robots and people.The robot is given a hain of via points to visit, but is notfored to reah every point exatly, only to ome within 100mm of them. At the end position though, the requirementsare harder and the robot is ordered to stop within 5 mmof the start/end point to be able to tell whether or notthe estimated pose is still good. Seven laps in the hain isdriven, whih takes lose to 20 minutes for the robot. Thesum of the distanes between the points is 180 m in total,giving an average speed of slightly over 0.15 m/s. Theplatform drifts about 30Æ during the run. The pose trakerhowever keeps an aurate estimate of the pose along thewhole path. Given the limited auray in a hand madeground truth measurement the end point error of �20 mmmight be a result of an imperfet map.B. Experiment 2In the seonds experiment the robustness to di�erent en-vironments and long periods of exeution are evaluated.Figure 11 shows the path followed by the robot. The to-tal distane traveled is 743 m, average speed is 0.14 m/s

0 20mFig. 11. The trak followed by the robot, two loops around the loweroor of the CVAP building. The upper oor is showed in themiddle.
Fig. 12. The orridor outside the living room and typial oÆe inthe CVAP building.and total time is 90 minutes. A onsiderable amount oftime is spent on passing between rooms as the robot mustslow down to do so. This is the most ritial part of theloalization, as the transformation between two rooms inthe map is less aurate than the individual rooms andsine the risk for slippage is quite high when driving overthe threshold between two rooms. To aount for this in-rease in unertainty, noise is injeted into the system byinreasing P , when the robot passes through a door. Alongthe trak, di�erent types of environments are enountered.Starting from the living room the robot moves through theorridor to the nearby oÆes, whih the robot moves into.These rooms are so small that the allowable movements ofthe robot are very limited (see Figure 12). The oÆes aredivided by ubile dividers into two parts, leaving very lim-ited sight of two of the walls. No problems have been foundin these rooms during any of the runs though. The orridorat the ground oor of the laboratory is approximately 55m long and the width is about 2:3 m (see Figure 12). It is



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 9obvious that the problem in the orridor is going to be tomaintain a good estimate of the position along the dire-tion of the orridor. With all doors losed the only souresof information about the position along the orridor are theshort end walls. When moving far away (>� 15 � 20 m)from these short walls, they an no longer be used reliably,as too few points are aumulated. The detetion of theshort walls are made even more diÆult if there is lutterin front of them. Beause lines from neighboring rooms areused as well, a good estimate of the position along the or-ridor an still be maintained if some of the doors are open,providing a view of the walls inside. The standard devia-tion in the position estimate reahed a maximum value ofabout 250 mm in the orridors.Traking is maintained for the duration of the run, thelimiting fator in this experiment being the battery apa-ity and not the traking algorithm.C. Experiment 3When omparing the performane of the pose trakingusing the two di�erent methods for alulating the leastsquares estimate of the lines, no detetable di�erene isfound. Both methods have been run on the same data sets.Eah full update yle (all lines) with the polar unertaintymodel takes approximately 17 ms when run on a 400 MHzPentium II. The orresponding number for the Cartesianunertainty model is 4 ms. Given that the method basedon a Cartesian assumption on the measurement points isless omputationally intensive and that we ultimately wantan algorithm whih has low omplexity, we see no reasonnot to use the simpler model for the unertainty of the lineparameters.D. Experiment 4In the last experiment we tested how fast the updateroutine must be run to keep the traking working. Simplyput, the question does not have an answer if the environ-mental model is not spei�ed. What is all omes down tois being able to solve the data assoiation problem. In anenvironment with many large line like strutures that areparallel and lose, the unertainty must be kept small todistinguish between them. However, in most oÆe envi-ronments there are four dominating walls in eah room. Insuh a ase the unertainty an be allowed to grow larger.Using the data from 90 minutes run presented in SetionVII-B we tested running the algorithm at lower updaterates with the onlusion that even with an update rate ofas low as 0.05 Hz the robot traks the pose. The uner-tainty now beomes larger, but not large enough to auseerroneous data assoiations. Somewhere around 0.04 Hz itbreaks down for this data set, when passing from the livingroom out into the orridor. 0.04 Hz means one update ev-ery 25 seonds, during whih the robot an have moved asigni�ant distane. Updating at this rate does not reduethe unertainty in the pose enough to maintain traking.

E. Additional CommentsBesides the experiments desribed above it is also impor-tant to mention that the algorithm has been tested suess-fully on four di�erent platforms all having the laser sannerat di�erent heights; Nomad200 (93m), Nomad SuperSout(52m), Nomadis XR4000 (49m) and a Pioneer2 (30m).Tests have also been made in environments di�erent to theones used above with very many people walking around therobot.The algorithm needs approximately 4 ms for eah itera-tion (line extration aounting for almost everything) ona PII 400 MHz. We have performed a omparison with amodi�ed version [19℄ of what Fox et al [8℄ all the MonteCarlo Loalization (MCL) method. Here a set of samples isused to approximate the probability density funtion (pdf)instead of the single Gaussian used in a Kalman �lter. Theomplexity of the algorithm is linear in the number of sam-ples in the set. To ahieve similar traking performanewith a �xed sample set size we need about 500 samples.The update of the samples set takes 24 ms, not inludingextration of lines. Extrating lines is more time onsumingwhen the approximate positions of the lines are unknown.The omputational power needed is thus almost an orderof magnitude higher than for the algorithm presented inthis paper. The auray is not at all as good, the estima-tion error being in the order of 500 mm at times and farfrom being as aurate when the robot is moving slowly andhas full-rank measurements (two non-parallel walls). Au-ray is not always that important and the main advantagewith the MCL method is that the sample set an representmulti-modal pdfs. Therefore it an handle situations wherethe robot due to one reason or the other beomes very un-ertain of its position and data assoiation is a problem.In fat, it is apable of handling the ase of global uner-tainty. The larger the unertainty, the larger the sampleset size and with it the omputational demands. Using anadaptive sample set size allows for a smooth transition be-tween global loalization and pose traking, whih annotbe ahieved with a single Gaussian. Multiple Gaussian ando it though [20℄.VIII. Disussion and ConlusionsIn this paper we have presented a low omplexity, highlyrobust and aurate pose traking algorithm based on aminimalisti environmental model and a realisti model ofthe SICK laser sanner. The minimalisti environmentalmodel provides robustness as only the large sale stru-tures, suh as the four dominating walls of a room, areaptured. Suh features are very likely to be robust overtime and are relatively easy to extrat due to their size,paving the way for low omputational omplexity. The lowomplexity of the algorithm is partiularly important in anintegrated system with limited omputational resoures.Experiments show that the algorithm an handle a highdensity of lutter and is able to trak the position for longperiods of time. The limiting fator being the apaity ofthe batteries and not the algorithm.
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