
Increasing Modularity of UAV Control Systems

using Computer Game Behavior Trees

Petter Ögren⇤

Swedish Defence Research Agency (FOI), Stockholm, SE-164 90, Sweden

In this paper, we argue that the modularity, reusability and complexity of Unmanned
Aerial Vehicle (UAV) guidance and control systems might be improved by using a Behavior
Tree (BT) architecture. BTs are a particular kind of Hybrid Dynamical Systems (HDS),
where the state transitions of the HDS are implicitly encoded in a tree structure, instead
of explicitly stated in transition maps. In the gaming industry, BTs have gained a lot of
interest, and are now replacing HDS in the control architecture of many automated in-game
opponents. Below, we explore the relationship between HDS and BTs. We show that any
HDS can be written as a BT and that many common UAV control constructs are quite
naturally formulated as BTs. Finally, we discuss the positive implications of making the
above mentioned state transitions implicit in the BTs.

I. Introduction

Guidance and control of UAVs is an active research area,12 and so far the main e↵ort has been on how
to make the UAVs do the tasks right, i.e. designing the controllers,345 rather than doing the right tasks,
i.e. designing the control architecture. However, when an increasing number of capabilities are added to a
UAV system, the problem of how and when to switch, between di↵erent tasks and corresponding controllers,
becomes increasingly important. Some tasks have to be done in the correct order, such as taxing and takeo↵,
while the execution of others depends on the situation and a given order of priority, such as collision avoidance
and waypoint following.

This new problem area has long been the focus of computer game AI programmers, as computer game
entities are virtual, and therefore less troubled by e.g. robustness issues related to real world sensing and
control. It is therefore relevant to review some of the developments in the computer game industry, and see
how they can be applied to the problems of the UAV control community.

In computer games, the control architecture of automated opponents if often designed using Finite State
Machines (FSM).6,7 Since these opponents themselves often move about in some kind of continuous space,
the combined system can be modeled by a Hybrid Dynamical System (HDS).8

HDS have also been used in the field of robotics.9–13 However, as the controllers become more complex,
the number n of discrete states of the HDS grows, and it becomes increasingly di�cult to keep track of all
the O(n2) possible transitions between those states. Thus, even though HDS are modular when it comes to
the continuous dynamics, the discrete dynamic of the HDS is explicitly encoded in the transition functions,
which makes the overall HDS much less modular that what it might seem at the first glance. For example,
if one discrete state is removed from a HDS, all transitions to and from that state must be redesigned, just
to ensure that the HDS is formally valid. Thus, the lack of modularity when it comes to state transitions
heavily reduces scalability and reusability.

BTs is a way to encode a HDS that replaces the explicitly listed state transition functions of classic HDS
with transitions that are implicitly given by a tree structure, see details below, and in references.6,7, 14–16

Thus, a given BT can be inserted as a subtree anywhere in any other BT and still be perfectly valid, and the
transitions between the new and old parts of the combined tree will be implicitly given by the combined tree
structure. Similarly, any part of a BT can be removed, as long as the remaining tree is connected, without
causing invalid transitions.

⇤Deputy Reseach Director, Department of Information and Aerosystems

1 of 8

American Institute of Aeronautics and Astronautics

The main contribution of this paper is that we describe and formalize the development of BTs in the
computer game industry and relate it to the HDS used in the UAV and robotics community. We furthermore
show how a general HDS can be written in terms of a BT while keeping the modular structure of the
continuous HDS-dynamics, and finally describe the benefits of making the HDS state transitions implicit in
a BT.

The outline of this paper is as follows. In Section II we give a brief background on both HDS and BTs.
Then, Section III describes the advantages of using BTs to model HDS. Section IV then gives a number of
examples of BTs for UAV guidance and control and conclusions are drawn in Section V.

II. Background: Behavior Trees and Hybrid Control Systems

In this section we give formal descriptions of both HDS and BTs.

II.A. Hybrid Dynamical Systems

Following,8 but using ordinary di↵erence equations instead of ordinary di↵erential equations for the continuos
dynamics, in order to avoid technical issues regarding uniqueness and existence for the BTs, we let a hybrid
dynamical system (HDS) be a system H = (Q, ⌃, A, G), with parts as follows:

• Q = {bi} is the countable set of discrete states.

• ⌃ = {⌃q}q2Q is the collection of systems of ordinary di↵erence equations. Thus, each system ⌃q has a
map fq : Xq ! Xq, representing the continuous dynamics, evolving on Xq ⇢ Rdq , dq 2 Z+, which are
the continuous state spaces.

• A = {Aq}q2Q, where Aq ⇢ Xq for each q 2 Q, is the collection of autonomous jump sets.

• G = {Gq}q2Q, where Gq : Aq ! S are the autonomous jump transition maps, said to represent the
discrete dynamics.

Thus, S =
S

q2Q Xq ⇥ {q} is the hybrid state space of H. For convenience, we write Sq = Xq ⇥ {q}, and
A =

S
q2Q Aq ⇥ {q}. Similarly, G : A ! S is the autonomous jump transition map, constructed component

wise in the obvious way.
The dynamics of the HDS H are as follows. The system is assumed to start in some hybrid state in

S\A, say s0 = (x0, q0), where q0 = b0. It evolves according to xn+1 = fb0(x), qn+1 = qn until the state
enters - if ever - Ab0 at the point sn = (xn, qn). It then transfers according to the transition map to
Gb0(xn) = (xn+1, qn+1) ⌘ sn+1, from which the process continues.

II.B. Behavior Trees

Loosely following,6,7, 15 we let a Behaviour Tree be a directed tree, with nodes and edges. If two nodes are
connected by an edge, we call the outgoing node the parent and the incoming node a child. Nodes that have
no children are denoted leaves, and the one node without parents is denoted the root node. Now, each node
of the BT is labeled as belonging to one of the six di↵erent types listed in Table 1. If the node is not a leaf
it can be one of the first four types, Selector, Sequence, Parallel or Decorator, and if it is a leaf it is one of
the last two types, Action or Condition.

Upon execution of the BT, each time step of the control loop, the root of the BT is ticked. This tick is
then progressed down (then back up) the tree according to the types of each node. Once a tick reaches a leaf
node (Action or Condition), the node does some computation, possibly a↵ecting some continuous or discrete
states/variables of the BT, and then returns either Success, Failure or Running. The return status is then
progressed up the tree, back towards the root, according to the types of each node. We will now describe
how all the di↵erent node types handle the tick and processes the di↵erent return statuses.

Selector. Selectors are used to find and choose the first child that is successful. A Selector will return
immediately with a status code success or running when one of its children returns success or running, see
Table 1 and the pseudo code below. The child tasks are ticked in the order of importance. Figure 1 illustrates
a simple BT with one selector and a set of Actions.

2 of 8

American Institute of Aeronautics and Astronautics

Table 1. The six node types of a BT.

Node type Succeeds Fails Running

Selector If one child succeeds If all children fail If one child returns running

Sequence If all children succeeds If one child fails If one child returns running

Parallell If N children succeeds If M-N children fail If all children return running

Decorator Varies Varies Varies

Action Upon completion When impossible to complete During completion

Condition If true If false Never

SELECTOR (pseudocode)

For i = 1 to N (number of children)

childStatus = Tick (Child(i))

If childStatus == Running

return Running

else if childStatus == Success

return Success

end

end

return Failure

?

Prio 1
Action

Prio 2
Action

Prio N
Action...

Figure 1. The Selector ticks its children in order until one returns Success or Running. Selectors are denoted by a
white square with a question mark and Actions are denoted by a green square.

Sequence. A Sequence sequentially executes all its children in order. It will return immediately with
a failure status code when one of its children fails, or with a running status code when one of its children
returns running. As long as its children are succeeding, it will keep going. If it runs out of children, it will
return success. See Figure 2.

SEQUENCE (pseudocode)

For i = 1 to N (number of children)

childStatus = Tick (Child(i))

If childStatus == Running

return Running

else if childStatus == Failure

return Failure

end

end

return Success

Parallel. A Parallel node executes all its children in parallel. It is configured to return success if more
than a given fraction of the children returns success etc, see Figure 3

PARALLEL (pseudocode)

For i = 1 to N (number of children)

childStatus(i) = Tick (Child(i))

3 of 8

American Institute of Aeronautics and Astronautics

-->

First
Action

Second
Action

Last
Action...

Figure 2. The Sequence ticks its children in order until one returns failure or running.

end

If allRunning(childStatus)

return Running

else if moreThanMsuccess(childStatus)

return Success

else return Failure

-->
-->

Action 1 Action 2 Action N...
Figure 3. The Parallel node ticks all its children at the same time.

Decorators. Decorators are non-leaves that can have only one child. The decorator alters the behavior
of its child by either manipulating its return status, or not ticking the child at all, and compute the return
status based on some other criteria. An example can be found in Figure 4, where we have a decorator that
starts a timer once its child returns success or running, it then returns whatever the child returns until a
given time has passed, after which it return failure without ticking the child. Other examples of decorators
include those that invert the output of their child, always return ’Success’ or ’Failure’, or counters that limit
the number of times the child is allowed to execute.

DECORATOR (pseudocode)

if (some condition)

childStatus = Tick (Child)

end

status = someFunction()

return status

-->

Action 1 Action 2

max 10s

Action 3

max 30s

Figure 4. Two ’max-time’ decorators, limiting the running time of Action 1 and Action 2 to 10 and 30 seconds
respectively.

Action. An Action node performs an action, and returns Success if the action is completed, Failure if it
can not be completed and Running if completion is under way.

4 of 8

American Institute of Aeronautics and Astronautics

Condition. A Condition node determines if a condition C has been met. Conditions are technically a
subset of the Actions, but are given a separate category and graphical symbol to improve readability of the
BT and emphasize the fact that they never return running and do not change any internal states/variables
of the BT. Examples of Conditions can be found in Figure 5 below.

?

C1

-->

A1

A2

Figure 5. A Selector, a Sequence, a Condition (yellow) and two Actions (green). Action A1 is only performed when
Condition C1 returns Success and Action A2 is only performed if C1 or A1 returns Failure.

III. Advantages of using Behavior Trees

As described above, the main advantage of using BTs to model HDS is that the transition functions
of the HDS are made implicit, and captured by the tree structure, instead of being explicitly coded in the
dynamics of each discrete state. This makes the BT truly modular. Actions, conditions and even subtrees
can easily be added or removed from a BT without having to make careful revision of all transitions.

The two most important constructs, selectors and sequences, are furthermore extensions of the classical
operators OR (selectors) and AND (sequences) and thus provide a flexible and powerful framework combined
with the implications of the added Running return status. They furthermore provide easy encoding of two
very natural HDS features, goal directed execution of one task after the other (sequences) and having a
series of fall back actions if the current action is not applicable, or fails (selectors). Both these natural HDS
features take a lot of work to encode in a standard HDS framework using only transitions, and even more
works is needed when actions are added, or removed.

The advantages of using implicit, instead of explicit transitions can also be seen in the light of the following
programming analogy. In early programming languages, e.g. BASIC, so-called one way transfers of control
(goto-statements) were often encouraged, whereas most more recent programming languages, e.g. Java, are
relying on two way transfers of control (function calls). The arguments against using goto-statements are
perhaps best illustrated by the words of Dijkstra17 ”The unbridled use of the goto-statement has as an
immediate consequence that it becomes terribly hard to find a meaningful set of coordinates in which to
describe the process progress. ... The goto statement as it stands is just too primitive, it is too much an
invitation to make a mess of one’s program.” In view of the above, one can argue that the classic transitions
of the HDS are indeed one way transfers of control, similar to the goto-statement, whereas the implicit, two
way transfer of control used in the BT are more similar to function calls, and that the drawbacks of the
goto-statement are also true for classic HDS state transitions.

IV. Examples of UAV Control Behavior Trees

In this section we will describe a number of example UAV control BTs. First the BT-version of the
Subsumption architecture, then the common construct of a number of tasks that has to be done in order,
then an example showing how a general HDS can be written as a BT and finally a somewhat more complex
Combat UAV controller example.

IV.A. Task that are prioritized - The subsumption architecture

The subsumption architecture for robot control made famous by Brooks18 can be implemented by a single
selector and a set of prioritized actions, as in Figure 1. This same architecture can also be interpreted in

5 of 8

American Institute of Aeronautics and Astronautics

terms of a number of fall back controllers. Using the labels of Figure 1, Prio 1 Action is the first choice
controller, but if it is not applicable, or does not succeed for some reason, Prio 2 Action is invoked, and so
on. An example where such a subtree would be relevant is when the first priority controller avoids collisions,
and the second priority follows waypoints. The collision avoidance controller would then be invoked every
time there are objects in the vicinity of the UAV, and the waypoint controller would be executed the rest of
the time.

IV.B. Task that are ordered

Task that needs to be performed in a given order, such as taxing to the runway, takeo↵, and initial climb to
cruise altitude, are structured in a straightforward manner using the sequence operator and a set of actions
(or subtrees), as in Figure 2.

?

C1(sn)

-->

A1(sn) cN (sn)

-->

aN (sn)CN (sn)

-->

AN (sn) c1(sn)

-->

a1(sn)

......

Figure 6. A general HDS written as a BT. The first N subtrees check if a transition is made in the HDS, and the last
N subtrees take care of the continuous dynamics.

IV.C. A general HDS written as a BT

Technically, it is clear that all HDS can be written as BTs due to the fact that we have no restrictions
of what kind of computations are allowed inside an Action. Thus the whole HDS can be included in one
Action, and a BT can be created out of this single Action. However, the structure of the HDS can actually
be translated into a BT without hiding everything in a single block. Let sn = (qn, xn) be the current state
and define the (boolean) conditions

Ci(sn) = (qn == bi) AND (xn 2 Abi), (1)

ci(sn) = (qn == bi), (2)

and the Actions

Ai(sn) : sn+1 = Gbi(xn), (3)

ai(sn) : sn+1 = (fbi(xn), bi). (4)

Then we define the BT as illustrated in Figure 6. The root is a Selector, connected to 2N subtrees composed
of one Sequence, one Conditions and one Action. The N first subtrees use the Conditions Ci, checking the
transition condition of the HDS and Action Ai executing those transitions, while the last N subtrees handle
the continuous dynamics of the HDS using Condition ci and actions ai.

IV.D. A Combat UAV Controller

The controller of an air-to-air combat UAV might look something like the BT shown in Figure 7. As can
be seen, the root node is a Selector with prioritized children from left to right. The highest priority (left)
subtree is then composed of a Sequence first checking the Condition Collision Warning and then performing
the Action Avoid Ground. The second priority subtree similarly checks if there is a Missile Warning and if
so performes an Evasive Maneuver. The following subtree is somewhat more complex, it starts by checking

6 of 8

American Institute of Aeronautics and Astronautics

if there are Enemies in Range and if so first checks if Odds OK, i.e. if the number and estimated status of
the enemies are comparable to or lower than the number and status (including fuel) of the friendly forces,
and then proceeds into air-to-air combat. Otherwise a Disengage Action is invoked. If no enemies are in
range, the next subtree checks a Bingo Fuel condition, i.e., if the current amount of fuel is not enough to
fly home and land without violating the prescribed safety margin, if so, the Fly Home Action is invoked.
Finally, if none of the above subtrees were applicable, the UAV keeps doing its routine duty, i.e. performing
a Patrolling, Strike or Surveillance mission, and when that mission is complete the Fly Home Action is
invoked, returning the UAV to its base.

As can be seen in the above example, it is quite easy to insert additional actions anywhere in the BT, at
a fairly low cost in terms of increased complexity. Furthermore, the reliability of critical system functions,
such as collision avoidance in Figure 7, is obviously not influenced by adding any other action or subtree at
at branch of lower priority under the same selector.

?

Collision
Warning

-->

Avoid
Ground

Missile
Warning

-->

Evasive
Maneuvre

Bingo Fuel

-->

Fly Home

Enemies in
Range

-->

disEngage

?

Odds OK

-->

Do Combat

Do
Patrolling /

Strike /
Surveillance

Fly Home

Combat Pilot
Behavior

-->

Figure 7. The BT of an air-to-air combat UAV

V. Conclusion

In this paper, we have argued that Behavior Trees (BT) is a formalism that presents many advantages,
in terms of modularity, reusability and complexity, to the designer of UAV guidance and control systems.
This is mainly due to the fact that BTs make the transitions of a HDS implicit in the tree structure, as well
as two way, instead of explicitly encoded in a one way transition function. The implicit two way transitions
substantially increase modularity, which in turn makes design and re-design much simpler. Finally, it also
increases the readability of the algorithm, as discussed by Dijkstra in his paper regarding the Goto-statement.

References

1Kriegel, M., Brüggenwirth, S., and Schulte, A., “Knowledge Configured Vehicle – A layered artificial cognition based
approach to decoupling high-level UAV mission tasking from vehicle implementation properties,” AIAA Guidance, Navigation,
and Control Conference, Portland, Oregon, 2011.

2Soto, Nava, and Alvarado, “Drone Formation Control System Real-Time Path Planning,” AIAA Infotech and Aerospace

7 of 8

American Institute of Aeronautics and Astronautics

Conference, 2007.
3Dicheva, S. and Bestaoui, Y., “Route Finding for An Autonomous Aircraft,” 49th AIAA Aerospace Sciences Meeting,

Florida, 2011.
4Enomoto, K., Yamasaki, T., Takano, H., and Baba, Y., “Guidance and Control System Design for Chase UAV,” AIAA

Guidance, Navigation and Control Conference, Hawaii , 2008.
5Keviczky, T. and Balas, G., “Software-Enabled Receding Horizon Control for Autonomous UAV Guidance,” AIAA

Guidance, Navigation, and Control Conference, 2005.
6Lim, C., Baumgarten, R., and Colton, S., “Evolving Behaviour Trees for the Commercial Game DEFCON,” Applications

of Evolutionary Computation, edited by D. Chio, Vol. 6024 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
2010, pp. 100–110.

7Isla, D., “Handling complexity in the Halo 2 AI,” Game Developers Conference, 2005.
8Branicky, M., “Introduction to hybrid systems,” Handbook of networked and embedded control systems, 2005, pp. 91–116.
9Huber, M., A hybrid architecture for adaptive robot control , Ph.D. thesis, University of Massachusetts at Amherst, 2000.

10Fierro, R., Das, A., Kumar, V., and Ostrowski, J., “Hybrid control of formations of robots,” ICRA. IEEE International
Conference on Robotics and Automation, Vol. 1, IEEE, 2001, pp. 157–162.

11Conner, D., Rizzi, A., and Choset, H., “Composition of local potential functions for global robot control and navigation,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS), Vol. 4, IEEE, pp. 3546–3551.

12Connell, J., “SSS: A hybrid architecture applied to robot navigation,” IEEE International Conference on Robotics and
Automation, IEEE, 1992, pp. 2719–2724.

13Egerstedt, M., “Behavior based robotics using hybrid automata,” Hybrid Systems: Computation and Control , 2000,
pp. 103–116.

14Perez, D., Nicolau, M., O’Neill, M., and Brabazon, A., “Evolving Behaviour Trees for the Mario AI Competition Using
Grammatical Evolution,” Applications of Evolutionary Computation, 2011, pp. 123–132.

15Bojic, I., Lipic, T., Kusek, M., and Jezic, G., “Extending the JADE Agent Behaviour Model with JBehaviourTrees
Framework,” .

16Champandard, A., “Understanding Behavior Trees,” AiGameDev. com, Vol. 6, 2007.
17Dijkstra, E. W., “Letters to the editor: go to statement considered harmful,” Commun. ACM , Vol. 11, March 1968,

pp. 147–148.
18Brooks, R., “Elephants don’t play chess,” Robotics and autonomous systems, Vol. 6, No. 1-2, 1990, pp. 3–15.

8 of 8

American Institute of Aeronautics and Astronautics

