
A Programming Model for Semi-implicit Parallelization
of Static Analyses

Dominik Helm
Florian Kübler

Jan Thomas Kölzer
helm@cs.tu-darmstadt.de

kuebler@cs.tu-darmstadt.de
jan.koelzer@stud.tu-darmstadt.de
Technische Universität Darmstadt
Department of Computer Science

Germany

Philipp Haller
phaller@kth.se

KTH Royal Institute of Technology
School of Electrical Engineering and

Computer Science
Sweden

Michael Eichberg
Guido Salvaneschi

Mira Mezini
mail@michael-eichberg.de

salvaneschi@cs.tu-darmstadt.de
mezini@cs.tu-darmstadt.de

Technische Universität Darmstadt
Department of Computer Science

Germany

ABSTRACT
Parallelization of static analyses is necessary to scale to real-world
programs, but it is a complex and difficult task and, therefore, often
only done manually for selected high-profile analyses. In this paper,
we propose a programming model for semi-implicit paralleliza-
tion of static analyses which is inspired by reactive programming.
Reusing the domain-expert knowledge on how to parallelize anal-
yses encoded in the programming framework, developers do not
need to think about parallelization and concurrency issues on their
own. The programming model supports stateful computations, only
requires monotonic computations over lattices, and is independent
of specific analyses. Our evaluation shows the applicability of the
programming model to different analyses and the importance of
user-selected scheduling strategies. We implemented an IFDS solver
that was able to outperform a state-of-the-art, specialized parallel
IFDS solver both in absolute performance and scalability.

CCS CONCEPTS
• Theory of computation → Program analysis; Parallel com-
puting models; • Software and its engineering → Automated
static analysis.

KEYWORDS
static analysis, concurrency, parallelization

ACM Reference Format:
Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael
Eichberg, Guido Salvaneschi, and Mira Mezini. 2020. A Programming Model
for Semi-implicit Parallelization of Static Analyses. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3395363.3397367

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397367

1 INTRODUCTION
Parallelization of static analyses is a promising avenue (a) for mak-
ing analyses scale to ever-growing code bases, and (b) for shortening
development cycles by reducing delays caused by build pipelines
and continuous integration. By leveraging modern multi-core CPUs
and GPUs, parallelization can also increase energy efficiency, e.g.,
when executing static analyses on virtualized cloud infrastructures.
However, parallelizing static analyses is challenging, especially
since advanced static analyses, e.g., general points-to [4], advanced
call graph [8], or purity [14] analyses, are not data-parallel.

Relying on shared-memory threads and conventional synchro-
nization primitives, such as locks and monitors, makes paralleliza-
tion of static analyses cumbersome and requires significant ex-
pertise to ensure correctness, while, nevertheless, often not fully
exploiting all available hardware parallelism [10].

Existing approaches to parallel static analysis have addressed the
problem in two limited ways. Some have done so by targeting only
specific high-profile analysis techniques [25, 26, 29], respectively
specific frameworks [33]. Others require fundamental rethinking
of the implementation strategy (e.g., avoiding explicit worklists)
in order to adjust to the parallelism model of GPUs [25, 29]. For
example, the approach of [25] requires (a) an adaptation of the data
structures used by the analysis to the GPU memory model, (b) an
explicit distribution of work to threads, and (c) novel concurrent
algorithms amenable to the execution on GPUs. Enabling paral-
lelization of static analyses in a generic way, i.e., not specialized to a
single analysis or framework, and implicit [13], i.e., without requir-
ing to restructure analysis algorithms or even devise completely
new ones, remains an open challenge.

In this paper, we propose a new approach for deterministic paral-
lel execution of static analyses. The approach offers a programming
model not bound to any specific analysis kind (analysis-independent)
and providing semi-implicit parallelization [23], i.e., not requiring
invasive changes to common implementation strategies for static
analyses in order to parallelize their execution. The exposure of
the analysis writer to aspects relevant to parallelism is minimal;
specifically, there is no need to (a) modify data structures used by
the analysis or (b) to distribute work explicitly to threads.

428

https://doi.org/10.1145/3395363.3397367
https://doi.org/10.1145/3395363.3397367

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini

The analysis-independent, semi-implicit parallelization is en-
abled by a declarative reactive programming model. Such a pro-
gramming model provides high-level constructs for declaring de-
pendencies between analysis results, while automating the propa-
gation of updated analysis results across dependency chains.

All propagations are concurrent, except for those marked ex-
plicitly as sequential by the user if they share mutable state, thus
avoiding non-determinism due to race conditions. In addition, the
domain of analysis results is restricted to be a (semi-)lattice to en-
sure determinism of concurrent updates. This is, however, not really
a restriction, since even complex, state-of-the-art static analyses
compute results representable in bounded (semi-)lattices. Declara-
tion of sequential updates and the requirement to use (semi-)lattices
are the only aspects of parallelism exposed to analysis writers.

Declarative dependencies enable defining propagation strategies
that are tuned to the domain of static analyses. For example, certain
analyses benefit from a prioritization of updates where the more
(source) dependencies a computation has, the lower the priority of
that computation is; such a prioritization allows “batching” updates
such that a larger number of more-up-to-date values is queried be-
fore a target computation is performed. Our approach also enables
analysis writers to plug in analysis-specific strategies.

The contribution of this paper is to provide language abstrac-
tions that enable developers to formulate static analyses as a net-
work of cells with dependencies among them. This approach allows
the framework to handle concurrency semi-automatically while at
the same time being applicable to a wide range of static analyses.
Building on our previous work [10], we introduce four important
concepts: (a) sequential cells that enable analyses to pass mutable
state between callback invocations; (b) custom cell updaters that
enable omitting costly join operations; (c) pluggable scheduling
strategies that can be adapted to the needs of each analysis; and (d)
aggregation of updates in order to reduce computation overhead.

The approach is implemented as a concurrency library in Scala,
called Reactive Async 2 (RA2). We open-sourced the implementa-
tion on GitHub.1

We evaluate RA2 along two dimensions. First, we give evidence
on the approach being analysis-independent and enabling semi-
implicit parallelism by applying it to two different kinds of analyses
(see Section 3.1), a purity analysis and the IFDS framework [32].

Second, we empirically evaluate the performance and scalability
of RA2 (Sections 3.2 to 3.4). Our evaluation shows that the perfor-
mance scales well w.r.t. the number of processor cores. With 10
threads on a 10-core CPU, we achieve speed-ups greater than 4.8x
and, hence, successfully parallelize over 88% of the computation
according to Amdahl’s law. A comparison of different scheduling
strategies shows performance differences up to 1100%, suggest-
ing that the choice of scheduling strategy is of great importance.
On a single core, our parallel IFDS is only 28% slower than an
optimized sequential implementation using the fixed-point com-
putation framework provided by the static analysis framework
OPAL [6, 28]. Already with 2 threads the parallel implementation
runs 1.3x faster than OPAL. Compared to the state-of-the-art IFDS
solver Heros [3, 15], RA2 has comparable single-thread performance
(RA2 is 15% faster) and consistently achieves significantly higher

1https://github.com/phaller/reactive-async

speed-ups. While Heros achieves a maximum speed-up of 2.36 us-
ing 8 threads, the speed-ups of RA2 are 3.53 using 8 threads and
continues to improve for higher thread counts. A thorough compar-
ison to an actor-based parallel IFDS solver [33] was unfortunately
not possible as the implementation of that system is not available,
but the speed-ups are comparable.

The rest of the paper is organized as follows: Section 2 presents
the programming model including an in-depth example of a simple
analysis. The approach is evaluated in Section 3. Section 4 presents
potential threats to validity to our evaluation. We conclude the
paper discussing related work in Section 5 and providing a summary
and outlook in Section 6.

2 APPROACH
In this section, we present our approach to analysis-independent
and semi-implicit parallelization of static analyses. We start with a
high-level overview of the programming model that the approach
imposes (2.1) followed by advanced concepts to ensure correctness
in the presence of concurrent updates and shared mutable state (2.2).
Next, we introduce RA2’s solver, which performs the paralleliza-
tion and resolves (cyclic) dependencies (2.3). We present pluggable
scheduling strategies, which enable analysis-specific tuning and
aggregation of updates with the goal to improve on performance
(2.4) and finally give an in-depth example of a simple purity analysis
implemented in RA2 (2.5).

2.1 Programming Model Basics
To illustrate how analyses are implemented in RA2, assume we
want to develop a method purity analysis determining whether a
method is deterministic and free of side-effects (see, e.g., [14]).

The goal of any static analysis is to compute a specific property
for a given entity. In the example of the purity analysis, methods
are the entities and the property is the purity, which can have one
of two values: pure or impure. In RA2, each property must form a
lattice (or at least a partial order with a bottom element), common
data structures for properties calculated by static analyses. The
property of an entity may depend on some other properties of
related entities. In a purity analysis, if foo calls bar, the computation
of foo’s purity requires the purity of bar. We say foo depends on/is a
depender of bar, or bar is a dependee of foo.

In RA2, analyses are implemented as two functions—an initial
analysis function and a continuation function. Both are invoked by
the reactive framework underlying RA2.

Given an entity, the initial analysis function computes the initial
property of that entity based on the information already available,
i.e., local information, such as the source code, and the current
property values of dependees. The initial analysis function also
queries and collects the dependencies of an entity. The dependencies
may have a non-final property value (or none at all) at the time
the initial function is executed. The list of dependencies is used to
get notified of potential future changes of their property values.
These changes may in turn lead to updates of the entity’s property
value. The initial analysis function returns the initial property and
registers the dependencies along with a continuation function.

A continuation function of an entity 𝑒 is invoked by RA2 when-
ever dependencies of 𝑒 (e.g., the purity information for a called

429

https://github.com/phaller/reactive-async

A Programming Model for Semi-implicit Parallelization of Static Analyses ISSTA ’20, July 18–22, 2020, Virtual Event, USA

method) change. Its result defines how the property value of 𝑒 is
to be updated, whereby the updated value must be a monotonic
refinement according to the property’s lattice. Unless the continu-
ation function declares its result as final, it will be invoked again
for further updates of dependees. Both the initial analysis and invo-
cations of the continuation functions are tasks that RA2 executes
concurrently.

Analysis results and dependencies are maintained in cells. When
implementing a static analysis, we create one cell per pair of an-
alyzed entity and property. Cells are shared by the different con-
current tasks. Every cell is explicitly associated with the lattice of
the property values that it manages (e.g., the cells in Listing 1 are
associated with the Purity lattice). A cell that was created to store
purity information therefore cannot be used—at some later point
in time—to store data-flow information.

Dependencies are created by connecting two cells using the
continuation function—to respond to updated cells, continuation
functions are used as callbacks. To ensure that a cell is notified
about the update of its dependees, its dependencies are explic-
itly declared and registered using the when method. For instance,
cell2.when(cell1)(continuation) registers cell1 as a dependee of cell2,
the function continuation is called when the value of cell1 changes.

The continuation function processes the changed dependee’s
(cell1 in our case) new value and returns an Outcome object, which
decides whether and how the dependent cell (cell2 in our case)
should be updated. RA2 provides three types of Outcome objects:
A NextOutcome(v) result means that the dependent cell should be
updated with value v according to the specified updater (cf. Sec-
tion 2.2). FinalOutcome(v) states that additionally this update is final.
If NoOutcome is returned, the value of cell2 is not changed at all.

To illustrate the use of cells and continuations, consider Fig-
ure 1 which graphically depicts the cells and dependency from
Listing 1 and the propagation of an update for this dependency.
Assume that the two cells, cell1 and cell2, have been initialized
with Pure (A) through the use of NextOutcome, i.e., their values can
still change. In Lines 4 to 7, a dependency between cell1 and cell2

is introduced (B). Recall that for a purity analysis, this is necessary
if the method represented by cell2 invokes the one represented by
cell1. Whenever cell1 is updated (using FinalOutcome or NextOutcome),
the continuation is executed and the returned Outcome is used to
update cell2. Consider the case when a final update for cell1—with
the value Impure—occurs (C). This will cause the continuation to be
invoked with Impure as an argument (the new value of cell1) (D).
Since a method that calls an impure method is also impure, the
continuation returns a FinalOutcome with value Impure. Thus, cell2 is
completed with value Impure (E), and the dependency is removed (F).
If the continuation returned a NextOutcome, the update of cell2would
be an intermediate one.

2.2 Advanced Constructs for Correctness
To ensure correctness and termination, cell updates must have a
well-defined semantics. RA2 executes updates concurrently, and
thus without a guaranteed order. Yet, monotonic updates ensure
determinism regardless of the order. Mutable stated shared between
the continuations of a cell may also lead to non-determinism when
the updates are executed concurrently.

Listing 1: Example of dependencies and continuations
1 val cell1: Cell[Purity] = ...

2 val cell2: Cell[Purity] = ...

3

4 cell2.when(cell1) { update =>

5 if (update.head.get.value == Impure) FinalOutcome(Impure)

6 else NoOutcome

7 }

A

cell1
Pure

cell2
Pure

After executing lines 1 and 2,
two cells have been created.

B

cell1
Pure

cell2
Pure

Lines 4 to 7 introduce a (di-
rected) dependency between
the cells.

C

cell1
Imp.

cell2
Pure

cell1 is completed with the
value Impure.

D

cell1
Imp.

cell2
Pure

The continuation is triggered to
inform cell2 about the update
of cell1.

E

cell1
Imp.

cell2
Imp.

The continuation computes an
outcome of impure; cell2 is up-
dated accordingly.

F

cell1
Imp.

cell2
Imp.

Both cells have a final value.

Figure 1: Execution of Listing 1

Monotonic Updates. To guarantee determinism of cell updates,
they must be monotonically increasing according to the underlying
lattice. RA2 therefore encapsulates cell updates in so-called updater
objects that determine how updates for the cell are processed.

Monotonicity can be automatically guaranteed by using the join
operator of a cell’s lattice to aggregate new values with the previous
value of the cell. The outcome returned by each continuation is
joined with the cell’s previous value to compute the least upper
bound, which then becomes the cell’s new value. RA2 provides
the updater type AggregationUpdater that offers this semantics. How-
ever, there are several good reasons for supporting other updater
semantics. In general, performing joins can be expensive when
dealing with lattices that are not based on singleton values, e.g.,

430

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini

sets. Complex analyses may already have to perform the join explic-
itly as part of the continuation function, thereby guaranteeing the
monotonicity by design and making another implicit join during
the cell update obsolete. To cover such needs, RA2 provides the
MonotonicUpdater as a drop-in replacement for the AggregrationUpdater.

The MonotonicUpdater does not perform a join operation, but only
checks whether the given update fulfills monotonicity. This check is
defined by the lattice. For expensive checks, it can be used only dur-
ing development and simplified or disabled in production when the
analysis is known to guarantee monotonicity. The MonotonicUpdater

also allows for using partial orders instead of lattices. The partial
orders, however, still require a bottom element and must fulfill the
ascending chain condition, i.e., monotonically increasing opera-
tions must converge eventually – we use this kind of updater, e.g.,
for our IFDS solver (see Section 3). As the IFDS solver’s computa-
tions are required to be performed sequentially and only introduce
additional flow edges, updates are guaranteed to be monotonic and
no other (potentially expensive) join operation is required.

Which updater should be used for a specific cell can be defined
when creating the cell by the HandlerPool – the interface of the
analysis implementations to the underlying reactive system of RA2,
which is presented in Section 2.3.

Sequential Updates. Shared mutable state affected by updates
needs to be thread-safe. Advanced analyses require maintaining
mutable state between cell updates. For example, an IFDS analysis
keeps track of already computed path edges in order to extend them
once updates on the analyzed method’s callees become available.
Mutable state can also be used to explicitly keep track of the set
of dependencies. Updates that affect such mutable state need to be
sequential. Otherwise, continuations for several incoming updates
could be executed concurrently, leading to non-determinism in the
presence of mutable state due to race conditions.

To enable the thread-safe use of mutable state, RA2 provides cells
with sequential updates, whose continuations are ensured to run
sequentially. As such, cells with sequential updates free developers
from the need to use locks or other concurrency mechanisms to
protect shared mutable state. The example in Listing 2 illustrates
cells with sequential updates. Those cells are created using the
mkSequentialCell method of the HandlerPool (cf. Section 2.3). While
dependee1 and dependee2 may be updated concurrently, RA2 ensures
that all callbacks targeting seqCell1—continuation1 and continuation2—
are invoked sequentially (though with no guarantee on the relative
order). Hence, both callbacks may safely access shared state – as
long as that state is only shared among callbacks targeting seqCell1.
To still exploit the benefits of parallel computations, continuation3
is run concurrently, even with continuation1 being triggered by the
same dependee, dependee1. Hence, continuation1 and continuation2

must not share state with continuation3, as the latter targets a differ-
ent cell.

2.3 Handler Pool
A central unit of RA2 is the HandlerPool. It creates cells and manages
the execution of initial functions and the propagation of updates
along cell dependency chains by executing respective continuations.
It implements the parallelization which analyses can use out-of-the-
box and do not need to implement on their own. For each initial

Listing 2: Example of sequential updates
1 val seqCell1 = pool.mkSequentialCell(...)

2 val seqCell2 = pool.mkSequentialCell(...)

3

4 seqCell1.when(dependee1)(continuation1)

5 seqCell1.when(dependee2)(continuation2)

6 seqCell2.when(dependee1)(continuation3)

analysis function and each triggered continuation, the runtime
system creates a task that is eventually executed by an idle thread.
The HandlerPool keeps track of all active threads and all tasks being
registered for execution and schedules their execution.

The HandlerPool is RA2’s fixed-point solver, as such it also resolves
situations where the execution gets stuck. As it keeps track of
running and pending tasks, the pool is able to detect quiescence.
The system is quiescent when there are no unfinished submitted
tasks currently queued or running. However, even when quiescence
is reached, not all cells are guaranteed to contain final results. This
is true in the following cases:

(1) A chain of dependencies such that each cell’s result depends
on another cell’s result where these dependencies form a
cycle is called cyclic dependency. A simple example are two
cells 𝐴 and 𝐵, where 𝐴 depends on 𝐵 and 𝐵 depends on 𝐴.
Such a cyclic dependency where each cell in the cycle solely
depends on cells of that cycle is called a closed strongly
connected component (cSCC).

(2) Cells that do not depend on any other cells are called in-
dependent. Independent cells that have not been completed
are referred to as independent unresolvable cells (IUC). An
IUC arises when all dependees of a cell have been com-
pleted (and the corresponding dependencies have there-
fore been dropped), but the cell itself was not completed
yet. This happens if on the last invocation of the contin-
uation, that continuation—without tracking dependencies
explicitly—cannot recognize that there will not be any future
invocations. In the example of Figure 1, cell2 becomes in-
dependent after the final update of cell1 as the dependency
between cell2 and cell1 is removed by the system (F). This
shows the case, when cell2 is completed. But, if cell1 had
instead been completed with a result property value pure, the
continuation would have returned NoOutcome and, therefore,
cell2would not be completed. As the dependency would still
be removed, cell2 would become an IUC.

Once cycles and independent cells are detected, two methods,
that are implemented by the analysis designer when specifying the
lattice, are used to resolve them: resolve and fallback The resolve

method takes a list of all cells in one cSCC and returns for each
cell the final value it should be resolved to. Resolving one cSCC
does not trigger callbacks of cells in that cSCC, but does so for their
dependers outside of it. The fallback method works similarly, but
is given a list of IUCs. Different to the cells of a cSCC, the IUCs
must be resolved independently of each other. Each cell is then
completed with the returned associated value, which is typically
the cell’s current value.

431

A Programming Model for Semi-implicit Parallelization of Static Analyses ISSTA ’20, July 18–22, 2020, Virtual Event, USA

A

target source

B

target source

C

target source

D

target source

Figure 2: Scheduling Strategies

2.4 Scheduling
The order in which individual tasks are scheduled can be of utmost
importance in order to provide effective parallelization for a specific
(analysis) domain [33]. In the case of IFDS-A, scheduling strategies
that prioritize values that might have a bigger impact were shown
to be beneficial. Thus, different scheduling strategies are needed.

The HandlerPool is parametric in the scheduling strategy to enable
an analysis designer to plug in a scheduling strategy to influence the
order in which tasks ready for execution are picked up. Whenever a
task is submitted to the pool for execution, the scheduling strategy
is invoked to calculate a priority for the dependency in question.
This priority is used in a priority queue that tracks all tasks that
may be executed concurrently.

Dependency continuations that target sequential cells must not
run concurrently. To ensure this, each sequential cell keeps track
of all tasks updating it. Again, this is done via a priority queue
that uses the developer-supplied scheduling strategy. Tasks can be
dequeued from this queue in the order of respective priority, hence
respecting the scheduling strategy. ues,

Besides a default last-in-first-out scheduling strategy with first-
in-first-out work stealing, RA2 provides several other general-
purpose scheduling strategies out-of-the-box. These are applicable
to any kind of analysis as they only take into account how many
dependees a cell has and how many cells (directly) depend on the
value that is being updated via the continuation. These strategies
are illustrated in Figure 2 (A–D). As in Figure 1, straight arrows are
dependencies, while discontinuous arrows represent potential up-
date messages. The strategies determine the priority of the message
from source to target (dotted red message in Figure 2).

(A) TargetsWithManySourcesFirst/Last. The higher the number of
cells (in addition to source) that target depends on, the high-
er/lower the priority.

(B) SourcesWithManyTargetsFirst/Last. The higher the number of
cells depending on source (in addition to target), the high-
er/lower the priority.

Listing 3: A scheduling strategy for lattice values
1 case class LatticeValueStrategy[V](prioritizedValue: V)

2 extends SchedulingStrategy[V] {

3 override def calcPriority(

4 tgt: Cell[V], src: Cell[V], v: Outcome[V]

5): Int = calcPriority(tgt, v)

6

7 override def calcPriority(

8 tgt: Cell[V], v: Outcome[V]

9): Int = v match {

10 case FinalOutcome(prioritizedValue) => -1

11 case _ => 1

12 }

13 }

(C) TargetsWithManyTargetsFirst/Last. The higher the number of
cells depending on target, the higher/lower the priority.

(D) SourcesWithManySourcesFirst/Last. The higher the number of
cells that source depends on, the higher/lower the priority.

The generic-purpose strategies are simple and only take the (lo-
cal) shape of the dependency graph into account. Nonetheless, they
can influence the analysis’ behavior significantly. Some strategies
(the xFirst ones) try to prioritize updates that may have a greater
impact on the result by influencing many cells. This may lead to
faster stabilization of the result. Other strategies (the xLast ones)
delay such influential updates, providing more opportunities to
aggregate them (cf. below), potentially reducing the overall number
of updates required. Our evaluation (cf. Section 3.2) shows that this
has a significant impact on scalability and performance.

Scheduling strategies also allow to encode and take into consid-
eration domain-specific knowledge about the relevance of different
property values. For our purity analysis, propagating Impure may be
more relevant to target cells than propagating Pure. This is because
a call to an impure method is impure, thus a single impure dependee
will result in the cell being completed. In contrast, a call to a pure
method does not change the outcome as long as there are other
dependees that might be impure. To accelerate the propagation of
specific lattice values, we can use a strategy that returns a higher
priority for the respective continuations.

The implementation of such a strategy prioritizing a given lattice
element is shown in Listing 3. RA2 provides two functions to calcu-
late the priority for scheduling: the first one is used in scheduling
continuations while the second one is used for resolving cycles and
IUCs where no source cell exists. Note that, based on Java’s priority
queues, a low value will prioritize the task to be scheduled early.

As the invocation of continuations may be delayed according to
prioritization, the cell that triggered a continuation may be updated
again before the continuation is actually invoked. This enables an
important optimization: instead of invoking the continuation with
the first updated value and later invoking the continuation again,
the continuation will be invoked only once using the most recent
value. RA2 can also aggregate updates from multiple sources that
are passed to the continuation as a list of updates. Both kinds of
aggregations can reduce the overhead of continuation invocations.
This also has a transitive effect: less invoked continuations produce
less intermediate results that in turn trigger less continuations.

432

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini

2.5 Reactive Async 2 at Work
In the following, we demonstrate how to apply the proposed pro-
gramming model to implement a very simple purity analysis. We
show the complete analysis, including the lattice definition, the
initial analysis function, its continuation, and how to bootstrap the
analysis, leaving out just minor details, e.g., error handling.

Listing 4: A simple lattice for purity information
1 sealed trait Purity

2 case object Pure extends Purity

3 case object Impure extends Purity

4

5 object Purity {

6 implicit object PurityLattice extends Lattice[Purity] {

7 override def join(v1: Purity, v2: Purity): Purity = {

8 if (v1 == Impure) Impure else v2

9 }

10

11 override val bottom: Purity = Pure

12 }

13 }

Listing 4 shows the specification of the lattice, including the
bottom value and the join function. The lattice has two elements,
namely Pure (its bottom element) and Impure.

The analysis function shown in Listing 5 computes the purity of a
given method by checking its instructions. If there is an instruction
affecting the purity, e.g., a static field write, the method is immedi-
ately considered impure. Additionally, we consider native methods,
methods with reference type parameters, or non-monomorphic (i.e.,
virtual and interface) method calls as impure. For method calls that
are not self-recursive, the callee’s cell is added as a dependency. If
such callee would be impure, the analyzed method itself would be
impure. With a call graph available, polymorphic calls could simply
be handled by adding a dependency for each possible callee. After
checking all instructions, the method is found to be pure, and can
only be refined to impure by an update of a dependency. To cover
the latter case, we use when to register the continuation function to
react on updates for these dependencies.

The continuation function handling updates of dependencies is
shown in Listing 6. As stated above, impure callees lead to an impure
method. We take advantage of RA2’s aggregation of updates: The
continuation function may receive updates for multiple dependees
at once and if a single one is impure, the cell is completed.

Listing 7 shows the fallback and cycle-resolution strategies as
explained in subsection 2.4. For the purity analysis, all impure
values will be marked as final immediately. Therefore, unresolved
cells must be Pure for both, cycles and IUCs.

Listing 8 shows how to (1) initialize and (2) start the analysis, (3)
await its completion, and (4) retrieve the results. Parallelization is
done by the HandlerPool – the number of threads is set explicitly in
this example. We also specify the scheduling strategy here, using
the lattice-based strategy from Listing 3 to prioritize updates of
of impure methods. Cells are created through the HandlerPool and
their initial analysis is then triggered. In particular, note how we
specify the AggregationUpdated for each cell (line 11). This explicit
specification is for demonstration only, as aggregating updates
is the default in RA2. Triggering the cells starts the concurrent

Listing 5: Determine the purity of a method
1 def analyze(method: Method): Outcome[Purity] = {

2 val cell = methodToCell(method)

3

4 if (method.isNative || method.hasReferenceTypeParameter())

5 return FinalOutcome(Impure)

6

7 val dependencies = mutable.Set.empty[Cell[Purity]]

8 for (instruction <- method.instructions) {

9 instruction match {

10 case gs: GETSTATIC =>

11 resolveFieldReference(gs) match {

12 case Some(field) if field.isFinal =>

13 /* Constants do not impede purity */

14 case _ =>

15 return FinalOutcome(Impure)

16 }

17

18 /* For simplicity: only handle monomorphic calls */

19 case INVOKESPECIAL | INVOKESTATIC =>

20 resolveNonVirtualCall(instruction) match {

21 case Success(callee) =>

22 /* Self-recursive calls do not impede purity */

23 if (callee != method)

24 dependencies.add(methodToCell(callee))

25

26 case _ /* Unknown callee */ =>

27 return FinalOutcome(Impure)

28 }

29

30 case NEW | PUTSTATIC | ... =>

31 return FinalOutcome(Impure)

32

33 case _ =>

34 /* All other instructions are pure. */

35 }

36 }

37

38 if (dependencies.isEmpty) {

39 FinalOutcome(Pure)

40 } else {

41 cell.when(dependencies)(continuation)

42 NextOutcome(Pure)

43 }

44 }

Listing 6: Continue with updates for callees
1 def continuation(

2 v: Iterable[(Cell[Purity], Outcome[Purity])]

3): Outcome[Purity] = {

4 if (v.exists(_._2 == FinalOutcome(Impure)))

5 FinalOutcome(Impure)

6 else
7 NoOutcome

8 }

computation of the initial analysis functions. After quiescence has
been reached, the cells contain the final results.

3 EVALUATION
Our evaluation aims to answer the following research questions:

• RQ1: Is RA2 applicable across different kinds of static analy-
ses to enable semi-implicit parallelization?

433

A Programming Model for Semi-implicit Parallelization of Static Analyses ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Listing 7: Resolving cycles and IUCs
1 object PurityKey extends Key[Purity] {

2 def resolve(

3 cells: Iterable[Cell[Purity]]

4): Iterable[(Cell[Purity], Purity)] = {

5 cells.map(cell => (cell, Pure))

6 }

7

8 def fallback(

9 cells: Iterable[Cell[Purity]]

10): Iterable[(Cell[Purity], Purity)] = {

11 cells.map(cell => (cell, Pure))

12 }

13 }

Listing 8: Setting up and starting the analysis.
1 def main(project: Project): Unit = {

2 // 1. Initialize HandlerPool and Cells

3 val pool: HandlerPool[Purity] = new HandlerPool(

4 key = PurityKey,

5 parallelism = 10,

6 schedulingStrategy = LatticeValueStrategy(Impure)

7)

8 var methodToCell = Map.empty[Method, Cell[Purity]]

9 for (method <- project.allMethods) {

10 val cellCreator = pool.mkCell(_ => analyze(method))

11 val cell = cellCreator(AggregationUpdater)

12 methodToCell += method -> cell

13 }

14

15 // 2. Start analyses

16 for (method <- project.allMethods) {

17 methodToCell(method).trigger()

18 }

19

20 // 3. Wait for completion

21 val fut = pool.quiescentResolveCell()

22 Await.ready(fut, 30.minutes)

23 pool.shutdown()

24

25 // 4. Retrieve results

26 val pureMethods =

27 methodToCell.filter(_._2.getResult() == Pure).keys

28 }

• RQ2: How do scheduling strategies affect performance?
• RQ3: What is the overhead compared to sequential analyses?
• RQ4: How does the RA2-based IFDS implementation com-
pare to other state-of-the-art IFDS analyses?

For the evaluation, we used a machine with an Intel(R) Core(TM)
i9-7900X CPU @ 3.30GHz (10 cores / 20 threads) and 128 GB RAM.
The OS running is Ubuntu 18.04.3. The analyses were run using
OpenJDK 1.8_212. The JVMwas started with 16 GB of heap memory
(-Xmx16G). We analyzed the JRE 1.7.0 update 95 from the publicly
available Doop benchmarks project [5] to ensure repeatability. The
purity analysis was executed on the complete JRE, while the IFDS
analysis was executed on the runtime jar only. For each experiment
we report the median runtime of seven executions.

While RA2 itself is framework independent, we used the OPAL
framework [6] to provide bytecode parsing and an intermediate
representation for our analyses to work upon.

3.1 RQ1: Applicability
To answer RQ1, we take another look at our purity case study from
Section 2.5. As it shows, the implementation of a simple purity
analysis, including definition of the lattice and an execution har-
ness takes just about 80 lines of code (excluding whitespace and
comments). We observe that RA2’s programming model allows
implicit parallelization in this case: No explicit handling of paral-
lelization, e.g., creation of threads, locks, or tasks, is required by
the actual analysis2. In particular, no rethinking of the algorithm
is required, as it is, e.g., for GPU-based solutions [25, 29] to map
the execution to the parallel hardware. Extending the analysis to a
more powerful purity analysis would require changes only to the
analysis and continuation functions (and potentially an extension
of the lattice for a finer granularity) and would not introduce any
additional complexity related to the parallelization.

For a more complex analysis, we implemented a solver3 for
IFDS. This implementation was adapted from the IFDS solver in the
OPAL framework with only minor changes to support the different
dependency handling. IFDS (cf. Appendix) is a general framework
for dataflow analyses and has been implemented numerous times
(e.g., in WALA [39], Heros [3], Flix [21] or IFDS-A [33]). It has been
parallelized in the past and we evaluate our performance against
the state-of-the-art IFDS solver Heros. IFDS-A’s implementation
was never publicly available, however. WALA and Flix do not even
have a parallel implementation. Flix’s implementation in particular
is only a proof-of-concept that ceased to work with current versions
of Flix.

Our implementation makes use of MonotonicUpdaters, which re-
duces the number of large set operations. It requires sequential
updates as it maintains mutable state between the continuation
invocations to keep track of dataflow edges already known. Thus,
the parallelization is semi-implicit in the case of the IFDS solver.

Using our IFDS solver, we implemented a taint analysis as a client
analysis used in the rest of the evaluation. This analysis is inspired
by FlowTwist [20] and identifies public or protected methods in the
Java Runtime 7 (rt.jar) with return type java.lang.Object or
java.lang.Class that have a string parameter that is later used
in an invocation of java.lang.Class.forName. If such flows are
found, attackers may get the ability to load a class of their choice.
The analysis tracks local variables and is field-sensitive.

RA2 is able to provide (semi-)implicit parallelization to the simple
purity analysis as well as the significantly more complex IFDS
solver. Both analyses are very different in their kind and there is no
specialized support for any of them implemented in RA2, indicating
that RA2 is applicable to different kinds of static analyses.

3.2 RQ2: Scheduling Strategies
To answer RQ2, we evaluated different scheduling strategies for
both the IFDS and purity analysis introduced above. The execu-
tion times reported are for ten threads each, corresponding to the
number of physical cores of our system.

IFDS Analysis. We evaluated the performance for the analysis-
independent strategies. Table 1 shows the median execution times
2Only within the main function one Future needs to be awaited.
3https://github.com/phaller/reactive-async/tree/v2.0.0/core/src/test/scala/com/
phaller/rasync/test/opal/ifds

434

https://github.com/phaller/reactive-async/tree/v2.0.0/core/src/test/scala/com/phaller/rasync/test/opal/ifds
https://github.com/phaller/reactive-async/tree/v2.0.0/core/src/test/scala/com/phaller/rasync/test/opal/ifds

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini

Table 1: Performance of scheduling strategies for IFDS
Speed-up shown compared to (a) default and (b) slowest strategy.

Strategy Run
time [s]

Speed-up
(a)

Speed-up
(b)

DefaultScheduling 27.29 0.00% 13.3%
SourcesWithManyTargetsLast 21.00 23.1% 33.3%
TargetsWithManySourcesLast 19.84 27.3% 37.0%
TargetsWithManyTargetsLast 29.31 -7.40% 6.86%
SourcesWithManySourcesLast 21.40 21.6% 32.0%

for each strategy when using ten threads. The percentages show
the speed-up of each strategy compared to (a) the default strategy
and (b) the slowest strategy.

We did notmeasure the xFirst strategies, as theywere determined
to perform poorly for IFDS. For example, TargetsWithManySourcesFirst
took more than 900 seconds using a single thread, thereby per-
forming more than 1100% worse than its counterpart, the best-
performing TargetsWithManySourcesLast strategy.

The data shows that using a suitable scheduling strategy can have
a significant impact on execution time. Considering the evaluated
strategies, TargetsWithManySourcesLast is the best strategy for our IFDS
analysis. It is 37.0% faster than the worst strategy presented here
(excluding the above-mentioned poorly performing strategies) and
27.3% faster than the default. Relative standard deviations (RSD) for
the reported measurements are between 4.0% and 10.4%. Figure 3
gives a graphical representation of the performance of the different
scheduling strategies for different thread counts.

The effect of each strategy is application-dependent and may
differ with the number of cells, the number of dependencies and
cycles, and the costs of the used continuation functions. The ad-
vantage of TargetsWithManySourcesLast for the IFDS analysis can be
explained by considering the aggregation of results; i.e., avoiding
notifications of dependers. In the case of cells with many sources it
pays off to hold back the update as long as possible, because this
potentially allows aggregation with updates from other sources.
Recall that before a continuation is actually invoked, the most cur-
rent value(s) is(are) queried again and passed to the continuation
in an aggregated form.

That way, the target cell can compute its result on a larger batch
of information in one step as opposed to multiple small steps, which
would be needed, if the cell was informed prematurely. This strategy
works well for IFDS, because all propagations need to be handled
in the same way and there are no special values, which would lead
to early finalization of cells and could therefore be advantageous,
as in the case of the purity analysis.

Purity Analysis. In addition to the analysis-independent strate-
gies, we used the previously introduced LatticeValueStrategy adapted
to the purity analysis. It makes use of the specific effect an update of
a source cell may have on a target cell. If a dependee is impure, we
can immediately decide on the purity of the depender and complete
it with the value impure. The strategy gives such propagations a
high priority as they lead to final results quicker. In contrast, if a
cell is completed with pure, a target cell can just kill the dependency,
because that update will not affect the current cell’s value.

Table 2: Runtimes and speed-ups for the Purity Analysis
Speed-up shown compared to (a) default and (b) slowest strategy.

Strategy Run
time [s]

Speed-up
(a)

Speed-up
(b)

DefaultScheduling 0.42 0.00% 40.8%
SourcesWithManyTargetsFirst 0.70 -66.7% 1.41%
SourcesWithManyTargetsLast 0.70 -66.7% 1.41%
TargetsWithManySourcesFirst 0.71 -69.0% 0.00%
TargetsWithManySourcesLast 0.71 -69.0% 0.00%
TargetsWithManyTargetsFirst 0.69 -64.3% 2.82%
TargetsWithManyTargetsLast 0.68 -61.9% 4.23%
SourcesWithManySourcesFirst 0.68 -61.9% 4.23%
SourcesWithManySourcesLast 0.69 -64.3% 2.82%
LatticeValueStrategy 0.71 -69.0% 0.00%

Table 2 shows the results for all strategies using ten threads
along with their relative speed-ups. The DefaultStrategy is signifi-
cantly faster than the other strategies for this experiment. The other
strategies, including the LatticeValueStrategy that prioritizes impure
updates, show no significant differences in runtime. Relative stan-
dard deviations are between 1.0% and 6.1%. The HandlerPool uses
a java.util.concurrent.ThreadPoolExecutor for pluggable scheduling
strategies as this allows the necessary priority queue to be supplied.
For DefaultStrategy, however, a java.util.concurrent.ForkJoinPool is
used that already implements a work stealing LIFO queuing scheme.
We believe that the DefaultStrategy is faster, because the continu-
ation tasks created by the simple purity analysis are extremely
small. This gives the default ForkJoinPool an advantage over the
more complex ThreadPoolExecutor used for the other strategies.

The purity and IFDS analyses benefits from different strategies,
emphasizing the need for pluggable, user-supplied strategies. While
the analysis specific strategy did not benefit the simple purity anal-
ysis, it has been shown in the past [33] that such strategies can
further improve performance.

3.3 RQ3: Scalability with Thread Count
To answer RQ3, we measured the speed-ups that RA2 achieves
for different thread counts compared to the nearly identical solver
that uses OPAL’s single-threaded, but highly optimized fixed-point
computations framework4 [28]. The IFDS client analysis is identical.
The goal is to evaluate the overhead and benefits of parallelization.

Figure 3 shows how the performance changes with the number
of threads used for the IFDS analysis. Depending on the scheduling
strategy, the speed-up with two threads compared to one thread is
between 1.6x and 2.0x. Note that better strategies in general show
lower speed-ups. When increasing the number of threads further,
the speed-up increases up to 6.2x for 20 threads. With speed-ups of
more than 4.8x for 10 threads, according to Amdahl’s law, more than
88% of the execution is parallelized. Relative standard deviations
for the reported measurements are between 1.8% and 13.7%.

The RA2-based implementation of the IFDS analysis is 28%
slower than the sequential implementation in OPAL when a single

4Version 3.0.1-SNAPSHOT

435

A Programming Model for Semi-implicit Parallelization of Static Analyses ISSTA ’20, July 18–22, 2020, Virtual Event, USA

0

20

40

60

80

100

120

140 DefaultScheduling
SourcesWithManyTargetsLast
TargetsWithManyTargetsLast
TargetsWithManySourcesLast
SourcesWithManySourcesLast
OPAL - Sequential
Heros

R
un

tim
e

(s
)

Threads
1 5 10 15 20

20

25

30

35

Figure 3: Performance with different numbers of threads

thread is used. The latter yielded runtimes of 58.0 seconds (RSD
8.5%), compared to 74.3 seconds for our best strategy. As expected,
RA2 is slowed down by overhead related to enabling concurrency,
which in this case is not needed. However RA2 clearly outperforms
OPAL as soon as multiple threads are used. For the best strategy
the speed-up over OPAL ranges between 1.3x with two threads,
2.9x with 10 threads, and 3.0x with 20 threads.

3.4 RQ4: Comparison to Other IFDS Solvers
To answer RQ4, we compare our IFDS analysis to several other
state-of-the-art systems.

First, we compare the performance and speed-ups achieved to
Heros5 [15]. We used Heros because it is parallelized and also inde-
pendent of the static analysis framework. It is very mature, widely
used and freely available. As we also compared to OPAL’s solver
and as our analysis is based on OPAL’s three address code repre-
sentation, we again used this representation as the basis for our
analysis in Heros. By using the exact same base technology stack
for both analyses, we ensure that we compare the raw performance
of the solvers and that the results are not skewed by other tech-
nical differences. The IFDS client analysis was adapted to Heros’
interfaces, but performs the same analysis. Heros took 85.7 seconds
on a single thread, 28% less than our DefaultScheduling, but already
15% more than our best strategy. For all thread counts measured,
Heros had lower speed-ups than our best strategy (which is also
the one with the lowest speed-ups), with a maximum of 2.36x at 8
threads. In comparison, our best strategy had a speed-up of 3.53 at 8
threads. Using more than 8 threads, Heros’ performance decreased
significantly, while RA2’s performance increased until 16 threads
(with a speed-up of 3.98x for the best strategy) and did not decrease
significantly for 20 threads. Relative standard deviations for Heros
were between 2.1% and 5.7%.

A direct empirical comparison with a parallelized implementa-
tion of IFDS using Actors [33] is unfortunately not possible. The
solution was never publicly available and—according to the authors
whom we contacted—is now practically impossible to get work-
ing again due to dependencies on unavailable and outdated beta
5Commit id: 46dda652

versions of libraries. However, they have also benchmarked their
solution against a sequential implementation and we compare their
speed-ups with our speed-ups against the sequential implementa-
tion using OPAL. The authors of IFDS-A reported a speed-up of
3.35x on 16 threads on eight cores compared to their own sequen-
tial implementation. Our implementation, on the other hand, using
again 16 threads (on 10 cores), achieves a speed-up of 3.11x over
OPAL’s highly optimized sequential implementation. Therefore,
the performance of our implementation seems to be comparable
to theirs, while our programming model is analysis-independent
and, therefore, not specialized to IFDS. Among other things, the
fact that two different baselines are used makes obvious that this
comparison must be considered with caution and only as a work
around the fact that a real comparison is not possible.

Finally, we evaluate against WALA 1.5.2 [39] as it provides an-
other mature single-threaded IFDS implementation. As with Heros,
we adapted the IFDS client analysis, this time with more effort
because WALA’s IFDS solver is not framework independent. The
analysis was, however, thoroughly checked to be equivalent to the
one used with RA2 and OPAL. To overcome framework differences
related to the underlying call graphs used by the different frame-
works [31], we generated and serialized WALA’s RTA call graph
using Judge [30] and deserialized it with OPAL. This ensures that
the analyzed state space is equal. AsWALA timed out after 10 hours
when, analyzing the JDK, we performed a comparison with WALA
on JavaCC 5.0. For this setup, WALA took 12.7 seconds (RSD 3.1%),
while RA2, using the DefaultScheduling strategy, took 4.2 seconds on
one thread (RSD 15.1%) and gave a speed-up of 4.5x (0.9 seconds,
RSD 7.1%) using 16 threads. TargetsWithManySourcesLast, RA2’s best
strategy, took 0.70 seconds on 16 threads (RSD 4.9%).

Concluding remarks. Overall, the experiments reported in this
subsection clearly indicate that RA2 outperforms state-of-the-art
parallel IFDS solvers. Compared with the state-of-the-art IFDS
solver Heros, our implementation is faster on one thread, achieves
higher speed-ups and scales to more threads. It also outperforms
WALA’s IFDS solver significantly and seems to provide at least
similar speed-ups as a specialized actor-based IFDS solver, despite
being semi-implicit and analysis-independent.

4 THREATS TO VALIDITY
A threat to the validity of our claim about RA2 being able to provide
semi-implicit parallelization of static analyses independent of the
analysis, could be the evaluation of only two specific analyses,
namely a purity analysis and an IFDS solver. We have tried to
mitigate this threat by choosing two analyses as case studies that are
fundamentally different in several ways. First, in their complexity,
with the purity analysis being very simple and the IFDS solver being
significantly more complex, but also in their use of the features
provided by RA2’s programming model: while the purity analysis
uses a singleton value lattice and the AggregationUpdater to perform
joins automatically, the IFDS solver uses set-based properties and
the MonotonicUpdater as joins are performed implicitly by the analysis.
Additionally, the IFDS solver makes use of mutable state shared
between the continuation invocations while the purity analysis
does not. The evaluation also showed that these analyses benefit
from pluggable scheduling strategies in different ways. Based on

436

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini

this, we claim that our two studies span a wide range of analysis
kinds.

A threat to the validity of our evaluation results is that a direct
comparison was only possible to the parallel IFDS solver Heros, but
not to the related IFDS-A solver, as its implementation is not avail-
able. We, however, compared our speed-ups against an equivalent
sequential analysis in OPAL to those reported by the authors of
IFDS-A. We also evaluated our analysis against another sequential
IFDS solver from WALA, while another related IFDS solver from
Flix is not working anymore and thus could not be compared.

5 RELATEDWORK
Parallel Static Analyses. There exist several previous efforts to

parallelize the solution of static analysis problems.
Heros [3, 15] is a parallel, state-of-the-art IFDS solver [32]; it is

one of the benchmark implementations in our experimental evalu-
ation (see Section 3). Later approaches, e.g., Boomerang [38] that
built upon Heros, were not parallelized at all, however.

Méndez-Lojo et al. [26] parallelized a points-to analysis algo-
rithm using the Galois system [17, 18] - a programming system
for thread-safe parallel iteration over unordered sets. Like RA2,
their approach relies on an underlying programming framework
to provide thread-safety out-of-the-box to the analyses. Unlike the
programming model underlying RA2, Galois is, however, a generic
framework for concurrent programming over unordered sets and
it is not specifically tailored to static analysis. For example, it does
not provide support to automatically find fixed-points. As a result,
the approach by Méndez-Lojo et al. is not directly applicable for
the parallel execution of static analyses like RA2.

Rodriguez and Lhotak present IFDS-A [33], an algorithm for solv-
ing IFDS dataflow analysis problems using the actor model [1, 16] of
concurrency. In order to apply IFDS-specific scheduling strategies,
the authors were required to completely exchange the Scala Actors
scheduler [12] with their own implementation. Combinedwith their
custom strategy, this was necessary for significant performance
improvements. The authors reported that IFDS-A outperforms their
own equivalent sequential IFDS reference implementation with 4 or
more cores with a speed-up of 3.35x using 16 threads. In contrast to
IFDS-A, our approach is not limited to parallelizing IFDS, e.g., Sec-
tion 3 evaluates a parallel purity analysis not based on IFDS. While
being more general and using a scheduling strategy not specific
to IFDS, our approach achieves a speed-up of up to 3.11x over an
equivalent, optimized sequential implementation using 16 threads.
At the same time, our approach outperforms sequential IFDS using
2 cores only (by 1.3x) instead of 4 cores as in the case of IFDS-
A. Finally, our pluggable scheduling strategies enable significant
performance improvements (see Section 3).

In the area of points-to analyses, Datalog has been used exten-
sively as the underlying programming framework [4, 9, 40, 41].
Analyses are specified in terms of Datalog rules and executed us-
ing Datalog solvers. The use of parallel solvers enables automatic
parallelization. Soufflé [37] is a parallel Datalog solver specifically
developed for static analyses. It takes the analysis specification
as an input and compiles it to a C++ program. Soufflé makes use
of OpenMP, e.g., to parallelize nested join loops. Using 4 cores, a
speed up of 2.1x compared to the sequential version was achieved.

Similar speed-ups of over 2x have been reported for the Doop static
analysis framework when using Soufflé as its underlying solver,
but using 4 to 8 threads on 24 cores [2]. In contrast to RA2, these
approaches only work on set-based lattices.

Flix [21] overcomes this issue–it is a declarative, rule-based lan-
guage inspired by Datalog, capable of solving arbitrary fixed-point
computations on lattices. Even though Flix is amenable to auto-
matic parallelization due to its declarative nature, no parallel solver
has been proposed for it yet. At some point in the past, Flix also
provided a proof-of-concept implementation of IFDS, however, this
is not working with the current version of Flix anymore.

Reactive Frameworks for Static Analyses. Reactive programming
provides abstractions for event streams and time changing values
(signals) [7, 22, 24, 27, 35, 36], which are well-suited for smart depen-
dency management for static analyses. However, general-purpose
reactive programming approaches cited above organize computa-
tions in an acyclic graph – by being general-purpose, they have no
means to resolve cycles out-of-the box and hence the requirement
that the graph is acyclic. However, cyclic data dependencies are
essential for the target domain of static analysis. To address this
need, the reactive programming framework underlying RA2 is more
specialized. It is a reactive framework for time efficient, concurrent,
fixed-point computation on lattices, which enables it to resolve
cycles in a general way. We build on our previous work, Reactive
Async [10], a programming system for deterministic concurrency
in Scala that extends lattice-based shared variables, LVars [19], with
cyclic data dependencies, which are resolved after the computation
has reached a quiescent state and shared variables are no longer
updated. RA2 significantly extends upon Reactive Async. First, RA2
allows shared variables (cells) to use a sequential update strategy,
enabling continuations to safely access shared mutable state by
executing them sequentially. Supporting shared mutable state is es-
sential for implementing a state-of-the-art IFDS solver which is the
basis for our experimental evaluation (see Section 3). Second, RA2
allows custom cell updaters such that monotonicity violations are
detected dynamically while expensive additional joins can be omit-
ted. Third, RA2 supports pluggable scheduling strategies which,
as shown in Section 3, have a significant performance impact and
allow analysis-specific tuning of the parallelization. Finally, aggre-
gation of updates, both for a single dependee and across multiple
dependees, reduces the number of continuation invocations for
further performance improvements.

6 SUMMARY AND FUTUREWORK
In this paper, we proposed a new programming model for paral-
lelizing static analyses based on the ideas and concepts of reac-
tive programming, that (I) is semi-implicit, requiring only minor
adaptions to analyses to benefit from parallelization, (II) is analysis-
independent, lending itself very well towards the implementation
of a wide range of static analyses, including purity and data-flow
analyses. On top of our framework, which implements the proposed
model, we implemented an IFDS solver and used the latter to imple-
ment a classical taint-flow analysis. The evaluation shows that our
approach, while analysis-independent, is able to significantly out-
perform the highly-specialized, explicitly parallelized IFDS solver
Heros, achieving both better performance and scalability.

437

A Programming Model for Semi-implicit Parallelization of Static Analyses ISSTA ’20, July 18–22, 2020, Virtual Event, USA

0 a bmain()

val a = source()

val b = bar(a)

sink(b)

0 x ybar(x: Any)

val y = x

return y

Figure 4: Simple IFDS taint analysis

In future work, we plan to investigate whether on-the-fly profil-
ing could be used by Reactive Async to automatically find the best
scheduling strategy. Furthermore, we will investigate how to inte-
grate speculative parallelization techniques to further increase the
overall degree of parallelization. The presented programmingmodel
requires explicit continuations for processing updates of analysis
results. By building on previous work on direct-style concurrency
in Scala [11, 34], we plan to remove these explicit continuations,
thereby making the programming model easier to use. Moreover,
we would like to conduct user studies in order to evaluate the effect
of our semi-implicit parallelization approach on program compre-
hension. Finally, our experimental evaluation suggests that the
development of a standard benchmark suite for parallel program
analyses will be needed in the future to ensure faithful comparisons
between a growing number of approaches and frameworks.

ACKNOWLEDGMENTS
This work was supported by the DFG as part of CRC 1119 CROSS-
ING, by the German Federal Ministry of Education and Research
(BMBF) as well as by the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) within their joint support of
the National Research Center for Applied Cybersecurity ATHENE.

APPENDIX
This appendix provides a short introduction to the IFDS analy-
sis framework [32] for interprocedural, finite, distributive subset
problems. IFDS is a dataflow analysis framework based on graph
reachability that provides context- and flow-sensitivity. IFDS anal-
yses are given by a finite domain of boolean facts that may or may
not hold at a specific statement of the program. Four so-called flow-
functions then need to be defined by users to define the effects of
statements on the dataflow facts.

As shown in Figure 4, which depicts a simple taint analysis, the
dataflow facts (here, whether a local variable is tainted) at each
statement are represented by nodes. The edges are given by the flow-
functions which describe the effects of non-call statements (normal
flow, regular edges) and of call statements (call flow mapping facts
from the caller’s scope to the callee’s scope, dashed edge from main
to the beginning of bar; return flow mapping facts back to the
caller’s scope, dashed edge from the end of bar back to main; call-
to-return flow for facts unaffected by the call, dashed edges inside
main). The resulting graph is known as the exploded supergraph of
the program as it is an expansion of the program’s interprocedural
control-flow graph. The special fact 0 represents the tautological

fact that holds everywhere. A fact is considered to hold at a program
statement if it is reachable from the 0 fact. IFDS is efficient by
reusing parts of the graph computed for one method by computing
path edges (e.g., thin red edge in Figure 4) which summarize for
a function whether a node is reachable given the reachability of a
node at the method’s start.

REFERENCES
[1] Gul A. Agha. 1990. ACTORS - A Model of Concurrent Computation in Distributed

Systems. MIT Press.
[2] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017.

Porting Doop to Soufflé: a Tale of Inter-Engine Portability for Datalog-Based
Analyses. In Proceedings of the 6th ACM SIGPLAN International Workshop on State
Of the Art in Program Analysis. ACM, 25–30.

[3] Eric Bodden. 2012. Inter-procedural Data-flow Analysis with IFDS/IDE and Soot.
In SOAP. 3–8.

[4] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA’09). 243–262.

[5] DoopBenchmarks [n.d.]. Doop Benchmarks. https://bitbucket.org/yanniss/doop-
benchmarks.

[6] M. Eichberg, F. Kübler, D. Helm, M. Reif, G. Salvaneschi, and M. Mezini. 2018.
Lattice Based Modularization of Static Analyses. In Companion Proceedings for
the ISSTA/ECOOP 2018 Workshops (ISSTA’18). ACM, 113–118.

[7] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Proceedings
of the Second ACM SIGPLAN International Conference on Functional Programming
(ICFP ’97). ACM, New York, NY, USA, 263–273.

[8] David Grove and Craig Chambers. 2001. A Framework for Call Graph Construc-
tion Algorithms. TOPLAS 23, 6 (Nov. 2001), 685–746.

[9] Elnar Hajiyev, Mathieu Verbaere, and Oege De Moor. 2006. Codequest: Scalable
Source Code Queries with Datalog. In European Conference on Object-Oriented
Programming (ECOOP’06). Springer, 2–27.

[10] Philipp Haller, Simon Geries, Michael Eichberg, and Guido Salvaneschi. 2016.
Reactive Async: Expressive Deterministic Concurrency. In SCALA@SPLASH.
ACM, 11–20.

[11] Philipp Haller and Heather Miller. 2019. A Reduction Semantics for Direct-Style
Asynchronous Observables. J. Log. Algebr. Meth. Program. 105 (2019), 75–111.

[12] Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying Thread-Based
and Event-Based Programming. Theoretical Computer Science 410, 2-3 (2009),
202–220.

[13] Tim Harris and Satnam Singh. 2007. Feedback Directed Implicit Parallelism. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming (ICFP’07). Association for Computing Machinery, New York, NY,
USA, 251–264.

[14] Dominik Helm, Florian Kübler, Michael Eichberg, Michael Reif, and Mira Mezini.
2018. A Unified Lattice Model and Framework for Purity Analyses. In ASE. ACM,
340–350.

[15] Heros [n.d.]. Heros IFDS/IDE Solver. https://github.com/Sable/heros.
[16] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A Universal Modular

ACTOR Formalism for Artificial Intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence (IJCAI). Standford, CA, USA, August 20-23,
1973. William Kaufmann, 235–245.

[17] Milind Kulkarni, Martin Burtscher, Rajasekhar Inkulu, Keshav Pingali, and Calin
Cascaval. 2009. How much Parallelism is there in Irregular Applications?. In
PPoPP. ACM, 3–14.

[18] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. 2007. Optimistic Parallelism Requires Abstractions. In
PLDI. ACM, 211–222.

[19] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton.
2014. Freeze After Writing: Quasi-Deterministic Parallel Programming with
LVars. In POPL. ACM, 257–270.

[20] Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. 2014. FlowTwist:
Efficient Context-Sensitive Inside-Out Taint Analysis for Large Codebases. In
SIGSOFT FSE. ACM, 98–108.

[21] Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to Flix:
A Declarative Language for Fixed Points on Lattices. In PLDI. ACM, 194–208.

[22] A. Margara and G. Salvaneschi. 2018. On the Semantics of Distributed Reactive
Programming: The Cost of Consistency. IEEE Transactions on Software Engineering
44, 7 (2018), 689–711.

[23] Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime Support
for Multicore Haskell. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming (ICFP’09). Association for Computing
Machinery, New York, NY, USA, 65–78.

438

https://bitbucket.org/yanniss/doop-benchmarks
https://bitbucket.org/yanniss/doop-benchmarks
https://github.com/Sable/heros

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini

[24] Erik Meijer. 2010. Reactive Extensions (Rx): Curing Your Asynchronous Pro-
gramming Blues. In ACM SIGPLAN Commercial Users of Functional Programming
(CUFP ’10). ACM, New York, NY, USA, Article 11, 1 pages.

[25] Mario Méndez-Lojo, Martin Burtscher, and Keshav Pingali. 2012. A GPU Imple-
mentation of Inclusion-Based Points-to Analysis. In PPoPP. ACM, 107–116.

[26] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. 2010. Parallel
Inclusion-Based Points-to Analysis. In OOPSLA. ACM, 428–443.

[27] Leo A.Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and ShriramKrishnamurthi. 2009. Flapjax: A Programming
Language for Ajax Applications. In Proceeding of the 24th ACM SIGPLAN Con-
ference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’09). ACM, New York, NY, USA, 1–20.

[28] Opal [n.d.]. OPAL. https://github.com/stg-tud/opal.
[29] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary W. Hall. 2011.

EigenCFA: Accelerating Flow Analysis with GPUs. In POPL. ACM, 511–522.
[30] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.

2019. Judge: Identifying, Understanding, and Evaluating Sources of Unsoundness
in Call Graphs. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ACM, 251–261.

[31] Michael Reif, Florian Kübler, Michael Eichberg, andMiraMezini. 2018. Systematic
Evaluation of the Unsoundness of Call Graph Construction Algorithms for Java.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops. ACM, 107–112.

[32] ThomasW. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural
Dataflow Analysis via Graph Reachability. In POPL. ACM, 49–61.

[33] Jonathan Rodriguez and Ondrej Lhoták. 2011. Actor-Based Parallel Dataflow
Analysis. In CC. Springer, 179–197.

[34] Tiark Rompf, Ingo Maier, and Martin Odersky. 2009. Implementing First-
Class Polymorphic Delimited Continuations by a Type-Directed Selective CPS-
Transform. In Proceeding of the 14th ACM SIGPLAN International Conference on
Functional programming (ICFP’09). ACM, 317–328.

[35] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: Bridging
Between Object-oriented and Functional Style in Reactive Applications. In Pro-
ceedings of the 13th International Conference on Modularity (MODULARITY’14).
ACM, New York, NY, USA, 25–36.

[36] Guido Salvaneschi and Mira Mezini. 2016. Debugging for Reactive Program-
ming. In Proceedings of the 38th International Conference on Software Engineering
(ICSE’16). Association for Computing Machinery, New York, NY, USA, 796–807.

[37] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On Fast
Large-Scale Program Analysis in Datalog. In Proceedings of the 25th International
Conference on Compiler Construction. ACM, 196–206.

[38] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016.
Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java. In ECOOP (LIPIcs), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 22:1–22:26.

[39] Wala [n.d.]. Wala. http://wala.sourceforge.net.
[40] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Us-

ing Datalog with Binary Decision Diagrams for Program Analysis. In Asian
Symposium on Programming Languages and Systems. Springer, 97–118.

[41] John Whaley and Monica S. Lam. 2004. Cloning-Based Context-Sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design and Implementation
(PLDI’04). Association for Computing Machinery, New York, NY, USA, 131–144.

439

https://github.com/stg-tud/opal
http://wala.sourceforge.net

	Abstract
	1 Introduction
	2 Approach
	2.1 Programming Model Basics
	2.2 Advanced Constructs for Correctness
	2.3 Handler Pool
	2.4 Scheduling
	2.5 Reactive Async 2 at Work

	3 Evaluation
	3.1 RQ1: Applicability
	3.2 RQ2: Scheduling Strategies
	3.3 RQ3: Scalability with Thread Count
	3.4 RQ4: Comparison to Other IFDS Solvers

	4 Threats to Validity
	5 Related Work
	6 Summary and Future Work
	Acknowledgments
	References

