
A learning layered agent model
Assignment in the agent programming course at DSV

(Stockholm University and KTH) 2I1235, 2003

Group 8:
Yet Another Chess Playing Multi-Agent System

(YACP-MAS)

28th May 2003

Table 1: Group members
Pedro Navarette Estrella
Christian Fernandes
Ronnie Johansson
Krister Ljung
Anders Windelhed

Abstract

Designing agent behaviors is rarely straight forward, especially if the natural
environment of the agent is open and complex (as is the case of the Internet).
In this paper, we describe our behavior discriminative agent (BDA) model which
aims at supporting designers of such agents. The behaviors are here themselves
represented by agents so the BDA agent comprises a multi-agent system, where
behavior agents interact with a coordinator agent which decides the actions of the
BDA agent.

The BDA agent uses the Q-learning technique and learns by sensing the con-
sequences of its actions and updates its belief in the behaviors continually.

We implement our agent model in a chess game setting and present some early
results.

Contents

1 Introduction 1

2 The Behavior Discriminative Agent Model 2

3 Reinforcement learning 3

4 Experiments 4
4.1 Experiment setup . 4
4.2 Behavior agents . 5
4.3 Coordinator agents . 6
4.4 Simplified state representation . 6
4.5 Calculating reinforcement signals 7
4.6 Results . 7

5 Summary and Conclusion 8

1 Introduction

Even though there appear to be many definitions of agent in use, most agree that an
agent is a situated entity that can perceive its environment and act in it to achieve some
objectives [Wei99, RN95, Nil98].

Over the last couple of decades, researchers have exhibited a tremendous interest
in software agents and the related agent theory. Some researchers believe that soft-
ware agents will lead to improvements in computing, especially in complex, open,
distributed systems[WJ99, Syc98], and consider it to be a new programming paradigm
comparable to object-oriented programming.

As a tool for programming, agents provide programmers with a concept that is easy
to relate to – facilitating a means of managing system complexity and communicating
design between programmers – and also let them explicitly implement system behavi-
ors. However, as pointed out by [WJ99], the success of the agent paradigm is dependent
on our ability to make agents amenable to efficient implementation and execution.

One apparent problem, faced by the agent programmer, that originates from the
often open and, hence, uncertain and complex agent environment (e.g., the Internet) is
to assess the effectiveness of the agent implementation and design. In this, work we
present a layered agent model [Woo99] for detecting inefficient agent design.

There are really two types of layered agent architectures: vertical and
horizontal.[Woo99] In layered architectures, two or more layers, representing beha-
viors, can contribute to the action selection of the agent. There are typically at least
one reactive and one pro-active layer. The reactive behavior is designed to respond
to sudden changes in the environment (e.g., in robotics, obstacle avoidance) and the
pro-active (or deliberative) to deal with mission goals.

In vertically layered architectures, control flow (from perception to action) is passed
through all layers to force a consensus. In horizontally layered architectures, however,
each layer separately perceives the environment and proposes an action. Horizontally
layered architectures, thus, requires a centralized mechanism to determine the output
action.

We have chosen to study a horizontally layered architecture where the layers rep-
resent various competences. In the horizontally layered architecture, a layer can easily
be removed and possibly replaced with another competence if it is recognized to be
inefficient. Contrary to a vertically layered architecture, this can be done with minimal
affect on the other layers.

Notice that the layers in a horizontal architecture all perceive and suggest actions.
The layers are, thus, agents in that sense. Hence, what we have in our model is actually
an agent architecture composed of simpler agents, a multi-agent system. The architec-
ture includes at least one agent that suggests actions, and one agent that is responsible
for selecting which action to use.

As mentioned above, the purpose of our study is to support design of agent beha-
viors. In accordance with [Bro90], we believe that “the world is its own best model”
and, hence, we want inefficient behaviors to be singled out by learning from the envir-
onment. In effect, we propose a learning agent model called behavior discriminative
agent model (BDA).

Even though the general horizontal architecture supports continual action selection,
we here, for simplicity, just study the situation where several behaviors (all actually)
suggest an action each at the same time.

Our work is related to that of [Lin93], but have a different aim. In [Lin93], Q-
learning is used to learn to use which behavior (agent) and when, just as in our model.

1

The difference, is however, that the problem of the agent is assumed to be decompos-
able into subtasks and that each behavior agent is specialised on one of the subtasks. In
contrast, in our work, we do not assume that a behavior agent knows how to perform
its task efficiently.

Section 2 describes our multi-agent architecture in more detail. An extensive ex-
planation of the learning techniques used for isolating inefficient behaviors is explained
in Section 3. In Section 4 we show that inefficient behaviors can actually be isolated
by learning, and, finally, in Section 5 we conclude our work.

2 The Behavior Discriminative Agent Model

As mentioned in Section 1, we propose a learning agent model (the higher-level agent),
composed of lower-level agents, i.e., behavior agents and a coordinator agent (see
Figure 1). All agents perceive their environment. Behavior agents suggest suitable
actions for the higher-level agent to perform in the environment, and the coordinator
decides a resulting action considering the suggestions of the behavior agents.

Selecting a suitable action (or, in this case, a suitable agent) requires an action
selection mechanism. In [Pir99], such mechanisms are divided into two groups, one
called command fusion and the other arbitration. Command fusion mechanisms al-
low multiple behaviors to contribute to the resulting action of the higher-level agent.
The arbitration mechanism, on the other hand, only allows one behavior to be act-
ive at a time. To make the actions of the higher-level agent more “pure”, we prefer
the latter mechanism which avoids making vain compromised actions. The arbitration
mechanism will also allow the coordinator to learn which behavior is appropriate and
inappropriate, respectively.

agents
Lower−level

Coordinator Behavior

Higher−level agent (BDA)

Figure 1: Our agent model (the higher-level agent which we call BDA) is composed of
lower-level agents.

An agent assigns a high value to its suggested action if it believes it will bring the
overall system closer to its objectives, or a low value if it believes the action to have
just a small impact or if it is unsuitable.

Communication among the lower-level agents primarily concerns actions that be-
havior agents suggest to the coordinator agent. Behavior agents may communicate
among each other, but it is not required, and may sometimes be unsuitable since it
increases the coupling between the agents (i.e., the interdependence). There are no
special restrictions on the behavior agents, how they come up with a suggestion for an
action.

2

It becomes the responsibility of the coordinator agent to detect inefficient behavi-
ors. By carefully observing the results of the actions of the different behaviors, the
coordinator will learn that some behaviors may be more beneficial for some environ-
ment states. It will also be able to single out behaviors that are always less efficient
than others.

Among various learning techniques, for instance supervised learning, we have se-
lectedreinforcement learning for our model.[KLM96] Unlike supervised learning, re-
inforcement learning does not rely on examples, but learns directly from the environ-
ment. In the next section, we will describe reinforcement learning in more detail.

3 Reinforcement learning

Reinforcement learning addresses the problem of how an acting and sensing agent can
learn to perform the right action given the state that it is in. However, for the agent to be
able to know when it has done something right it also needs areward or reinforcement.
Given this information, the agent can learn to choose an action in a given sensed state
so that the reward will be maximized.

The idea is illustrated in Figure 2, where the agent perceives the state to generate
both and interpretation of the current state (the I-module) and a reward (the R-module)
to evaluate the consequences of previous actions.

stateaction

Coordinator

I

R

YACP−MAS

Environment

Figure 2: Reinforcement learning i YACP-MAS

The method used to learn which action to take in YACP-MAS is Q-learning (see
for instance [Mit97, KLM96]), where the agent learns an action-value function, or
Q-function. This Q-function returns the expected reward of taking a given action in a
given state. Q-learning agents have the advantage that they do not need to have a model
of the state space, i.e., they do not need to know the outcome of their actions, however
this also means they cannot look ahead.

In the Q-learning algorithm a function Q(s,a) is learned that maps every action a
and the current state s to an expected reward gained from choosing action a.

When choosing an action however, it’s not as simple as maximizing Q(s,a) as this
would lead to choosing actions that have been found early in training to have high
Q(s,a) values while it might miss other actions with even higher values. Therefore a

3

probabilistic approach is used to select actions

P(ai|s) =
kQ(s,ai)

∑ j kQ(s,a j)

where P(ai|s) is the probability of choosing action i when in state s, and k≥1 is a
constant that determines how strongly the selection favors higher valued actions. Thus
increasing k as time progresses will cause the agent to go from exploring different
actions during the early stages of learning, and then as k increases the agent will exploit
the Q(s,a) values more by choosing the higher valued actions.

The Q-function is updated according to the following rule when it performs an
action a leading it to a new state st+1 from the old state st and receives the reward
R(st).

Q(st ,a) ← Q(st ,a)+α(R(st)+γmax
a′

Q(st+1,a
′)−Q(st ,a)) (1)

The 0≤γ≤1 parameter indicates how important future rewards are. γ = 0 means
that the agent is only interested in immediate rewards. 0≤α≤1 is the learning rate
parameter. It determines how much the learning process should react to rewards. A
low value on α will lead to a slow convergence of the Q-function, while a high value
may lead to exaggerated updates of the Q-function.

An extension, TD-learning, which we used, updates the Q-function not just in the
previous state and action, but also in some of the previous states and actions (as shown
in Equation 2). An extra memory, the eligibility trace e(a,s), keeps track of previous
states and actions.

Q(s,a) ← Q(s,a)+α(R(st)+γmax
a′

Q(st+1,a
′)−Q(s,a))e(s,a) (2)

where the eligibility trace is updated in the following way

e(s,a) =

γe(s,a)+ 1 if s is current state
0 if previous e(s,a) is below some threshold
γe(s,a) otherwise

(3)

4 Experiments

To test our behavior discriminative agent (BDA) model, we attempt to run an agent
based on BDA in an environment using a set of behaviors where one is expected to be
much less efficient than the others. Our approach is to monitor the learning process to
see that the coordinator learns to avoid the inappropriate behavior.

The following subsection provides detailed information about the experiment and
may be skipped. The results of the experiments can be found in Section 4.6.

4.1 Experiment setup

The selected environment is a chess game. This setting provides us with a discrete
action and state space to facilitate the construction of fairly simple agents. Also, For
a designer of a chess playing agent it might be difficult to design suitable behaviors
since the outcome of the game is heavily dependent on the skill and techniques of the
opponent.

Our BDA is provided with three behavior agents (explained in Section 4.2). One is
a specialist in opening moves (only responding to initial states of chess game, otherwise

4

idle). A second agent is using a min-max search of states with alpha-beta pruning. The
third agent uses a modified min-max search which makes sure that it makes the worst
move possible (from the perspective of the BDA agent). Furthermore, the BDA has a
learning coordinator that implements the reinforcement learning technique described
in Section 3.

The implemented BDA competes repeatedly against a sparring partner which is
composed of a coordinator that does not learn but selects randomly between a min-max
search agent and one that makes random moves. The purpose of letting the sparring
agent use a random agent is to allow the BDA agent to experience a greater variety of
states. The idea is depicted in Figure 3.

Opponent
Agent system

Coordinator

Actions

Observations
YACP−MAS

Behavior 2

Behavior nBehavior 1

Chess world

Figure 3: The experiment setup

4.2 Behavior agents

The purpose of the behavior agents is to select a behavior consistent action given the
current environment state. We have developed a few behavior agents as explained
below.

Random agent The random agent is our most simple agent. It receives a list of all cur-
rently possible moves from the chess board object, picks one of them randomly
and sends it as its suggestion to the blackboard. It was created primarily because
we quickly wanted a simple agent to test our system with, but was later used in
experiments to create variation in the games.

Opening agent This opening agent has only one task and that is to deliver the first five
moves to the coordinator. The five moves are a static sequence, which will move
the pieces to a good strategic position and then leave the move-suggestions to the
other agents. There is one opening sequence for white and one for black. If the
sequence should be broken by the opponent taking one of the pieces included in
the sequence, the agent will make no more move-suggestions.

Min-max agents The min-max agents uses a modified version of min-max alpha-beta
search algorithm (see for instance [RN95]). The difference from the ordinary
algorithm is that it does not assume that both players have the same chess board
evaluation function.

5

4.3 Coordinator agents

The BDA coordinator can not propose an action by itself. That would be a violation
of the abstraction used in BDA. Instead, they rely on the behavior agents to generate
appropriate actions. The coordinator of the sparring partner is implement in a similar
way for convenience.

BDA coordinator Has a learning coordinator that implements the reinforcement learn-
ing technique described in Section 3.

Sparring coordinator To evaluate our chess playing system, we created a new, much
simpler system to spar against. The sparring system consists of one random
agent, one min-max alpha-beta agent and a simple coordinator that by 80%
chance picks the move that the min-max agent suggests and 20% chance picks
the move that the random agent suggests. The random agent was included to
create more variation to the game and to simulate an opponent the makes unpre-
dicted moves.

4.4 Simplified state representation

The number of states in a chess game is enormous. It would not be feasible to maintain
a Q-function containing all possible states of the chess game. Instead we interpret the
state of the chess board in a summarized form.

The state is interpreted as a nine bit word (i.e., a maximum of 29 = 512 groups of
states). The two most significant bits represent the current time of the game; is it early
in the game, about the middle of the game, is it late or is the game over.

The following three bits represent the material balance between the two chess play-
ers. Material balance simply reflects the strength of pieces of a player compared to its
opponent. Figure 4 shows how the difference in material value translates to one of
seven values (ranging from -3 to 3).

6

4

2

0

−2

−4

0

−6

−20−30 −10 10 20 30

M
at

er
ia

l s
ta

te

Difference in material value

Figure 4: Simplified description of the difference between the current player and its
opponent.

6

The following two bits reflect a tropism value for each of the two chess players. If
one agent is close to the king with his rooks or queen its bit will be one, otherwise zero.
The same thing goes for the other agent.

The final two bits reflect the current board control of the game, i.e., which player
controls most squares on the chess board. A player controls a square if it can move
more pieces to that square than its opponent.

4.5 Calculating reinforcement signals

The R-module in Figure 2, also known as critic, calculates the reinforcement signal
(i.e., the reward) that the coordinator uses to update the Q-function. If the BDA agent
was in state st when it made it previous move, and it finds itself in state st+1 when it is
time to make the next move, the reinforcement signal R(st) becomes

R(st) = V (st+1)−V(st), (4)

where V (s) is the value of the chess board according to the BDA coordinator. When
calculating V (s), we consider material value, board control, tropism, and development.
The first three were explained in Section 4.4. The fourth gives negatives values to states
where some pieces are blocking other pieces. The selection of these four is somewhat
arbitrary and reflects the objectives of the BDA agent. If the new state was a win or
a loss of the game, the reinforcement signal will be a great positive or great negative
value, respectively.

4.6 Results

To get an idea of the consequences of the implemented learning process and some early
results, we let the BDA agent play about a hundred games of chess. Figure 5 visualizes
the results.

0 10 20 30 40 50 60 70 80 90 100

Number of games

P
ro

ba
bi

lit
y

of
 s

el
ec

tin
g

be
ha

vi
or

Comparison between behaviors
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 5: Probability of selecting the behaviors

For each game, the probabilities of the coordinator selecting the inappropriate be-
havior (the lower curve) and the other behavior are plotted. The probability values

7

summarize the probability of selecting each of the behaviors over all visited states. A
state has been visited if it has been considered during the learning process. The prob-
abilities of the opening agent are not considered as it is only active in a few states. The
probabilities are calculated in this way

P(a) =
∑s∈{visited states} P(a|s)
number of visited states

As can be seen in the figure, the coordinator quickly learns to avoid the inappropri-
ate behavior.

5 Summary and Conclusion

Designing efficient behaviors for agents acting in an open and complex environment
is rarely straight forward. In this paper, we present our behavior discriminative agent
(BDA) model, which should support such design. The idea is to let the agent learn
which behaviors are appropriate and which are not.

We implemented and tested our model in a chess game setting, and provided our
BDA agent with both “good” and “bad” behaviors. Even though the coordinator, in
our experiment, learned to “dislike” the inappropriate behavior fairly quickly, we had
expected a more distinct isolation of that behavior. It could be that a longer learning
time is required to see such result, or perhaps a more careful tuning of the learning
parameters.

In Section 4.6, we tentatively propose a measurement of efficiency (i.e., the sum-
marized probability of selection). However, many others are conceivable. In our case,
one might want to find a suitable threshold (of probability of selection), and discard a
behavior that plunges below this threshold.

For future research, it would be interesting to try more learning settings, finding
suitable thresholds for discarding behaviors, and testing other measures of efficiency.
It would also be interesting to study how different behaviors can complement each
other.

References

[Bro90] Rodney A. Brooks. Elephants don’ t play chess. Robotics and Autonomous
Systems, (6):3–15, 1990.

[KLM96] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Rein-
forcement learning: A survey. Journal of AI Research, 4:237–285, 1996.

[Lin93] Long-Ji Lin. Scaling up reinforcement learning for robot control. In Pro-
ceedings of the Tenth international conference on Machine learning, 1993.

[Mit97] Tom Mitchell. Machine learning. McGraw-Hill, 1997.

[Nil98] Nils J. Nilsson. Artificial Intelligence - A New Synthesis. Morgan Kaufmann
Publishers Inc., 1998.

[Pir99] Paolo Pirjanian. Multi-objective Action Selection and Behavior fusion using
voting. PhD thesis, Aalborg University, 1999.

8

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence - A Modern Ap-
proach. Prentice Hall, Englewood Cliffs, New Jersey, 1995.

[Syc98] Katia P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, Summer
1998.

[Wei99] Gerhard I. Weiss, editor. Multiagent Systems - A Modern Approach to Dis-
tributed Artificial Intelligence. MIT Press, 1999.

[WJ99] Michael Wooldridge and Nicholas Jennings. Software engineering with
agents: pitfalls and pratfalls. IEEE Internet Computing, 3(2):20–28,
May/June 1999.

[Woo99] Michael Wooldridge. Multiagent Systems - A Modern Approach to Distrib-
uted Artificial Intelligence, chapter 1, pages 27–78. In Weiss [Wei99], 1999.

9

