Chapter 14: Stable sets, Bargaining set and the Sharpley Value

Osborne & Rubinstein

Recapitulation

- The core:
 - Game outcomes that no coalition profitably can block
 - Game (N,v)
 - N the set of players
 - v: ${}_{E}N ! R$, characteristic function - v(\emptyset) = 0
 - Payoff vector α 2 R^{N}
 - S μ N, a coalition with payoff α (S)

Core

• The core of (N,v) is $- \alpha(S) \downarrow v(N)$ for 8 S μ N

and

$$- \alpha(N) = v(N)$$

• If α do no exist there is no core, it is <u>not</u> empty

Chapter contents

- Deviations / objections to coalitions
- Stable sets: Coalitions that are stable
- Bargaining Set: Objections and counter objections. Conflict sets between players!
- Shapley value: Greedy negotiation

Stable sets

Imputation *x*

• Objection of a coalition S to the imputation y if $x_i > y_i$ for 8 i2S and x(S)· v(S) named x \hat{A}_S y

• I.e. S objects to y as it dominates it with the payoff x The subset Y¹/₂X of imputations is a **stable set** iff

- Internal stability: If y2Y then @ z2Y with a coalition for which $z\hat{A}_S$ y
- External stability: if z2 X\Y then 9 y2 Y such that $y\hat{A}_S$ z for some coalition S

Stable set properties

- The core is a subset of every stable set
- No stable set is a subset of another stable set
- If a core is a stable set then it is the only stable set

Bargaining set, Kernel, Nucleolus

- Objections and counter objections
 - Pair (y,S) is an objection of *i* against *j* to x if i2S and $j \notin S$ and $y_k > x_k$ for 8 k2S
 - Pair (z,T) is a counterobjection to the objection (y,S) of *i* against *j* if $z_k > x_k$, for 8k2T\S and $z_k > y_k$ for 8k2TÅS
- Bargaining set of all objections to which there is a counter objection

– The conflict set

The kernel

• For any coalition define

-e(S,x) = v(S) - x(S) where x is the imputation

- e>0 loss of S for x to be implemented
- e<0 the gain of S compared to x
- Dynamics
 - Coalition S in an objection of i against j to x if S includes i and not j and x_j>v({j})
 - Coalition T is a counterobjection to the objection if T includes j and not i and e(T,x) _ e(S,y)

Kernel II

- The set of dynamics outlined above
 - "i is against j but j can point to a coalition that is as good for all members without i but including j"
 - Define excess/gain/loss between ij as $s_{ij}(x)$ as the max excess of the any coalition

- $S_{ij}(x) = \max\{e(S,x): i2 \ S, j \ 2 \ N \setminus S\}$

- Kernel set of imputation x for i,j such that $s_{ji}(x) \downarrow s_{ij}(x)$

Kernel properties

- The kernel of a coalition game is a subset of the bargaining set
- Nucleolus
 - The set of objections to which there is a counter objection.
 - The nucleolus is a subset of the kernel

Shapley Value

- Objection:
 - Increase $\psi(i)$ as bail out would give
 - $\psi_j(N \setminus \{i\}, v^{N \setminus i})$ rather than x_j
 - Give me more to make sure you are not excluded causing me to obtain
 - $\psi_i(N \setminus \{j\}, v^{N \setminus j})$ rather than x_i
- Counterobjection the reverse
 - I can cause a similar objection

Shapley value (cont)

- The value that causes a balanced contribution is the shapley value!
- Characteristics
 - Symmetry: if i and j are interchangeable then
 - $\psi_i(v) = \psi_j(v)$
 - Dummy player
 - If i is a dummy then $\psi_i(v) = v(\{i\})$
 - Additivity
 - For two games v and w: $\psi_i(v+w) = \psi_i(v) + \psi_i(w)$ where v+w is the game defined by (v+w)(S) = v(S)+w(S) for every S
- The shapley value is the only that satisfied all three.

Market economy as a game

- A market is:
 - $(\mathsf{T},\mathsf{G},\mathsf{A},\mathsf{U})$
 - T the set of traders
 - G initial endowment G $\frac{1}{2} \mathbf{R}^{|T|}$
 - Actions: $A = \{a^i: i \ \mathbf{2} \ T\} \frac{1}{2} G$
 - Utility: $U = \{u^i: i\mathbf{2} T\}: u^i: G! R$

Market

- A market (T,G,A,U) can generate a game (N,v) as
 - -N=T
 - $-v(S) = max_X \sum u^i(x^i), 8S \mu N$
- Named a market game