Game Theory Examples

Adopted from Sarit Kraus "Strategic Negotiation in Multi-Agent Environments"

Strategic Negotiation Model

- A set of agents involved in a turn-taking negotiation (offering solution)
 - Offer ! Yes/no/opt out
- Assumptions
 - 1. Rational agents
 - 2. Avoid opting out
 - 3. Commitments are kept
 - 4. No long term commitments
 - 5. Common belief (1-4)

Utility Functions

- Fixed loss/gain per period
 Uⁱ(o,t)=Uⁱ(o,0) + t * C
- Time constant discount
 - $U^{i}(o,t) = \delta^{t}_{i} * U^{i}(o,0), \delta 2 [0;1]$
- Financial interest rate model - $U^{i}(o,t) = 1/(1+r)U^{i}(o,0) + C (1+r)/r *(1-1/(1+r)^{t})$
- Finite horison models

 $- U^{i}(o,t) = U^{i}(o,0)^{*}(1-t/N) - t^{*}C$

• U(0,0) initial value, C = cost / loss per period

05/02/2002

Game Solutions

- Nash Equilibrium
 - No agent can benefit from deviation given actions of others
- Sub-game perfect equilibrium
 - At each stage a Nash equilibrium is the solution
- Sequential equilibrium
 - Given incomplete information, a Nash equilibrium is determined based on belief

Case 1: Negotiation about resource allocation

- Two agents negotiate about a common resource
- Ex: Two robots on Mars – NASA and ESA.
- Bilateral negotiation
- Two agents
 - Attached agent holder of the resource
 - Waiting agent Waiting to gain access to resource
- Fixed resources, say M
- Solution: $s_a + s_w = M$

Motivation

- Future negotiation
 - Fear of future loss
- Waiting agent threat
 - The other agent might destroy resource
- Costless process
 - The actual negotiation is inexpensive

Utility Function Properties

- A0: Disagreement the worst outcome

 For x 2 { |S[OPT| £ T}: Uⁱ(disagree) < Uⁱ(x)
- A1: The resource is valuable
 - For t2T, r,s2S: r>s) $U^{i}(r,t) > U^{i}(s,t)$
 - Maximize access to resource
- A2: Cost benefit over time – For t_1, t_2 2 T, $t_1 < t_2$: – U^W(s, t₁)<U^W(s, t₂) and U^A(s, t₁)>U^A(s, t₂)

Utility Function Properties II

- A3: Agreements cost over time $-i2 \{A,W\}, 8 t_1, t_2 2 T, s_1, s_2 2 S, c_i\}$ $-U^i(s_1,t_1) > U^i(s_2,t_2) \text{ iff}$ $-(s_i+c_i t_1) , (s_{2i}+c_i t_2)$
- A4: Cost of opting out over time
 8 t2 T:
 - $\begin{array}{l} U^{W}(opt,t) > U^{W}(opt,t+1) \& \\ U^{A}(opt,t) < U^{A}(opt,t+1) \end{array}$

Range of agreements

- A5: 8 t2T
 - If Possible^{t+1} $\neq \emptyset$) Possible^t $\neq \emptyset$
 - If Possible^{t+1} $\neq \emptyset$)
 - $U^{W}(s^{W,t},t) \downarrow U^{W}(s^{W,t+1},t+1)$
 - $U^{W}(opt,t) \downarrow U^{W}(s^{w,t+1},t+1)$
 - $U^{A}(s^{w,t+1},t+1) \downarrow U^{A}(s^{w,t},t)$
 - If Possible^t $\neq \emptyset$)
 - $U^{A}(s^{w,t},t) \downarrow U^{A}(opt,t+1)$

Agreements are possible

- A6: Possible agreements
 - Possible⁰ $\neq \emptyset$ and Possible¹ $\neq \emptyset$
 - During the first two periods there are outcomes better than opting out

Example

- NASA & ESA have two robots on Mars
 - Joint mission
 - NASA damaged antenna (1 day repair)
 - Use of backup line is expensive
 - Sharing of ESA antenna
 - ESA is using some NASA equipment in its experiments

Example

- ESA is earning \$5000 / minute of experimentation
- NASA is loosing \$3000 / minute of backup line usage
- Per minute of shared usage \$1000 is earned by each group
- NASA total gain is \$550000, loss of \$1000 / minute of negotiation
- ESA cost of US equipment is \$100000 if the opt out.
- Constant gain/loss example with a finite horison 05/02/2002 Henrik I Christensen - NADA/KTH

Formally

- $U^{e}(s,t) = 1000 s_{e} + 5000 t$
- $U^{e}(opt_{n},t)=5000 t$
- $U^{e}(opt_{e},t) = 5000 t 100000$
- $U^n(s,t) = 1000 s_n 3000 t$
- $U^n(opt_n, t) = 550000 1000 t$
- $U_n(opt_e, t) = -1000 t$
- M = 1440 (1 day = 1440 minutes)

Formally

- $c_e = 5, c_n = -3$
- $s^{n,t} = (890-2t, 550 + 2t)$
- $U^n(s^{n,t},t) = (550-t) * 10^3$
- $U^{e}(s^{n,t},t) = (890 + 3t) * 10^{3}$
- An agreement is achieved in the second period (888,552)
 - ESA earn over time, but opting out might cause a loss, NASA losses over time, but waiting might not result in getting access

What could a mediator do?

- Earliest solution that is "popular"
- Nash product is an approach
 - Maximization of
 - $(U^{A}(x,0)-U^{A}(opt_{a},0)) f(U^{W}(x,0)-U^{W}(opt_{w},0))$
- As loss by W is larger than gain by A, W will prefer an early solution (step 1), while A prefers a late solution. Mediator solution will be a solution is step 1. Asymmetries cause a preference for mediation.

Case 2: Negotiation about Task Distribution

- Several agents to share a common task
- M jobs to be completed
- Time before an agreement = loss
- Agreement $s_1+s_2=M$

Attributes of Utility Function

- A1: Actions are costly - t2T, r,s2S: $r_i > s_i$) $U^i(r,t) < U^i(s,t)$
- A2: Time is valuable
 - $t_1, t_2 2$ T, s2 S: $t_1 < t_2$) $U^i(s, t_1) > U^i(s, t_2)$
- A3: Agreements cost over time
 - Each agents has a cost $c_i > 0$ such that
 - 8 r,s2S Æ t₁,t₂2T: $U^{i}(s,t_{2})>U^{i}(r,t_{2})$ iff $(s_{i}-c_{i} t_{1}) \downarrow (r_{i}-c_{i} t_{2})$

Attributes of Utility Function

- A4: Opting out costs more over time

 8 t₁,t₂2 T: t₁<t₂) Uⁱ(opt,t₁)<Uⁱ(opt,t₂)
- A5: Agreements vs Opting Out
 - 8 t 2 T: $U^{i}(s,t)>U^{i}(opt,t)At_{1}$) $U^{i}(s,t-1)>U^{i}(opt,t-1)$
- A6: Time period when an agreement if not possible

- 9 t2 T: Possible^t = \emptyset , t_m = min t, Possible⁰ $\neq \emptyset$

Solution

- A solution is always reached
- If agent i is to propose a solution at t_m-1, it will suggest its sub-game perfect equil. The other will accept it.

Ex: delivery of newsletters

- Two news agencies N1, N2
- Two delivery agents D1, D2
- N1! D1 is paid \$200, N2! D2 is paid \$225
- Delivery cost \$1, A period of wait is \$1
- M subscribers of N1 and N2
- If agreement N1! D1 = \$170, N2! D2 = \$200, Still \$1 / call, \$2 / period of wait

Formally

- $U^1(opt,t) = 200 M t \not R$ $U^1(s,t) = 170 - s_1 - 2t$
- $U^2(opt,t) = 225 M t \not R$ $U^2(s,t) = 200 - s_2 - 2t$
- Ex: M=100) :

-
$$s^{2,t}=(69-t,31+t),$$

 $s^{1,t}=(26+t,74-t),$
 $t_m = 22$) agreement (46,54)