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Abstract 
In a decision support system for military decision 

makers a plan recognition process provides estimates of 
enemy plans. To respond to a changing and uncertain 
environment the plan recognition process requires 
timely and relevant information.  

In this article we address the rarely discussed, yet 
crucial, issue of connecting the information needs of 
plan recognition to management of sensors. We have 
previously presented a framework for this purpose and 
in this article we give details of an implementation and 
provide some results. In our implementation both plan 
recognition, sensor management and the functions that 
connect them utilize the a priori knowledge stored in a 
Dynamic Bayesian Network. 
 
1. Introduction 
  We consider the data fusion process to be a 
component of an enclosing system, (described in e.g. 
[1]), a decision support system.  

In a series of previous articles we addressed the data 
fusion issue of plan recognition [2]. Inference of plans 
may facilitate predictive situation awareness for 
decision-makers in a decision support system. The 
performance of the plan recognition process is heavily 
dependent on the observations it receives.  
 Recently, our focus has expanded to include also the 
aspect of information acquisition to support the plan 
recognition process with the essential information it 

needs for its operation. Our motive for this expanded 
focus is that effective measurements of environments are 
rarely accessible for passive sensors (save for controlled 
industrial environments). A second motive is that 
purposeful control of sensors promises to yield more 
relevant information that will increase the performance 
of the plan recognition process. In [3], we introduced a 
framework for connecting the high-level information 
need of plan recognition to information acquisition. The 
work in this article extends the efforts in [3]. Here we 
further discuss the details of our "bridge" between plan 
recognition and sensor management and present some 
results from a prototype implementation. 
  For selection of related efforts in the literature see 
references in [3].  
 
2. High-level information need and sensor 
management 
2.1 High-level information and information 
acquisition 
 Plan recognition produces estimates of plans of agents 
acting in the environment. We label this "high-level" 
information since it is interpretative and tries to provide 
an explanation. In contrast, "low-level" information 
typically originates directly from sensors and simply 
estimates observable properties of the environment 
(such as position, feature, etc.).  
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 The purpose of the information acquisition part of 
the data fusion system (sometimes called adaption or 
sensor management) is to improve the quality (e.g., the 
accuracy or relevance) of the information generated by 
data fusion. As support for plan recognition, the 
information acquisition process should strive to make 
observations that will generate plan estimates with less 
uncertainty. However, not only the needs of data fusion 
processes should be satisfied by information acquisition, 
but also the objectives of the decision maker should be 
considered (e.g., the decision maker might value correct 
estimates of some plans more than others). 
 
2.2 The connecting framework and information 
reuse 
  Our framework, depicted in Fig. 1, prescribes that 
information need arising in some system (we call the 
source of this need the task origin space is formulated 
as information tasks with assigned properties (e.g., 
priority or time horizon depending on what properties 
the system is designed to handle). Such tasks belong to 
the task space in our framework. 
 

             
 
Figure 1. Framework 
  

The materialization of tasks from information need 
could be the responsibility of a task creation and 
management function. The service space contains 
services that the sensors in the resource space 
(independently or jointly) can perform. The benefit of 
utilizing these services to satisfy tasks is, subsequently, 
the (more) relevant data that eventually is returned to 
the data fusion process by employed sensors. The 
allocation scheme describes how tasks are connected to 

feasible services. These functions are thoroughly 
discussed in [3].  
 Usage and reuse of domain knowledge is crucial to 
sustain the connection between plan recognition and 
information acquisition. First, plan recognition uses 
plenty of expert and domain knowledge (such as enemy 
doctrine, trafficability of various vehicles in different 
terrains, sensor characteristics for various weather 
conditions, etc) to swiftly infer estimates of enemy plans 
from observations. Second, the same expertise can be 
reused to prioritize information tasks and employ 
appropriate sensors. Even though this approach biases 
the plan recognition process towards a limited set of 
plans and sensor management towards a limited set of 
alternatives, it is necessary in many real-time 
applications to focus on the most likely plans given the a 
priori knowledge. We discuss this further in Section 4.  
 
3.0 A Concept of Information Agents (IA) in 
Threat Analysis 
3.1 Role of IA in Threat Analysis 

Threat analysis is a function of information fusion. 
The purpose of this process is to estimate and predict 
the impact of observed objects or phenomena. Input to 
this process is supposed to be the aggregated situation 
picture (common understanding of situation) in military 
applications. Before entering threat analysis the 
information about entities is processed. Such 
information is usually information about an entity’s 
position and its identity.   
 We use the concept of knowledge representation 
agents for threat analysis. Generally, an agent is 
everything that can act using its effectors and perceive 
using its preceptors (sensors).  An agent-based software 
concept that is aimed to represent our knowledge or 
qualified guess/es about observed, existing object(s) we 
call information agent (IA). The entity or object that we 
observe we just call (real world) agent.  
    If we observe an entity (real world agent) of a certain 
type we use a corresponding software model, IA, of that 
entity’s type to represent it.  In the next step, data 
received from sensors such as position and uncertainty 
about position is entered. Also more sophisticated data 



about the entity may be entered such as pattern data. 
Those data that enter the model are in the next step 
combined with a priori knowledge obtaining new 
information, our a posteriori knowledge. Such 
information may contain estimated intentions of the 
observed agent or its (predicted) impact. 
 
3.2 Responsibility of IAs 

IA has three main properties:  
1) To package current information about (real world) 
agents or their aggregates that are agents on higher 
abstraction levels 
2) Infer (fuse) a priori knowledge and gain new 
knowledge on different abstraction levels 
3) Choose suitable object model (e.g. for simulation)     

IA can be hierarchical, meaning that an IA may 
consist of other IAs. IAs can also be interpreted as IAs 
on different abstraction levels. This concept could be 
useful when modelling flexible decision support systems 
such as [4].  
 
4.0  Knowledge Reuse for Adapting Plan 
Recognition 
4.1 Soft Computing Model for Plan Recognition  

It is generally difficult to derive conclusions about 
the agent’s (enemy’s) intentions from a chaotic, 
uncertain and complex environment. To achieve agility, 
military commanders need to have good predictive 
situation awareness.  Recognition of threats gives users, 
military commanders in this case, hints about what the 
agent is going to do next, provided relevant sensor 
information and a priori knowledge about the enemy. 
    The goal of plan recognition is to derive a threat 
estimate given information about an agent’s (hostile 
force’s) plan estimates that gives clues about threats that 
own (friendly) forces may be exposed to. In the next step 
we use this information for prioritization of automatic 
sensor management.  
    Plan recognition requires modeling of a priori, 
knowledge, using (dynamical) sensor data and finally 
inferring a qualified guess of enemy intentions. To infer 
(modeled) knowledge with dynamical information we 
use Dynamic Bayesian Network (DBN).  

     We fuzzify sensor data and use normalized 
membership functions as the subjective probability 
measure in DBN nodes. The output is a probability 
distribution of the plan alternatives on different 
abstraction levels. Plan recognition is important to see 
in light of enemy capabilities, our force capabilities and 
the strategic value for the enemy of attacking us. To 
date our DBN models have only one node that models 
this aspect (Force Balance). We hope that in future 
work we will have more sophisticated models that 
handle this capability/cost/utility/strategic value issue. A 
promising approach could be game theoretic approaches 
proposed by [5].    
 
 4.1.1 DBN Component  

The DBN model’s abstraction levels are 
corresponding to a hierarchical organisation structure of 
an enemy company that is considered as a higher level 
agent in this case.  It consists of three tank platoons, 
each platoon containing three tanks that are agents of 
the lowest (abstraction) level in this model. For each 
abstraction level there is a certain set of plans for that 
level. Those plans are influenced by plans at higher 
abstraction levels. The simplest plans, the atoms, consist 
only of a set of actions. In this example the simplest 
plan is the set of tank (group) actions. More complex 
plans consist of other plans, also referred to as sub-
plans, or a mixture of sub-plans and actions. Higher 
level plans invoke lower level plans down to their 
actions.  
    IAs that we described in Section 3 is used for 
representation of fused information. The relations 
between such agents should follow the abstraction levels 
modelled in DBN. In our DBN model an information 
agent is a part of a DBN that contains information or a 
qualified estimate of the corresponding (hostile) agents 
plans.    
 
 4.1.2 Fuzzy Component  

 An important part of plan recognition is the use of 
fuzzified sensor data. This process takes sensor data as 
input and returns values for some of the nodes in DBN.  



E.g., modelling connection between plans and behaviour 
patterns is performed in DBN. However, we need 
qualified guesses about those patterns that may contain 
uncertainty given sensor data. Some behaviour patterns 
give support for certain plan hypotheses. The 
fuzzification process performs classification of patterns 
into different fuzzy sets of pattern types.    
    There are also some other values of interest such as a 
fuzzified notion of how long time it takes for the enemy 
to reach us. Therefore we define the fuzzy sets short 
time to impact and long time to impact. Fuzzy functions 
for each variable are designed so that the sum of 
membership degrees is equal to one and they correspond 
to the discrete states (subjective probabilities) of the 
Bayesian variable “time to impact” in the DBN.   
 
4.2 Sensor management (process adaption) 

Information acquisition through management of 
sensors is foremost necessary to provide plan 
recognition with information to sustain a minimum 
level of performance and beyond that to optimize 
performance. Here we discuss two parts of our 
implementation that utilize expert knowledge. 
 
4.2.1 Estimation of task priorities 

For the task management function of the framework, 
we implement creation and prioritization of tasks. We 
create one task for each known enemy unit in the 
environment. Each task demands up-to-date information 
about the corresponding enemy unit. The tasks represent 
the information need of the plan recognition process. 
The origin of these tasks is the IAs that we say belong to 
the task origin space. 
    Moreover, in order to achieve purposeful information 
acquisition, task management prioritizes (i.e., orders) 
tasks. We introduce the notion of threat and the idea 
that the higher threat posed by an enemy unit the higher 
the priority of its corresponding task should be. The 
threat calculation integrates knowledge of estimated 
plans with the expected impact of the enemy unit 
attacking one of our units or essential resources. The 
threat value also depends on the duration of time before 

a particular enemy unit can engage in an operation 
against our resources; longer duration gives less threat. 
    We cannot just be satisfied with this calculation since 
it assumes that the properties (such as position) of the 
enemy units are known. This is never the case. Ideally, 
we want to find the expected threat and threat variance 
of each enemy unit given estimated properties and 
uncertainties. In general, the expected threat and threat 
variance cannot be calculated analytically. Instead, we 
assume an uncertainty model for our estimates and 
approximate using Monte Carlo simulation. Using 
Monte Carlo simulation is computationally costly and 
we have therefore chosen to use a simplified approach in 
the experiments presented in this article. Instead of 
simulating the variance, we consider the uncertainty 
radius of each position estimate.  
 
4.2.2 Expected utilities of services  

The allocation scheme part of the framework (Fig. 1) 
provides another example of reuse of knowledge in the 
military decision support system discussed here. The 
allocation scheme function connects tasks to services, 
where services correspond to sensing resources 
belonging to the system.  
 Allocation scheme evaluates candidate allocations of 
tasks to services based on the cost of using the service 
and the utility of the task when using a specific service. 
Ideally, we would like to achieve cost and utility 
estimates by simulating the performance of each task for 
each service. High utility should be awarded to 
allocations that are expected to greatly affect the threat 
value (which is based on the same knowledge as used by 
plan recognition) of an enemy unit. This approach is, 
however, generally infeasible in real-time applications 
and we therefore use simplified models in our 
experiments in section 5. These models do consider  
sensor and estimated enemy unit properties.  
 
5. Results 
5.1 Scenario  

Enemy forces have performed air landing and one 
company, Company South (CS), is observed in region 
south (Rs), see Fig. 2. CS is observed when advancing 



in northerly direction. At approximately the same time 
in Region north (Rn) two heavily armed tank 
companies, Company north1 and north2 (CN1 and 
CN2), are observed. It has been observed that they are 
not moving, probably because of fuel problems. CS is 
advancing towards the town in Region center (Rc) 
where one of our tank platoons (OF1) is located. The 
other own force (OF2) unit is located close in Rc west of 
the town. The scenario evolves through time and CS is 
close to the town when the bridge between OF1 and CS 
collapses. CS withdraws and now heads in direction to 
OF2, presumably to take remaining bridge between Rc 
and Rs.  
   Our sensor resources are limited to one UAV and a 
few ground troop soldiers. After some time (90 time 
steps) CN1 and CN2 suddenly start moving towards 
OF1 in Rc.      
The problem of efficient sensor allocation given a 
complex threat situation arises.   
 

            
 
Figure 2. Scenario Map  
*yellow line represents sensor’s task to observe enemy force  
   
5.2 Plan estimate loss caused by limited number 
of sensors 
 In this simulation we vary the number of sensors in 
region north. In our case, these sensors are of type 
“Markus” (ground troop soldier) and are assumed to 
observe objects (agents). In this section we focus on one 
of the enemy companies in the north and estimate the 
probability that this company will attack our force that 
is located in the town. We perform four simulations of 
160 time steps. Each of them returns the probability for 

attack given a varying number of sensors. In the first 
simulation we assume that we are able to observe the 
enemy at all times steps. This is equivalent to using an 
infinite number of sensors in the simulation.  The 
attacking probability estimate for an infinite number of 
sensors is used as a reference when comparing to other 
attacking probability estimates with a limited number of 
sensors (observations).       
 

       
 
Figure 3. Attacking probability estimate over time 
given one, three and infinitely number of sensors 
 
In Fig. 3, all attacking probabilities are equal while the 
enemy company is not moving. In other words, 
estimated position is the real position. The CN2 starts 
moving and we observe first diverge of the plan estimate 
for unlimited number of sensors (red line in Fig. 3). In 
the case of three sensors we get a result that 
underestimates attacking probability in a time interval 
(blue line). The time difference for the case of one 
sensor is even larger (green line). This result leads us to 
a definition of plan estimate loss caused by limited 
number of sensors i and tracking is performed by some 
sensor resource method Mr(i) . In order to quantify how 
critical each plan alternative is we define the following 
penalty loss function. It calculates penalty measure 
Pen(xj) over plan space (χ) for each plan alternative (xj). 
Then we calculate I(Mr(i), xj), see Eq. 1, which is the 
area between plan estimate  for the case of unlimited 

number of sensors )( jxp∞  and for the case of limited 

number of sensors )( ji xp  in relevant surrounding. 
Finally, we define plan estimate loss as in Eq. 2 : 
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5.3 Threat variation and focus change 

In our second experimental simulation, we illustrate 
how the system changes its focus of attention by 
changing tasks for sensors. We use the same scenario as 
presented in Section 5.1 with three enemy companies, 
three ground observers (located in Rs), and one UAV 
(located in Rc).  

In Fig. 4 we show how the calculated threat level of 
the three companies varies during 35 simulation time 
steps. Initially, CS (the solid line in Fig. 4) is the 
greatest and it increases as long as the company has not 
been observed. The UAV sensor is accordingly allocated 
to CS. 

CS is moving north along the road in the beginning 
of the scenario (while the companies in Rn remain 
stationary). After a short while (about time step 7), 
before the UAV has a chance to observe CS, CS is 
spotted by one of the ground observers in region. Since 
the uncertainty of the whereabouts of CS has been 
lowered, the threat level decreases. At this point the 
threat level of CN1 and CN2 (the dashed lines) exceed 
that of CS and the UAV starts to look for CN2 instead. 
 

 
 

 Figure 4.  Threat values and focus of attention 
  

Around time step 20, the UAV observes CN2, but 
also CN1 which is in the vicinity. The threat levels of 
both CN1 and CN2 drop rapidly and CS has once again 
the highest threat level. The UAV changes its selected 
target back to CS as expected. This result suggests that 
the automatic management of sensors presented in this 
article agrees with an intuitive sensor control.   
 
6.0 Conclusions and Future Work  

We have demonstrated how high-level information, 
enemy intentions, can be used when prioritizing tasks 
for information acquisition. Reuse of plan recognition 
knowledge models when performing task prioritization 
has turned out to be an effective strategy.  

We show that our implementation can be used to 
evaluate the performance of plan recognition for various 
sensor configurations.  

The simple simulation experiments presented in 
Section 5 provide a glance at the qualities of the system. 
However, future more complex scenarios will exhibit 
more interesting results.  
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