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Abstract 
In a decision support system for military decision 

makers a plan recognition process provides estimates of 
enemy plans. To respond to a changing and uncertain 
environment the plan recognition process requires 
timely and relevant information.  

We address the rarely discussed, yet crucial, issue of 
connecting the information needs of plan recognition to 
management of sensors. We have previously presented a 
framework for this purpose and here we give details of 
an implementation and provide some results. In our 
implementation both plan recognition, sensor 
management and the functions that connect them utilize 
the a priori knowledge stored in a Dynamic Bayesian 
Network. 
 
1 Introduction 
  We consider a data fusion process [1] to be a 
component of an enclosing system, e.g. a decision 
support system. Its purpose is to exploit information 
provided by disparate sources. 

In a series of previous articles (incl. [2]) we 
addressed the data fusion issue of plan recognition (PlR) 
[3, 4] using a Dynamic Bayesian Network (DBN). 
Inference of plans may facilitate predictive situation 
awareness for decision-makers in a decision support 
system. However, the performance of the PlR process is 
heavily dependent on the observations it receives.  
 Recently, our focus has expanded to include also the 
aspect of information acquisition [5] to improve the PlR. 
One motive for this expanded focus is that effective 
measurements of environments are rarely accessible for 

passive sensors (save for controlled industrial 
environments). A second motive is that purposeful 
control of sensors promises to yield more relevant 
information that will increase the performance of the 
PlR process.  
 In [6], we introduced a framework for connecting the 
high-level information need of PlR to information 
acquisition in an automatic manner. The framework 
addresses emerging needs for multiple objectives and 
multiple sensors. Those issues have not been studied 
previously.  Here, we extend the efforts in [6] by further 
discussing the details of our "bridge" between PlR and 
sensor management and present some results from a 
prototype implementation. 
  For a selection of related efforts in the literature see 
references in [6].  
 
2 High-level information need and sensor 
management 
2.1 High-level information and information 
acquisition 
 PlR produces estimates of plans of agents acting in the 
environment. We label this "high-level" information 
since it is interpretative and tries to provide an 
explanation. In contrast, "low-level" information 
typically originates directly from sensors and simply 
estimates observable properties of the environment 
(such as position, feature, etc.).  
 The purpose of the information acquisition part of 
the data fusion system (sometimes called adaption or 
sensor management) is to improve the quality (e.g., the 
accuracy or relevance) of the information generated by 
data fusion. As support for PlR, the information 
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acquisition process should strive to make observations 
that will generate plan estimates with less uncertainty. 
However, not only the needs of data fusion processes 
should be satisfied by information acquisition, but also 
the objectives of the decision maker should be considered 
(e.g., the decision maker might value correct estimates 
of some plans more than others). 
 
2.2 The connecting framework and information 
reuse 
  Our framework, depicted in Fig. 1, prescribes that 
information need arising in some system (we call the 
source of this need the task origin space) is formulated 
as information tasks with assigned properties (e.g., 
priority or time horizon depending on what properties 
the system is designed to handle). Such tasks belong to 
the task space in our framework. 
 
                   

 
 
Figure 1. Framework 
  

The materialization of tasks from information need 
could be the responsibility of a task creation and 
management function. The service space contains 
services that the sensors in the resource space 
(independently or jointly) can perform. The benefit of 
utilizing these services to satisfy tasks is, subsequently, 
the (more) relevant data that eventually is returned to 
the data fusion process by employed sensors. The 
allocation scheme describes how tasks are connected to 
feasible services. These functions are thoroughly 
discussed in [6].  
 Usage and reuse of domain knowledge is crucial to 
sustain the connection between PlR and information 
acquisition. First, PlR uses plenty of expert and domain 
knowledge (such as enemy doctrine, trafficability of 
various vehicles in different terrains, sensor 
characteristics for various weather conditions, etc) to 
swiftly infer estimates of enemy plans from 

observations. Second, the same expertise can be reused 
to prioritize information tasks and employ appropriate 
sensors. Even though this approach biases the PlR 
process towards a limited set of plans and sensor 
management towards a limited set of alternatives; it is 
necessary in many real-time applications to focus on the 
most likely plans given the a priori knowledge. We 
discuss this further in Section 4.  
 
3 The concept of information agents in threat 
analysis 
3.1 Role of information agents in threat analysis 

Threat analysis is a function of information fusion. 
The purpose of this process is to estimate and predict 
the impact of observed objects or phenomena. Input to 
this process is supposed to be the aggregated situation 
picture (common understanding of situation). Before 
entering threat analysis the information about entities is 
processed. Such information is usually information 
about an entity’s position and its identity.   
 We use the concept of knowledge representation 
agents for threat analysis. Generally, an agent [7] is 
anything that can act using its effectors and perceive 
using its perceptors (i.e. sensors).  An agent-based 
software concept that is aimed to represent our 
knowledge or qualified guess/es about observed, existing 
object(s) we call information agent (IA). The entity or 
object that we observe we just call (real world) agent.  
    If we observe an entity (real world agent) of a certain 
type we use a corresponding software model, IA, of that 
entity’s type to represent it.  In the next step, data 
received from sensors such as position and uncertainty 
about position are entered. Also more sophisticated data 
about the entity may be entered such as pattern data. 
Data are also combined with a priori knowledge to 
obtain new, a posteriori, information. Such information 
may contain estimated intentions of the observed agent 
or its (predicted) impact. 
 
3.2 Responsibility of IAs 

IAs have three main properties:  
1) To package current information about real-world 
agents (e.g. individual vehicles) or their aggregates (e.g. 
platoons); 
2) Infer (fuse) a priori knowledge and gain new 
knowledge on different abstraction levels; 
3) Choose suitable object model depending on context, 
user interests and previous observations (e.g. for 
predicting future states).     

IA can be hierarchical, meaning that an IA may 
consist of other IAs. IAs can also be interpreted as IAs 
on different abstraction levels. This concept could be 



useful when modelling flexible decision support systems 
such as [8].  
 
 
 
 
4 Knowledge reuse for adapting plan 
recognition 
4.1 Soft computing model   

It is generally difficult to derive conclusions about 
the agent’s (enemy’s) intentions from a chaotic, 
uncertain and complex environment. To achieve agility, 
military commanders need to have good (predictive) 
situation awareness.  Recognition of threats gives users, 
military commanders in this case, hints about what the 
agent is going to do next, provided relevant sensor 
information and a priori knowledge about the enemy. 
    The goal of PlR is to derive a threat estimate given 
information about an agent’s (hostile force’s) plan 
estimates that gives clues about threats that own 
(friendly) forces may be exposed to. In the next step we 
use this information for prioritization of automatic 
sensor management.  
    PlR requires modeling of a priori knowledge, using 
(dynamical) sensor data and finally inferring a qualified 
guess of enemy intentions. To infer knowledge with 
dynamical information we use a DBN, see [2]. 
     We fuzzify sensor data and use fuzzy membership 
degree as the subjective probability measure in DBN 
nodes. The output is a probability distribution of the 
plan alternatives on different abstraction levels. PlR is 
important to see in light of enemy capabilities, our force 
capabilities and the strategic value for the attacking 
enemy. To date our DBN models have only one node 
(force balance) that models this aspect. We hope that in 
future work we will have more sophisticated models that 
handle this capability/cost/utility/strategic value issue. A 
challenging approach for reasoning about other agents’ 
reasoning, i.e. Game Theory [9], could be used to 
improve plan recognition.      
 
 4.1.1 DBN component  

The DBN model’s abstraction levels are 
corresponding to a hierarchical organization structure of 
an enemy company that is considered as a higher level 
agent in this case.  It consists of three tank platoons, 
each platoon containing three tanks that are agents of 
the lowest (abstraction) level in this model. For each 
abstraction level there is a certain set of plausible plans 
for that level. Those plans are influenced by plans on 
higher abstraction levels. The simplest plans, the atoms, 
consist only of a set of actions. In this example the 

simplest plans are platoon actions. More complex plans 
consist of other plans, also referred to as sub-plans, or a 
mixture of sub-plans and actions. Higher level plans 
invoke lower level plans down to their actions.  
    The IAs that we described in Section 3 are used for 
representation of fused information. The relations 
between such agents should follow the abstraction levels 
modelled in the DBN. In our DBN model an 
information agent is a part of a DBN that contains 
information or a qualified estimate of the corresponding 
(hostile) agents plans.    
 
 4.1.2 Fuzzy component  

 An important part of PlR is the use of fuzzified 
sensor data. This process takes sensor data as input. 
Calculated fuzzy set membership degrees are translated 
into a corresponding node in the DBN.      

By using fuzzy functions conclusions can be drawn 
about e.g. elusive behavior patterns. Given uncertain 
data, we need qualified guesses about some patterns. 
Some behaviour patterns give support for certain plan 
hypotheses. Actually, the fuzzification process performs 
classification of patterns into different fuzzy sets of 
pattern types.    
    There are also some other values of interest such as a 
fuzzified notion of how long time it takes for the enemy 
to reach us. Therefore we define the fuzzy sets short 
time to impact and long time to impact. Those fuzzy sets 
define a family fuzzy set corresponding to the DBN 
variable time to impact.    
 
4.2 Sensor management  

Information acquisition through management of 
sensors is foremost necessary to provide PlR with 
information to sustain a minimum level of performance 
and beyond that to optimize performance. Here we 
discuss two parts of our implementation that utilize 
expert knowledge. 
 
4.2.1 Estimation of task priorities 

For the task management function of the framework, 
we implement creation and prioritization of tasks. We 
create one task for each known enemy unit in the 
environment. Each task demands up-to-date information 
about the corresponding enemy unit. The tasks represent 
the information need of the PlR process. The origin of 
these tasks is the IAs that we say belong to the task 
origin space. 
    Moreover, in order to achieve purposeful information 
acquisition, task management prioritizes (i.e., orders) 
tasks. We introduce the notion of threat and the idea 
that the higher threat posed by an enemy unit the higher 
the priority of its corresponding task should be. The 



threat calculation integrates knowledge of estimated 
plans (ep). We introduce threat weights (wj) whose 
magnitude is dependent on the danger (threat) 
corresponding to each plan alternative xj. The 
probability for a plan alternative xj is p(xj | obs) given 
observations.  E.g. the weight corresponding to a plan 
alternative attack has greater magnitude than a 
weight for alternative march. 
 
 
 
 Hence, 
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is a summarized threat value of the plan distribution. 
The threat estimate (T) becomes: 
 

T = ep  
 
We cannot just be satisfied with this calculation of 
threat estimation for task prioritization. It does not fully 
respect the sensitivity caused by the properties such as 
position of the enemy units. Ideally, we want to find the 
expected threat and threat variance of each enemy unit 
given estimated properties and uncertainties. In general, 
the expected threat and threat variance cannot be 
calculated analytically. We would therefore like to 
approximate these properties using Monte Carlo 
simulation. However, our current position uncertainty 
model is simply an uncertainty radius (ur) that grows 
with time when no observations are made. The model is 
unfortunately both ignorant of terrain characteristics 
and sampling from it is computationally costly. Instead 
in the experiments in the following section, we simply 
add the ur of each position estimate to the threat 
estimate. A possibly feasible approach would be to let a 
terrain-aware particle filter [10] represent the position 
uncertainty. Sampling from the particles would yield 
more accurate estimates of expected threat and variance. 
 
For prioritization of tasks additional factors could be 
considered. The expected impact (ei) of the enemy unit 
attacking one of our units or essential resources could be 
explicitly represented. The priority could also depend on 
the time duration (td) before a particular enemy unit can 
engage in an operation against our resources; longer 
duration gives less threat. We also motivate the use of td 
due to sensors limited velocity that may result in a 
considerable difference in time delay for different 
observations.  

 
Hence in principle, the task priority becomes: 

 
Priority  = T + ur  + ei + td 

 
4.2.2 Expected utilities of services  

The allocation scheme part of the framework (Fig. 1) 
provides another example of reuse of knowledge in the 
military decision support system discussed here. The 
allocation scheme function connects tasks to services, 
where services correspond to sensing resources 
belonging to the system.  
 Allocation scheme evaluates candidate allocations of 
tasks to services based on the cost of using the service 
and the utility of the task when using a specific service. 
If the cost for available services for specific tasks is too 
high the allocation scheme may decrease the priority of 
the task for the time being.  
 Ideally, we would like to achieve cost and utility 
estimates by simulating the performance of each task for 
each service. High utility should be awarded to 
allocations that are expected to greatly affect the threat 
value (which is based on the same knowledge as used by 
PlR) of an enemy unit. This approach is, however, 
generally infeasible in real-time applications and we 
therefore use simplified utility models in our 
experiments in Section 5. These models do consider 
sensor and estimated enemy unit properties. Such as, 
service quality, expected time to task completion and 
cost of resource use. Service quality is the expected 
quality of the data/information returned by an allocated 
sensor that a certain service employs. By expected time 
to task completion we mean the estimated time that is 
required for a sensor to make an observation. There are 
static costs assigned to the initiation of a service (e.g. 
allocating personnel for deploying a UAV) and dynamic 
costs (e.g.  fuel consumption for task completion).   
   
5 Results 
In this section we present a tactical scenario containing 
a hostile battalion and two strategic sites (own forces). 
We show two experiments using the implemented 
framework. Our aim is to demonstrate that our 
implementation gives reasonable results.  

In the first experiment, we illustrate the need of 
sensor management for plan recognition. We run the 
implemented framework on different sensor 
configurations for evaluation.         
 In the second experiment, we study the effects of task 
prioritization on sensor management by using the 
framework.  
        



5.1 Scenario  
Enemy forces have performed air landing and one 

company, Company South (CS), is observed in region 
south (Rs), see Fig. 2. CS is observed when advancing 
in northerly direction. At approximately the same time 
in Region north (Rn) two heavily armed tank 
companies, Company north1 and north2 (CN1 and 
CN2), are observed. It has been observed that they are 
not moving, according to some reports due to fuel 
problems. CS is advancing towards the town in Region 
center (Rc) where one of our tank platoons (OF1) is 
located. The other own force (OF2) unit is located in Rc 
west of the town. The scenario evolves through time and 
CS is close to the town when the OF1 destroys the 
bridge that separates them. CS withdraws and now 
heads in the direction of OF2, presumably to the take 
remaining bridge between Rc and Rs.  
   Our sensor resources are limited to one UAV and a 
few ground troop soldiers. After some time (90 time 
steps) CN1 and CN2 suddenly start moving towards 
OF1 in Rc.      

The problem of efficient sensor allocation given a 
complex threat situation arises.   
        

 
 
Figure 2. Scenario Map  
*yellow line represents sensor’s task to observe enemy force  
   
5.2 Plan estimate loss caused by limited number 
of sensors 
 In this simulation we vary the number of sensors in 
region north. In our case, these sensors are of type 
“Markus” (ground troop soldier) and are assumed to 
observe objects (agents). In this section we focus on one 
of the enemy companies in the north and estimate the 
probability that this company will attack our force that 
is located in the town. We perform four simulations of 

160 time steps. Each of them returns the probability for 
attack given a varying number of sensors. In the first 
simulation we assume that we are able to observe the 
enemy at all times steps. This is equivalent to using an 
infinite or sufficient amount number of sensors in the 
simulation.  The attacking probability estimate for an 
infinite number of sensors is used as a reference when 
comparing to other attacking probability estimates with 
a limited number of sensors (observations).       
 
   

 
 
Figure 3. Attacking probability estimate over time 
given sensor configurations with one, three and 
infinitely many sensors 
 
In Fig. 3, all attacking probabilities are equal while the 
enemy company is not moving. In other words, 
estimated position is the real position. The CN2 starts 
moving and we observe first diverge of the plan estimate 
for unlimited number of sensors (red line in Fig. 3). In 
the case of three sensors we get a result that 
underestimates attacking probability in a time interval 
(blue line). The time difference for the case of one 
sensor is even larger (green line). This result leads us to 
a definition of plan estimate loss caused by limited 
number of sensors i and tracking is performed by some 
sensor resource method Mr(i). In order to quantify how 
critical each plan alternative is we define the following 
penalty loss function. It assigns penalty measure Pen(xj) 
over plan space (χ) for each plan alternative (xj). Then 
we calculate I(Mr(i), xj), see Eq. 1, which is the area 
between plan estimate for the case of unlimited number 
of sensors p∞(xj) and for the case of limited number of 
sensors pi(xj) in relevant surrounding. Finally, we define 
plan estimate loss as in Eq. 2: 
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5.3 Threat variation and focus change 

In our second experimental simulation, we illustrate 
how the system changes its focus of attention by 
changing tasks for sensors. Task priorities are calculated 
by the task management function of the implemented 
framework. Focus of attention is maintained by the 
allocation scheme which has to consider both task 
priorities and the availability of services. We use the 
same scenario as presented in Section 5.1 with three 
enemy companies, three ground observers (located in 
Rs), and one UAV (located in Rc).  

In Fig. 4 we show how the calculated task priority of 
the three companies varies during 35 simulation time 
steps. Initially, CS (the solid line in Fig. 4) is the 
greatest and it increases as long as the company has not 
been observed. The UAV sensor is accordingly allocated 
to CS. 

CS is moving north along the road in the beginning 
of the scenario (while the companies in Rn remain 
stationary). After a short while (about time step 7), 
before the UAV has a chance to observe CS, CS is 
spotted by one of the ground observers in region. Since 
the uncertainty of the whereabouts of CS has been 
lowered, the priority decreases. At this point priorities of 
CN1 and CN2 (the dashed lines) exceed that of CS and 
the UAV starts to look for CN2 instead. 
 

 
 
 Figure 4.  Task priorities and focus of attention 
  

Around time step 20, the UAV observes CN2, but 
also CN1 which is in the vicinity. The threat levels of 
both CN1 and CN2 drop rapidly and CS has once again 
the highest threat level. The UAV changes its selected 

target back to CS as expected. This result suggests that 
the automatic management of sensors presented in this 
article agrees with an intuitive sensor control.   
 
6 Conclusions and future work  

We have demonstrated how high-level information, 
in our case enemy intentions, can be used when 
prioritizing tasks for information acquisition. Reuse of 
PlR knowledge models when performing task 
prioritization has turned out to be an effective strategy.  

We show that our implementation can be used to 
evaluate the performance of PlR for various sensor 
configurations.  

The simple simulation experiments presented in 
Section 5 provide a glance at the qualities of the system. 
However, future more complex scenarios where the need 
for automatic control is apparent will exhibit more 
interesting results.  
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