
Allocation scheme

Ronnie Johansson

23rd April 2004

Abstract

Abstract

1 Introduction

2 Available and feasible services

The service management maintains the status of services and decides which
are available (a service is available if its underlying resources are available). A
service is feasible with respect to a task if both the task and service agent find it
sensible to connect that task to the service (see Figure 2). For instance, a service
might be considered infeasible if it will take too much time for the service to
complete or if the underlying resources are occupied with other tasks and cannot
afford to perform more tasks simultaneously. Adaptive systems should also be
able to remove resources from previously assigned tasks to support other more
urgent ones.

m < n

Feasible services

m

1

n

1

Service f

Service f

Service a

Service a

Available services

requirements
Task and resource

Figure 1: The set of services which are feasible for a given tasks is a subset of
the available services.



2.1 Payoff

In decision theory, the (expected) outcome of a decision is sometimes expressed
as the utility (i.e., the system gain) of the decision. In other applications, it is
more appropriate to speak of cost. In the former case, the decision-maker tries
to make the decision that maximizes the utility, and in the latter case the cost
should be minimized. When multiple objectives are considered, it might also be
appropriate to combine both utility and cost into an integrated value (e.g., by
subtracting the cost from the utility). Here we call such a value payoff.

In the case of information acquisition, it is natural to consider both benefit
and harm of a decision (where our decision is a candidate allocation between a
task and a service). Utility is here associated with the desires of the task, e.g.,
measurement accuracy, how soon the measurement can be made, etc.). Costs
are associated with the resources that realize the service.

Utility and cost may also be considered separately. An agent representing
a task might refuse an allocation with a service that provides a utility that is
too low (using the rationale that a utility value that is sufficiently low has no
qualitative value to the agent). Conversely, a service can refuse an allocation if
it is too costly to satisfy the corresponding task. Such interests should typically
be handled by the allocation scheme, but in an agent-based implementation this
responsibility assignment is intuitive.

3 Allocation

For every task in an ordered priority queue (this could be a continuous process),
try to find the most beneficial (according to expected payoff) allocation (if any
feasible services exist at all). If a feasible service does not exist, put the task
back into the queue. Some tasks may get a priority below some threshold. Those
should be ignored and deleted.

There might occur live-locks for low priority tasks (this, however, might be in
order, since high priority tasks should be served first. One could, if appropriate,
make pending tasks increase their priorities the longer they wait).

4 A centralized allocation problem

In this section, we study a centralized multi-sensor multi-target problem. The
centralized allocation scheme re-considers its current sensor allocation, say,
every t seconds. The tasks are the known targets which, according to our ob-
jectives, we want to track as long as they are within our reach. The allocation
scheme, furthermore, tries to optimize the combined measurement accuracy of
all targets. The subsequent estimates (and estimate uncertainty) is the result
of the fusion of measurements from all sensors that track the same target.

Here, each service is directly connected to a sensor station which, during
a time-interval (before the re-consideration by the allocation scheme), may ac-
quire measurements from all targets within its range. There is one and only
one service for each sensor. Each service carries information about where its
sensor is located in the environment (in some common coordinate system), and
its capabilities in terms of position estimation (it typically has an estimated
standard deviation).



We propose this centralized allocation scheme, Algorithm 1, for illustration.
Lines 3 to 6 iterate over all generated tasks. The tasks are assumed to have
been ordered according to priority. Line 3 checks whether there are still tasks
to be treated. If there are not, then naturally, the function can return the result
temporarily stored in A∗. If the there are no more services, then the allocation
scheme can do nothing else and should return.

Line 4 (described in detail in Algorithm 2) finds the best allocation (if any)
between the task currently considered, t, and the feasible services. Line 6 re-
moves all services affected by the allocation a∗ from S, i.e., the set of available
services.

Algorithm 1: Centralized allocation
Input: A queue of tasks T ordered according to priority,
the set of available services S
Output: A set of allocations A∗

Centralized allocation(T , S)
(1) A∗ = ∅
(2) while ¬empty(T ) ∧ ¬empty(S)
(3) t ← dequeue(T )
(4) a∗ ← best alloc(t,S)
(5) A∗ = A∗ ∪ a∗

(6) S ← S \ affected services(a∗)

In Algorithm 2 lines 4 through 7 iterates over all available services, rates
their expected payoff (see Section 2.1) solving task t, and selects the one that
gets the highest score. If a particular service cannot at all fulfill the requirements
of a its payoff value will be −∞.

Algorithm 2: Best allocation
Input: A task t, the set of available services S
Output: A best allocation a∗

best alloc(t, S)
(1) best payoff = −∞
(2) a∗ = ∅
(3) foreach s∈S
(4) cur payoff ← calc exp payoff(t,s)
(5) if cur payoff > best payoff
(6) a∗←a
(7) best payoff←cur payoff

Since the algorithm builds the solution (i.e., the set of allocations A∗) start-
ing with the most important tasks first, we may add a line somewhere in the
code that checks whether the function should abort its work immediately or
continue. By adding such a line, we give Algorithm 1 an anytime property. This
means that the longer the algorithm is allowed to run the better the outcome
will be.



Comments and future work

• try some type of commonality (i.e., commonalities between tasks/services)

• study the centralized and decentralized case


