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Abstract – In this article, we address the rarely discussed prob-
lem of connecting high-level information (e.g., aggregated states
and enemy intentions) to information acquisition. Our approach
is to partition the transition of information need to sensor man-
agement into a set of comprehensible entities (information types
and functions), which we present in a framework. The frame-
work is stepwise (sequential) and first translates actual informa-
tion (from the data and information fusion process) to information
need. The information need is mapped to the task space by a task
management function which performs prioritization with respect
to information need. A further step includes projection of tasks to
service space by an allocation scheme, and finally services give
orders to resources. In the terminology of the framework, we dis-
cuss the extension of a previous study (that involved plan recogni-
tion) with a sensor management function.

Keywords: Sensor management, high-level information, situ-
ation and threat assessment.

1 Introduction

A set of methods that improve the process of collecting
and reasoning about an uncertain environment (primar-
ily through combination of information from disparate
sources) is called data or information fusion. The goal is
to describe a particular state of the world of interest by us-
ing all available information.

We consider the data fusion process (described in, e.g.,
[1]) to be a component of an enclosing system. We, further-
more, consider the data fusion component to support the
enclosing system which is dependent on relevant external
information to satisfy its objectives (e.g., to avoid being de-
tected, disable enemy resources, or score in robot soccer,
depending on application). The support provided by the
data fusion process includes fusion of information from dif-
ferent sources and control of sensing resources. This idea is
illustrated with the simple generic agent model in Figure 1,
where resources, knowledge, and control and fusion pro-
cesses may be spatially distributed. The arrows inside the
system in the figure indicate control dependencies between
the constituents. For instance, the data fusion process con-
trols (sensing) resources and the system objective control
can control and interfere with operation of the data fusion
process. The arrows between resources and the environ-
ment indicate that the environment can be sensed and acted
upon by resources.

Resources include sensors (e.g., radars, cameras and
sonar) and effectors (i.e., resources, such as tanks in a com-
mand and control system or a manipulator arm on a mobile
robot, that the system employs to achieve its objectives).
Knowledge represents the long-term-memory of the sys-
tem, possibly including facts and dynamic models of ob-
jects that can be observed in the environment. The sys-
tem objectives control makes sure that effector resources
are used to pursue the goals of the system.1 The data fu-
sion process combines information from sensors, control
sensors to acquire relevant information, and possibly ac-
cesses and updates the knowledge base.
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Figure 1: Data fusion in an agent context.

Efficient usage of sensing resources by the data fusion
process includes adapting it to changing information need
and requirements, not limiting the usage to specific (pre-
defined) tasks. Clever control of sensors to acquire system-
relevant information serves the purpose of the process re-
finement function in the JDL data fusion model [1] and im-
proves the work and outcome of the data fusion process.

As suggested in [2], there are two preconditions for con-
trol of sensors or sensor management (as it is often called in
command and control). They are that the sensors must be

1It is called system objectives control, rather than simply sys-
tem control because part of the control (i.e., the control of sensing
and perception) is managed by the data fusion process.



agile, i.e., they must be controllable so that a set of pos-
sible observations can be changed. Also, there must be
some conflict in the control, e.g., that the information need
is greater than can be satisfied by the sensors. Frequently,
this control has to be dealt with in an automated manner
since human beings might be unable to handle some chores
in command and control systems that might be very com-
plex or require a very fast response.

Efforts for sensor management have been surveyed in,
e.g., [3, 4, 5, 6]. In most of the literature, it appears that the
objective is fixed and aimed at improving the performance
of the sensor system for the particular objective, rather than
improving the relevance of the acquired information for the
enclosing system. For instance, in a target tracking applica-
tion, the system objective is limited to target tracking, while
in a comprehensive large-scale system the objective could
vary. The resources that were devoted to tracking could be
utilized in detecting targets in some area instead, if that was
the system’s new objective. Another common character-
istic of most efforts is that the information required by the
enclosing system relates to entities or phenomena that can
be immediately observed.

Higher levels of data fusion in the JDL model are jointly
called information fusion. In those levels, assessment of
an agent (hostile) force’s intention and prediction of threat
is performed. We call this kind of information high-level
information. As a first step to obtaining high-level inform-
ation and assessing its information need, data fusion activ-
ities such as identification, association, and classification,
have to be performed.

In the second step, when revealing agent plans (related
literature include [7, 8, 9, 10]), a priori knowledge about
the enemy has to be modeled.[11]

Finally, on-line automatic multi-agent plan recognition
has to be performed as a part of threat analysis. For ex-
ample, an enemy unit that is expected to attack is more im-
portant to closely observe than a unit that is only marching.
Therefore, by making a qualified estimation of the enemy’s
plans, we are able to assess the importance of a certain
unit; and by combining importance with information uncer-
tainty about a particular unit, the focus of attention would
be inferred in order to connect high-level information need
to sensor management. A problem is that on high levels
information need is more complex and should be refined
to lower abstraction levels. Those lower levels are have
atomic components and represent comprehensible tasks for
the sensor management. Therefore, we see a need for an
automatic approach to task decomposition, task prioritiza-
tion considering focus of attention, and task assignment for
sensor management.

The main purpose of this article is to connect high-
level information need, in our case the intention of an ob-
served adversary, to the control of the sensors that are sup-
posed to acquire the desired information. The information
need discussed in this article originates from a hierarchical
knowledge representation of the state and intention of the
adversary.[12] A secondary purpose is to develop a generic
framework for expressing the transition from information
need to sensor control. Such a framework should be flex-

ible enough to express various kinds of sensor management
problems, including those which have multiple conflicting
objectives and information need on different levels of ab-
straction.

We try to make the problem of translating information
need to sensor control manageable by representing need by
information tasks and the control space by services. A sim-
ilar approach is discussed in [13, 14, 15], where the shar-
ing of sensing resources among a set of platforms (e.g., air-
craft or tanks) is addressed. Assuming a focus on efficient
interaction between sensor platforms and their operators,
they propose a distributed sensor management architecture.
Their architecture is appropriate for use in network centric
warfare where information should be shared among sensor
platforms. Operator-selected so called sensor management
policies ensure that the sensing resources on a platform are
not used by tasks on other platforms in a way that would
obstruct the mission of the platform. In contrast, our article
is focused on a generic framework of the transition from
tasks to sensor control. Hence, we are not assuming the use
of only distributed sensor platforms.

Another related approach is offered in [16], where a hier-
archical architecture for fusion of information and decom-
position and distribution of tasks is described. Whereas the
focus there seems to be on the design of hierarchical data
fusion and resource management systems, our aim is to tar-
get the significant transition from information need to in-
formation acquisition.

Section 2 delineates the general framework for connect-
ing information need to information acquisition which we
propose in this article. Section 3 relates our framework to
other structures proposed for sensor management and in-
formation acquisition. Section 4 suggests how we can use
the framework to design a sensor management function for
our application. Finally, in Section 5 we express our hope
that this issue will receive more attention in the information
fusion and sensor management communities in the future.

2 A framework connecting information
acquisition tasks to sensing resources

In this section, we present a framework that emphasizes key
issues in modeling and implementing the part of the data fu-
sion process (JDL level 4) that connects information need
to the acquisition of information. The purpose of the frame-
work is to simplify the design of sensor management func-
tions.

Our framework, depicted in Figure 2, prescribes that in-
formation need arising in some system (we call the source
of this need the task origin space) is formulated as informa-
tion tasks with assigned properties (e.g., priority or time ho-
rizon depending on what properties the system is designed
to handle). Such tasks belong to the task space in Figure 2.

The materialization of tasks from information need could
be the responsibility of a task creation and management
function. The service space contains services that the
sensors in the resource space (independently or jointly) can
perform. The benefit of utilizing these services is, sub-
sequently, the (more) relevant data that eventually is re-
turned to the data fusion process by employed sensors. The
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Figure 2: A framework for translating information need to
sensor management

allocation scheme describes how tasks are connected to
available services.

The general structure of the framework contains two
types of entities:space and function. The four space en-
tities: task origin, task, service and resource are containers
of structured information. The structure of information of
each space entity is amenable to the treatment of the in-
tersecting function entities: task creation and management,
allocation scheme, and service management and resource
allocation. The purpose of the function entity is to convey
information between its adjacent space entities.

Note that this framework does not suggest that the
bridging procedure (from information need to its acquisi-
tion) is centralized in any way; tasks and services might be
distributed and maintained separately (and are perhaps only
made available locally) and the allocation scheme might be
decentralized as well.

The tentative ontology, expressed in UML, of the frame-
work shown in Figure 3 may further clarify the relations
between the framework entities.
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Figure 3: The ontology expresses the relations between the
framework’s space and function entities.

The following subsections will describe the different
parts of the framework in Figure 2 in more detail.

2.1 Task origin space

We project information need to thetask space, where tasks
represent requests for information useful for a successful
operation of the enclosing system. The creation of inform-
ation tasks is spurred by the goals and focus of attention of
the system objectives control and by the data fusion pro-
cess itself. Thus, the character of the information tasks that
emerge is influenced by the current information need of the
system and demands of ongoing fusion processes.

2.2 Task space

The task space contains the information tasks spawned by
the system’s desire for more information (explained in the
previous section). Describing relationships between tasks
might facilitate efficient information acquisition. For in-
stance, different information tasks might overlap, in which
case that relationship should be noted. Tasks, typically, also
have various attributes that are discussed in more detail in
the next section.

2.3 Task creation and management

Given the contents of the task origin space, the task creation
and management function forms information tasks that can
be compared both to services and other tasks. The struc-
ture and information content of tasks is heavily dependent
on the allocation scheme used (see Section 2.5). The struc-
ture is defined by various attributes such aspriority (e.g.,
a value reflecting the importance of the tasks),deadline
(a time point after which the tasks is irrelevant),duration
(how long a continuous task should be served), andorigin
(the process which requested the information). Tasks could
also express whether they must be solved completely (with
a least quality requirement) or if partial solutions are feas-
ible.

Overlapping tasks, i.e., that has somecommonality,
could be marked as dependent if the system wants to be-
nefit from serving multiple tasks simultaneously. Task de-
composition may be performed, e.g., to compare tasks and
to find commonalities.

Note that the structure of tasks does not have to be
identical for all tasks. For instance, tasks might be treated
locally in clusters, where each cluster might have its own
task structure.

2.4 Service space

Rather than connecting tasks directly to sensing resources,
we propose an intermediate layer of services. There are sev-
eral reasons for this approach. First, control of a resource is
often abstracted, i.e., it is achieved through a set of modes
which hides underlying design trade-off and optimization
(design choices which could not efficiently be improved by
a sensor manager).[2] Hence, control of a resource often
involves initiating some process that manages the detailed
operations of the resource. The service concept encapsu-
lates both resource and detailed control.

Second, a sensing resource may provide several modes
of operation, and rather than considering the resource as a



single resource, we can consider the palette of modes, or
services, that it provides.

Third, different constellations of sensors may form to
provide services. Every such constellation and attached
sensing activity could be considered as a service. There are
numerous examples of previous efforts that group resources
and treat them abstractly in this way [17, 18].

Consequently, the service space (ideally) contains the
complete action space of sensor management. The space
should only containfeasible services which can be achieved
given available resources. It could possibly also contain ser-
vices that are currently unachievable, but which are known
to be achievable at a given moment or during a predictable
time interval. The relation between resources and services
is outlined in Figure 4.

Service space

Resource space

... Service nService n−1Service 2Service 1

Figure 4: Individual sensors, sensor modes or sets of
sensors constitute services.

Similarly to tasks, relationships between sensors may be
expressed. Particularly, interference dependencies are of
the essence. For instance, the operations of two services
may interfere with each other by one emitting energy that
will preclude the operations of the other. Furthermore, the
engagement of a service may disable another candidate ser-
vice since the resources that made it feasible are preoccu-
pied with the engaged service.

2.5 Allocation scheme

It is the responsibility of the allocation scheme to connect
information tasks to feasible services. The result is typic-
ally also a configuration specification for selected services.
It is clear that design of this function for a particular ap-
plication is heavily dependent on the structure of tasks and
services.

The allocation scheme (i.e., the assignment of tasks to
services) may appear in different guises. It may, for ex-
ample, be a centralized scheme that collects all tasks and
performs an exhaustive search over all combinations of
tasks and services. A drastically different approach is to
design tasks and services as agents which negotiate over al-
locations in a decentralized manner.

This function also performs re-prioritization of tasks.
The reason for reconsidering the prioritization conceived by
the task management function (in Section 2.3) is that high
priority tasks, e.g., might not be satisfiable in the near fu-
ture given the available services. In that case, a task which
originally was assigned a high priority by task management
has to yield in favor of low priority, but satisfiable, tasks.

2.6 Service management and resource
deployment

The function of service management and resource deploy-
ment has two main chores: populating the service space
with feasible services, and making sure that resources ful-
fill their obligations towards initiated services.

Feasible services are, as previously stated, services
which can be achieved with available resources. Services
which are probabilistically feasible (based on the system’s
belief in their availability and reliability) are also conceiv-
able. Note that flexible sensing resources may concurrently
serve multiple services, e.g., by reserving parts of their ef-
forts for different services.

3 Framework compared to other structures
In this section, we relate the framework presented
in the previous section to other known structures of
sensor management and information acquisition: central-
ized/decentralized control, hierarchical layering, and the
Macro/micro architecture.

The purpose of this article is not to replace the above-
mentioned structures. Rather, here we discuss the compat-
ibility of our framework with those structures.

3.1 Centralized and decentralized control

A fundamental issue when designing a sensor management
system is whether the control should be centralized or de-
centralized.

A system that has centralized control has all decision-
making (about sensor control) concentrated in a single com-
putational node. Such a node, e.g., constituting a single
CPU and memory, has access to all the information the sys-
tem as a whole possesses. A prominent advantage of cent-
ralized control is, thus, that decisions about sensor control
will be based on all of the information available to the sys-
tem. Hence, the result is coherent (i.e., coordinated) sens-
ing actions. Decentralized control does not enjoy this ad-
vantage; rather, decisions are based on information about
the local environment and possibly rough descriptions of
the global environment. Decentralized control, on the other
hand, has other advantages such as robustness and scalabil-
ity.

Many efforts in sensor management has assumed cent-
ralized control, perhaps because the focus in that line of
research has been on optimal solutions rather than on con-
trol structures. Decentralized control is, however, highly
relevant for decentralized fusion and the emerging field of
network centric warfare (NCW),[19] and will likely receive
more attention in the future. In NCW, sensors are assumed
to form extensive networks and share information among
themselves. In suchlike applications, the centralized control
approach is simply unreasonable due to its lack of scalabil-
ity.

Both centralized and decentralized control can be ex-
pressed in our framework. In the case of centralized con-
trol, typically, tasks are created and managed in a central-
ized fashion. The allocation scheme is also centralized. It
uses the knowledge the system has acquired to consider all



possible sensing actions (or more frequently, for complex-
ity reasons, the optimal action is approximated through a
search in the space of coherent sensing actions). Resources
are inherently distributed (unless the application concerns
only a single platform), but the attached service representa-
tion and management reside in the centralized node. Efforts
that employ a centralized control include [20] (sensor place-
ment) and [21] (target-tracking). In both of these articles,
the task space only contains one fixed task. In the former
article, it is the task of achieving the best detection probab-
ility, and in the latter that of the best expected improvement
of the target state estimate.

In systems with decentralized control, tasks are created
and maintained locally in distributed information nodes
(i.e., nodes which require information for various mis-
sions). Likewise, services are created and maintained in
sensor nodes. Hence, the allocation scheme will here have
to find a suitable allocation and configuration of services
that are distributed. One means to handle this problem is
the contract net protocol (see, e.g., [22]) which represents
tasks and service as agents. Task agents (managers) an-
nounce tasks to be solved and service agents respond with
bids reflecting the cost (expressed in, e.g., time or energy)
the enclosing system will suffer if selecting the service.

An example with decentralized control is [23] where a
multi-target tracking problem for decentralized fusion on
multiple platforms is addressed. Expressed in our frame-
work, there is only really one task (which also is constant):
maximizing expected measurement accuracy on the system
on all targets. The services are the platforms themselves
which each can take measurements of one target at a time.
For complexity reasons, the allocation scheme in this case
approximates the optimal solution. The resulting allocation
of sensor platforms to targets is achieved after some cooper-
ative work performed by the sensor platforms.

3.2 Hierarchical layering

The hierarchical fusion and management dual node network
(FMDNN) in [16] is an architecture that tightly couples data
fusion to resource management (a superset of sensor man-
agement). The FMDNN is expressive enough to capture
both the design and operation of a data fusion system. Thus,
the purpose of the FMDNN is different from the one of our
framework. Whereas the FMDNN aids the development of
a data fusion and resource management system, the purpose
of our framework is to highlight the transition from inform-
ation need to information acquisition.

3.3 Macro/micro architecture

The Macro/micro architecture [2] is a hierarchical sensor
management architecture with two layers. It distinguishes
two levels of functionality: the macro level which manages
the overall information need and coordination of sensors
(involving, e.g., distribution of tasks to sensors), and the
micro level which deals with how a particular task is best
accomplished by a particular sensor. The authors of [2] sug-
gest that the sensor management function is divided into a
centralized macro sensor manager (that enjoys the benefits

of global information and coherent sensor control) and sev-
eral sensor located micro sensor managers.

Our framework effectively encompasses the
Macro/micro architecture. The responsibilities of the
“macro manager” (e.g., task prioritization and scheduling)
belongs to the task management and allocation scheme
functions of our framework. The micro managers can be
considered to be services (that encapsulates both sensors
and tailored control processes) that the macro manager ac-
cesses. The sensor located services (i.e., micro managers)
naturally makes sure that the underlying sensing resources
perform the assigned task. Hence, the micro managers
perform the work of the service management and resource
deployment function.

Whereas the Macro/micro architecture is designed to
support the common situation that a set of sensors on a
single platform has to be managed, our framework is less to
restrained (to encompass also, e.g., decentralized control).

4 Connecting high-level information need to
sensing actions

In [12], uncertain sensor information, terrain information,
and uncertain a priori knowledge about the enemy are in-
ferred obtaining an estimation of enemy plans on differ-
ent abstraction levels. We utilize a hierarchical Dynamic
Bayesian Network (DBN) model (see, e.g., [24]) for this
purpose. The methodology combines a set of heuristic rules
that present sensor data in a soft manner to the DBN. The
model represents estimation of plans as a discrete distri-
bution of each enemy unit on each abstraction level. On
platoon level, e.g., the plan space is: attack, defend, recon-
naissance and march.

In Figure 5, we present a simplified DBN that has been
used for plan recognition. This model follows military hier-
archy by observing actions of tanks at lowest level inferring
such information with knowledge of military organization
and environment properties such as maneuverability, cover
and weather.

Figure 5: A simplified (Two Slice) DBN Used for plan re-
cognition.

To extend our previous efforts, we here connect inform-
ation need to sensor management by using a methodology
that includes the information acquisition framework from
Section 2. In this example, we use an an agent-based ap-
proach. We define the high-level information representation



for situation and threat assessment (i.e., JDL levels two and
three) as a set of agents. We see parts of the DBN from
Figure 5 as agents. Each platoon model is an agent that
communicates by using statistical inference and is aimed
to present fused information. Therefore, we call them in-
formation agents. They represent a certain unit or phe-
nomenon and its corresponding information supplier agent
that has the responsibility for delivering surveillance data.
Enemy plans, in this case, represent an activity that can
be connected to importance for observing a certain unit.
This connection is a part of the activity-prioritization pro-
cess performed by an information supplier agent (see Fig-
ure 6). Consequently, we obtain linkage between high-level
information such as activity and the need (priority level)
thereof. An information supplier agent expresses informa-
tion need as priority that in task space is translated into a set
of atomic tasks that are further mapped to the service space.

Since the assumption is that service and resource man-
agement have limited capabilities the process of informa-
tion supplier agents’ prioritization and the prioritization of
corresponding tasks has to be performed before assigning
them to resource management. Prioritization of informa-
tion acquisition tasks depends on which unit the informa-
tion agent and its supplier represent.

However, the prioritization of tasks does not ultimately
depend only on estimated plans. It depends as well on in-
formation uncertainty. For this application, we propose an
approach to measure how inferred information is sensitive
to changes of underlying information. In other words we
pose an issue, is underlying information considering its un-
certainty reliable and sufficient to infer robust a conclusion?
If diminishing large uncertainty in underlying information
causes small changes in the inferred result combined with
low threat level, then we can say that large uncertainty is ac-
ceptable in this case. However, there are cases where large
dispersion in inferred results is obtained from information
with low uncertainty. Consequently, we say that this kind
of underlying information which for small changes causes
significant changes in result is more sensitive. To measure
sensitivity, we propose to use a method that samples and
calculates entropy measures of the inferred plans. If it turns
out that estimations of plans are very sensitive to uncer-
tainty of data in a particular situation then this information
gets higher priority.

Finally, we state that prioritization of tasks is conditioned
on both activity (subsequently expected impact; further dis-
cussed in [25]) and information sensitivity. The solution
to automatic task prioritization could be modeled by using
some soft computing method, i.e., a Bayesian network (BN)
as in Figure 6 that takes as an input unit activity and unit un-
certainty (sensitivity to uncertain information).

In Figure 7, the plan recognition algorithm assumes that
the first and the last hostile platoon is attacking with very
high probability (we are pretty certain) and information ac-
quisition tasks for those two platoons should get high prior-
ity. At the same time, we are uncertain about the platoon in
the middle and its intentions. Its estimated plan is sensitive
to smaller changes. We do not know what this platoon is
going to do. Finally, task prioritization use some a priori

Figure 6: The task priority Bayesian network maintained
by the information supplier agent.

rule, implemented in a BN in this case (Figure 6), to com-
bine sensitivity and activity in order to get priorities that
sensor management can use.

Figure 7: A hostile company (in the center of the figure with
units moving in the directions of the arrows) and a friendly
platoon on the right (from [12])

The other type of problem, when bridging from high-
level information need to sensor management, is the task
decomposition problem. There are different ways to ex-
press and decompose the information need into tasks. If
there is a clear structure that assigns a task from higher
levels and decomposes this to lower levels in order to reach
a level of comprehensible tasks for service space, then we
can say that we have a structure that decomposes high-
context information and its corresponding information need
to the task space. This decomposition task should be per-



formed by some task decomposition scheme in the task cre-
ation. The relational structure of information agents can
be used when composing a decomposition scheme. In our
case, e.g., we have the relation that a platoon consists of
three tanks, and this information about relations can be used
when decomposing the task of getting the position of a pla-
toon to subtasks of getting positions of tanks. It could,
e.g., be the direction of motion of a platoon that is reques-
ted. Decomposition, with the help of the agent hierachy
yields comprehensible tasks concerning the directions of
the tanks that the platoon is composed of. A simple alloca-
tion scheme can now assign the tasks to available services
(for instance the UAV with camera if the returned informa-
tion is expected to reveal the direction of the tanks). If there
are more tasks in the task space, their individual priorities
will decide which tasks will be served first.

This task decomposition scheme takes into account pri-
oritization of higher tasks and propagates it to lower levels.
In some cases, tasks are overlapping, and we say that they
have some commonality. By solving one task, a part of
the other task might be solved simultaneously. Tasks that
have been assigned priority and commonality, and that are
refined to comprehensible level to services are mapped to
service space. Two examples of services are image service
and signal intelligence service. By taking commonality of
tasks into account, in some cases, one service can satisfy
more than one task. For example, taking a picture of a cer-
tain area that can be useful for multiple tasks.

Finally, services have to use sensor resources in order to
fulfill requirements by tasks management. For instance, a
camera mounted on a UAV (unmanned aerial vehicle) can
be used for satisfying image service.

5 Discussion and future work
The challenging task of connecting high-level information
fusion and sensor management should be studied further. In
our article, we demonstrate how the concept of using a gen-
eric framework partitions and models the bridging process
from information fusion to sensors management.

We have constructed the framework to encompass as
much as possible of the sensor management concept. Yet,
there are a few aspects of sensor management that are dif-
ficult to capture with our framework. For instance, decom-
position of information acquisition tasks appears to be more
complex than task decomposition in general. When decom-
posing information acquisition tasks, one has to make sure
that the resulting, acquired information can be treated ap-
propriately by the (possibly decentralized) data fusion pro-
cess. Hence, the decomposition of tasks is dependent on
the available fusion processes. We currently do not try to
address this problem in the framework.

In the example concerning high-level information in Sec-
tion 4, we suggest that both the agent (enemy) activity and
its sensitivity to underlying information should have an im-
pact on the prioritization of tasks.

In the case of [12], the use of knowledge about hier-
archical relations between information agents can be used.
When measuring sensitivity of position or direction of a
platoon, e.g., aggregated data of the platoon’s position and

mean direction with standard deviation should be taken into
account, not the positions and directions of each single pla-
toon unit.

Also, in the example, we represent parts of the com-
ponents with agents. We could bring this decentralized
(multi-agent system) idea even further and introduce ser-
vice agents and resource agents. Service agents would have
the natural responsibilities of checking whether it is feasible
(i.e., if there are resources available to make it achievable),
and respond to requests posed by task agents. Resource
agents could assess the status (e.g., remaining battery power
and whether the resource is currently available) of the cor-
responding resource.

As mentioned in Section 4, the knowledge about rela-
tions between information agents can be used for decom-
posing tasks. This kind of approach enables modeling a
flexible structure that performs mapping from the informa-
tion agents hierarchy to the task decomposition structure.

A good cooperation with domain experts should be es-
tablished when performing bridge modeling. The general
framework represents a transparent and easily understood
workflow process. It is easier to model and modify such a
framework when bearing in mind clear distinctions between
different functions of the transition from information need
to information acquisition.

To date, only a few studies have been performed in this
field. In fact, most studies treat the transition from inform-
ation need to acquisition only implicitly. Moreover, the
transition is often simplified by static task sets, low-level
information need, and homogeneous sensors. We hope that
this paper will arouse increased interest in this subject.

Acknowledgments
This work was financially supported by the Swedish De-
fence Research Agency (FOI), Division of Command and
Control. The authors also wish to thank Pontus Svenson,
Stefan Arnborg, Joel Brynielsson and Sandra Brunsberg for
proofreading and advice prior to the submission of the pa-
per. The progress of this work was, furthermore, stimulated
by the meetings of the Decision Support Group.2

References
[1] Alan N. Steinberg and Christopher L. Bowman.

Handbook of multisensor data fusion. In Hall and Lli-
nas [26], chapter 2.

[2] Samuel Blackman and Robert Popoli. Design and
Analysis of Modern Tracking Systems, chapter 15,
pages 967–1068. Artech House, Norwood, MA, 1999.

[3] L. Ronnie M. Johansson. Information acquisition in
data fusion systems. Licentiate Thesis TRITA-NA-03-
28. ISSN 0348-2952. ISRN KTH/NA/R–03/28–SE.
ISBN 91-7283-55-5. CVAP-283, Royal Institute of
Technology, Numerical Analysis and Computer Sci-
ence, Computer Vision and Active Perception Labor-
atory, 100 44 Stockholm, SWEDEN, November 2003.
http://www.nada.kth.se/cvap/cvaplop/lop-cvap.html.

2http://www.nada.kth.se/theory/dsg



[4] Ning Xiong and Per Svensson. Sensor management
for information fusion - issues and approaches. In-
formation Fusion, 3:163–186, 2002.

[5] G. W. Ng and K. H. Ng. Sensor management - what,
why and how. Information Fusion, 1:67–75, 2000.

[6] Stan Musick and Raj Malhotra. Chasing the elusive
sensor manager. In Proceedings of the National Con-
ference on Aerospace and Electronics, pages 606–
613. IEEE, 1994.

[7] A. R. Pearce, C. A. Heinze, and S. Goss. Enabling per-
ception for plan recognition in multi-agent air-mission
simulations. In Proceedings of the 4th International
Conference on Multi-Agent Systems, pages 427–428,
2000.

[8] H. H. Bui, S. Venkatesh, and G. West. Policy recogni-
tion in the abstract hidden markov model. Journal of
AI Research, 17:451–499, 2002.

[9] Robert P. Goldman, Christopher W. Geib, and Chris-
topher A. Miller. New model of plan recognition. In
Laskey K. B. and Prade H., editors, Proceedings of
the 15th Conference on Uncertainty in Artificial Intel-
ligence, 1999.

[10] Frank Mulder and Frans Voorbraak. A formal descrip-
tion of tactical plan recognition. Information Fusion,
4:47–61, 2003.
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