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Abstract – In this article, we address the rarely discussed prob-
lem of connecting high-level information (e.g., aggregated states
and enemy intentions) to information acquisition. Our approach
is to partition the transition of information need to sensor man-
agement into a set of comprehensible entities (information types
and functions), which we present in a framework. The frame-
work is stepwise (sequential) and first translates actual informa-
tion (from the data and information fusion process) to information
need. The information need is mapped to the task space by a task
management function which performs prioritization with respect
to information need. A further step includes projection of tasks to
service space by an allocation scheme, and finally services give
orders to resources. In the terminology of the framework, we dis-
cuss the extension of a previous study (that involved plan recogni-
tion) with a sensor management function.

Keywords: Plan recognition, sensor management, high-level in-
formation, situation and threat assessment.

1 Introduction

A set of methods that improve the process of collecting
and reasoning about an uncertain environment (primar-
ily through combination of information from disparate
sources) is called data or information fusion. The goal is
to describe a particular state of the world of interest by us-
ing all available information.

We consider the data fusion process (described in, e.g.,
[1]) to be a component of an enclosing system. We, fur-
thermore, consider the data fusion component to support
the enclosing system which is dependent on relevant ex-
ternal information to satisfy its objectives (e.g., to avoid
being detected, disable enemy resources, or score in robot
soccer, depending on application). The support provided by
the data fusion process includes fusion of information from
different sources and control of sensing resources. This
idea is illustrated with the simple generic agent model in
Fig. 1, where resources, knowledge, and control and fusion
processes may be spatially distributed. The dashed arrows
inside the agent system in the figure indicate control de-
pendencies between the constituents. For instance, the data
fusion process controls (sensing) resources and the system
objective control can control and interfere with the activit-
ies of the data fusion process. The solid arrows between re-
sources and the environment indicate that the environment
can be sensed and acted upon by resources.

Resources include sensors (e.g., radars, cameras and
sonar) and effectors (i.e., resources, such as tanks in a com-
mand and control system or a manipulator arm on a mobile
robot, that the system employs to achieve its objectives).
Knowledge represents the long-term-memory of the sys-
tem, possibly including facts and dynamic models of ob-
jects that can be observed in the environment. The sys-
tem objectives control makes sure that effector resources
are used to pursue the goals of the system.1 The data fu-
sion process combines information from sensors, control
sensors to acquire relevant information, and possibly ac-
cesses and updates the knowledge base.
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Figure 1: Data fusion in an agent context.

Efficient usage of sensing resources by the data fusion
process includes adapting it to changing information need
and requirements, not limiting the usage to specific (pre-
defined) tasks. Clever control of sensors to acquire system-
relevant information serves the purpose of the process re-
finement function in the JDL data fusion model [1] and im-
proves the work and outcome of the data fusion process.

As suggested in [2], there are two preconditions for con-
trol of sensors or sensor management (as it is often called
in command and control). They are that the sensors must be

1It is called system objectives control, rather than simply sys-
tem control because part of the control (i.e., the control of sensing
and perception) is managed by the data fusion process.



agile, i.e., they must be controllable so that a set of possible
observations can be changed. Also, there must be some
conflict in the control, e.g., that the information need sur-
passes the capabilities of the sensors. Another plausible
conflict is that of maximizing measurement performance
while keeping the probability of being detected low by not
emitting too much energy. Frequently, this control has to
be dealt with in an automated manner since human beings
might be unable to handle some chores in command and
control systems that might be very complex or require a
very fast response.

Efforts for sensor management have been surveyed in,
e.g., [3, 4, 5, 6]. In most of the literature, it appears that
the objective is fixed and aimed at improving the perform-
ance of the sensor system for the particular objective, rather
than improving the relevance of the acquired information
for the enclosing system. For instance, in a target track-
ing application, the system’s objective is limited to target
tracking, while in a comprehensive large-scale system the
objective could be complex and vary over time. The re-
sources that were devoted to tracking could be utilized in
detecting targets in some area instead, if that was the sys-
tem’s alternative objective. Another common characteristic
of most efforts is that the information required by the en-
closing system relates to entities or phenomena that can be
immediately observed.

Higher levels of data fusion in the JDL model are jointly
called information fusion. In those levels, assessment of
an agent (hostile) force’s intention and prediction of threat
is performed. We call this kind of information high-level
information. As a first step to obtaining high-level inform-
ation and assessing its information need, data fusion activ-
ities such as identification, association, and classification,
have to be performed.

In the second step, when revealing agent plans (related
literature include [7, 8, 9, 10]), a priori knowledge about
the enemy has to be modeled.[11]

Finally, on-line automatic multi-agent plan recognition
has to be performed as a part of threat analysis. For ex-
ample, an enemy unit that is expected to attack is more im-
portant to closely observe than a unit that is only marching.
In a civil context, an information fusion system could be
used for identifying “suspicious” behavior of agents (e.g.,
individuals), that can be terrorist activities, smuggling, or
sabotage.

The threats of agents may be subtle, hard to discern and
the observer may have limited resources. By making a qual-
ified estimation of agents’ plans, we are able to assess the
threat of a particular agent; and by combining importance
with information uncertainty about the agent, the focus of
attention for sensor management could be inferred. In order
to connect high-level information need to sensor manage-
ment, the problem of refining information requests to lower
abstraction levels arises. Those lower levels have atomic
components and represent comprehensible tasks for sensor
management. Therefore, we see a need for an automatic ap-
proach to task decomposition, task prioritization consider-
ing focus of attention, and task assignment for sensor man-
agement.

The main purpose of this article is to connect high-
level information need, in our case the intention of an ob-
served adversary, to the control of the sensors that are sup-
posed to acquire the desired information. The information
need discussed in this article originates from a hierarchical
knowledge representation of the state and intention of the
adversary.[12] A secondary purpose is to develop a generic
framework for expressing the transition from information
need to sensor control. Such a framework should be flex-
ible enough to express various kinds of sensor management
problems, including those which have multiple conflicting
objectives and information need on different levels of ab-
straction.

We try to make the problem of translating information
need to sensor control manageable by representing need by
information tasks and the control space by services. A sim-
ilar approach is discussed in [13, 14, 15], where the shar-
ing of sensing resources among a set of platforms (e.g., air-
craft or tanks) is addressed. Selecting a focus on efficient
interaction between sensor platforms and their operators,
they propose a distributed sensor management architecture.
Their architecture is appropriate for use in network centric
warfare where information should be shared among sensor
platforms. Operator-selected so called sensor management
policies ensure that the sensing resources on a platform are
not used by tasks on other platforms in a way that would
obstruct the mission of the platform. In contrast, our article
is focused on a generic framework of the transition from
tasks to sensor control. Hence, we are not assuming the use
of only distributed sensor platforms.

Another related approach is offered in [16], where a hier-
archical architecture for fusion of information and decom-
position and distribution of tasks is described. Whereas the
focus there seems to be on the design of integrated hierarch-
ical data fusion and resource management systems, our aim
is to target the significant transition from information need
to information acquisition.

Section 2 delineates the general framework for connect-
ing information need to information acquisition which we
propose in this article. Section 3 relates our framework to
other structures proposed for sensor management and in-
formation acquisition. Section 4 suggests how we can use
the framework to design a sensor management function for
our application. Finally, in Section 5 we express our hope
that this issue will receive more attention in the information
fusion and sensor management communities in the future.

2 A framework connecting information
acquisition tasks to sensing resources

In this section, we present a framework that emphasizes key
issues in modeling and implementing the part of the data fu-
sion process (JDL level 4) that connects information need
to the acquisition of information. The purpose of the frame-
work is to simplify the design of sensor management func-
tions by decomposition.

Our framework, depicted in Fig. 2, prescribes that in-
formation need arising in some system (we call the source
of this need the task origin space) is formulated as informa-



tion tasks with assigned properties (e.g., priority or time ho-
rizon depending on what properties the system is designed
to handle). Such tasks belong to the task space in Fig. 2.
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Figure 2: A framework for translating information need to
sensor management

The materialization of tasks from information need could
be the responsibility of a task creation and management
function. The service space contains services that the
sensors in the resource space (independently or jointly) can
perform. The benefit of utilizing these services to satisfy
tasks is, subsequently, the (more) relevant data that even-
tually is returned to the data fusion process by employed
sensors. The allocation scheme describes how tasks are
connected to feasible services.

The general structure of the framework involves two
types of entities: space and function. The four space en-
tities: task origin, task, service and resource are containers
of structured information. The structure of information of
each space entity is amenable to the treatment of the in-
tersecting function entities: task creation and management,
allocation scheme, and service management and resource
allocation. The purpose of the function entity is to convey
information between its adjacent space entities.

Note that this framework does not suggest that the
bridging procedure (from information need to its acquisi-
tion) is centralized in any way; tasks and services might be
distributed and maintained separately (and are perhaps only
made available locally) and the allocation scheme might be
decentralized as well.

The following subsections will describe the different
parts of the framework in Fig. 2 in more detail.

2.1 Task origin space

The space that contains the sources of all information need,
we call the task origin space. Information need is mapped
to the task space, where tasks represent requests for inform-
ation useful for a successful operation of the enclosing sys-
tem. The creation of information tasks is spurred by the
members of the task origin space, such as goals and focus
of attention of the system objectives control, and by the data
fusion process itself. Thus, the character of the informa-
tion tasks that emerge is influenced by the current inform-
ation need of the system and demands of ongoing fusion
processes.

2.2 Task space

The task space contains the information tasks spawned by
the system’s desire for more information (explained in the
previous section). Describing relationships between tasks
might facilitate efficient information acquisition. For in-
stance, different information tasks might overlap, in which
case that relationship should be noted. Tasks, typically, also
have various attributes that are discussed in more detail in
the next section.

2.3 Task creation and management

Given the contents of the task origin space, the task creation
and management function forms information tasks that can
be compared both to services and other tasks. The struc-
ture and information content of tasks is heavily dependent
on the allocation scheme used (see Section 2.5). The struc-
ture is defined by various attributes such as priority (e.g.,
a value reflecting the importance of the tasks), deadline (a
time point after which the tasks is irrelevant and should be
discarded), duration (how long a continuous task should
be served), and origin (the process which requested the in-
formation). Tasks could also express whether they must be
solved completely (with a least quality requirement) or if
partial solutions are acceptable.

Overlapping tasks, i.e., that have some commonality,
could be marked as dependent if the system wants to be-
nefit from serving multiple tasks simultaneously. Task de-
composition may be performed, e.g., to compare tasks and
to find commonalities.

Note that the structure of tasks does not have to be
identical for all tasks. For instance, tasks might be treated
locally in clusters, where each cluster might have its own
task structure.

2.4 Service space

Rather than connecting tasks directly to sensing resources,
we propose an intermediate layer of services. There are sev-
eral reasons for this approach. First, control of a resource is
often abstracted, i.e., it is achieved through a set of modes
which hides underlying design trade-off and optimization
(design choices which could not efficiently be improved by
an exogenous sensor manager).[2] Hence, control of a re-
source often involves initiating some process that manages
the detailed operations of the resource. The service concept
encapsulates both resource and detailed control.

Second, a sensing resource may provide several modes
of operation, and rather than considering the resource as a
single resource, we can consider the palette of modes, or
services, that it provides.

Third, different constellations of sensors may form to
provide services. Every such constellation and attached
sensing activity could be considered as a service. There are
numerous examples of previous efforts that group resources
and treat them abstractly in this way.[17, 18]

Consequently, the service space (ideally) contains the
complete action space of sensor management. The space
should only contain available services which can be
achieved given available resources. It could possibly also



contain services that are currently unachievable, but which
are known to be achievable at a given moment or during a
predictable time interval. The relation between resources
and services is sketched in Fig. 3.

Service space

Resource space

... Service nService n−1Service 2Service 1

Figure 3: Individual sensors, sensor modes or sets of
sensors constitute services.

Similarly to tasks, relationships between sensors may be
expressed. Particularly, interference dependencies are of
the essence. For instance, the operations of two services
may interfere with each other by one emitting energy that
will preclude the operations of the other. Furthermore, the
engagement of a service may disable another candidate ser-
vice since the resources that made it available are preoccu-
pied with the engaged service.

2.5 Allocation scheme

It is the responsibility of the allocation scheme to connect
information tasks to feasible services. The result is typic-
ally also a configuration specification for selected services.
It is clear that the design of this function for a particular ap-
plication is heavily dependent on the structure of tasks and
services.

The allocation scheme (i.e., the assignment of tasks to
services) may appear in different guises. It may, for ex-
ample, be a centralized scheme that collects all tasks and
performs an exhaustive search over all combinations of
tasks and services. A drastically different approach is to
design tasks and services as agents which negotiate over al-
locations in a decentralized manner.

This function also performs re-prioritization of tasks.
The reason for reconsidering the prioritization conceived by
the task management function (in Section 2.3) is that high
priority tasks, e.g., might not be satisfiable in the near fu-
ture given the available services. In that case, a task which
originally was assigned a high priority by task management
has to yield in favor of low priority, but satisfiable, tasks.

2.6 Service management and resource
deployment

The function of service management and resource deploy-
ment has two main chores: populating the service space
with feasible services, and making sure that resources ful-
fill their obligations towards initiated services.

Available services are, as previously stated, services
which can be achieved with available resources. Services
which are probabilistically achievable (based on the sys-
tem’s belief in their availability and reliability) are also

conceivable. Note that flexible sensing resources may con-
currently serve multiple services, e.g., by distributing their
capabilities over different services.

3 Framework compared to other structures

In this section, we relate the framework presented
in the previous section to other known structures of
sensor management and information acquisition: central-
ized/decentralized control, hierarchical layering, and the
Macro/micro architecture.

The purpose of this article is not to replace the above-
mentioned structures. Rather, here we discuss the compat-
ibility of our framework with those structures.

3.1 Centralized and decentralized control

A fundamental issue when designing a sensor management
system is whether the control should be centralized or de-
centralized.

A system that has centralized control has all decision-
making (about sensor control) concentrated in a single com-
putational node. Such a node, e.g., constituting a single
CPU and memory, has access to all the information the sys-
tem as a whole possesses. A prominent advantage of cent-
ralized control is, thus, that decisions about sensor control
will be based on all of the information available to the sys-
tem. Hence, the result is coherent (i.e., coordinated) sens-
ing actions. Decentralized control does not enjoy this ad-
vantage; rather, decisions are based on information about
the local environment and possibly rough descriptions of
the global environment. Decentralized control, on the other
hand, has other advantages such as robustness and scalabil-
ity.

Many efforts in sensor management have assumed cent-
ralized control, perhaps because the focus in that line of
research has been on optimal solutions rather than on con-
trol structures. Decentralized control is, however, highly
relevant for decentralized fusion and the emerging field of
network centric warfare (NCW),[19] and will likely receive
more attention in the future. In NCW, sensors are assumed
to form extensive networks and share information among
themselves. In suchlike applications, the centralized control
approach is simply unreasonable due to its lack of scalabil-
ity.

Both centralized and decentralized control can be ex-
pressed in our framework. In the case of centralized con-
trol, typically, tasks are created and managed in a central-
ized fashion. The allocation scheme is also centralized. It
uses the knowledge the system has acquired to consider all
possible sensing actions (or more frequently, for complex-
ity reasons, the optimal action is approximated through a
search in the space of coherent sensing actions). Resources
are inherently distributed (unless the application concerns
only a single platform), but the attached service representa-
tion and management reside in the centralized node. Efforts
that employ a centralized control include [20] (sensor place-
ment) and [21] (target-tracking). In both of these articles,
the task space only contains one fixed task. In the former



article, it is the task of achieving the best detection probab-
ility, and in the latter that of the best expected improvement
of the target state estimate.

In systems with decentralized control, tasks are created
and maintained locally in distributed information nodes
(i.e., nodes which require information for various mis-
sions). Likewise, services are created and maintained in
sensor nodes. Hence, the allocation scheme will here have
to find a suitable allocation and configuration of services
that are distributed. One means to handle this problem is the
contract net protocol (see, e.g., [22]) which represents tasks
and services as agents. Task agents (managers) announce
tasks to be solved and service agents (contractors) respond
with bids reflecting the cost (expressed in, e.g., time or en-
ergy) the enclosing system will suffer if selecting the ser-
vice.

An example with decentralized control is [23] where a
multi-target tracking problem for decentralized fusion on
multiple platforms is addressed. Expressed in our frame-
work, there is really only one task (which also is constant):
maximizing expected measurement accuracy on the system
on all targets. The services are the platforms themselves
which each can take measurements of one target at a time.
For complexity reasons, the allocation scheme in this case
approximates the optimal solution. The resulting allocation
of sensor platforms to targets is achieved after some cooper-
ative work performed by the sensor platforms. We also do
not require a strong coupling between specific fusion and
management nodes.

3.2 Hierarchical layering

The hierarchical fusion and management dual node network
(FMDNN) in [16] is an architecture that tightly couples
data fusion to resource management (a superset of sensor
management). The FMDNN is expressive enough to cap-
ture both the design and operation of a data fusion system.
Thus, the purpose of the FMDNN is different from the one
of our framework. Whereas the FMDNN aids the devel-
opment of a data fusion and resource management system,
the purpose of our framework is to explicitly highlight the
transition from information need to information acquisition.

3.3 Macro/micro architecture

The Macro/micro architecture [2] is a hierarchical sensor
management architecture with two layers. It distinguishes
two levels of functionality: the macro level which manages
the overall information need and coordination of sensors
(involving, e.g., distribution of tasks to sensors), and the
micro level which deals with how a particular task is best
accomplished by a particular sensor. The authors of [2] sug-
gest that the sensor management function is divided into a
centralized macro sensor manager (that enjoys the benefits
of global information and coherent sensor control) and sev-
eral sensor located micro sensor managers.

Our framework effectively encompasses the
Macro/micro architecture. The responsibilities of the
“macro manager” (e.g., task prioritization and scheduling)
belongs to the task management and allocation scheme

functions of our framework. The micro managers can be
considered to be services (that encapsulates both sensors
and tailored control processes) that the macro manager ac-
cesses. The sensor located services (i.e., micro managers)
naturally makes sure that the underlying sensing resources
perform the assigned task. Hence, the micro managers
perform the work of the service management and resource
deployment function.

Whereas the Macro/micro architecture is designed to
support the common situation that a set of sensors on a
single platform has to be managed, our framework is less
restrained (to encompass also, e.g., decentralized control).

4 Connecting high-level information need to
sensing actions

In [12], uncertain sensor information, terrain information,
and uncertain a priori knowledge about the enemy are in-
ferred obtaining an estimation of enemy plans on differ-
ent abstraction levels. We utilize a hierarchical Dynamic
Bayesian Network (DBN) model (see, e.g., [24]) for this
purpose. The methodology combines a set of heuristic rules
that insert sensor data as soft evidence into the DBN. The
model represents knowledge about the enemy and its doc-
trine, and the environment. The DBN performs estimation
of plans and the result is a discrete distribution over plaus-
ible plans for each enemy unit on each abstraction level.
On the platoon level, e.g., the plan space contains the plans:
attack, defense, reconnaissance and march.

In Fig. 4, we present a simplified DBN that has been used
for plan recognition. This model follows military hierarchy
by observing actions of tanks at the lowest level inferring
such information of knowledge of military organization and
environment properties such as maneuverability, cover and
weather.

Figure 4: A simplified (Two Slice) DBN Used for plan re-
cognition.

To extend our previous efforts, we here connect inform-
ation need to sensor management by using a methodology
that includes the information acquisition framework from
Section 2. In this example, we use an agent-based ap-
proach. We define the high-level information representation
for situation and threat assessment (i.e., JDL levels two and
three) as a set of agents. We see parts of the DBN from



Fig. 4 as agents. There we show a simplified view of com-
pany and platoon agents. We see each platoon plan recog-
nition model (a part of the DBN) as an agent that “com-
municates” by using statistical inference. The purpose of
such an agent is to present fused information and derived
conclusions at its assigned abstraction level. Therefore,
we call those agents that represent information about some
“real” (physical) agent information agents. Each informa-
tion agent has its corresponding information supplier agent
that has the responsibility to deliver surveillance data. In-
tentions of act, in our case enemy plans, represent activit-
ies that induce the importance value for observing a certain
unit. This connection is a part of the activity-prioritization
process performed by an information supplier agent (see
Fig. 5). Consequently, we obtain linkage between high-
level information such as activity and the need (priority
level) thereof. An information supplier agent expresses in-
formation need which in task space is translated into a set
of atomic prioritized tasks that are further mapped to the
service space.

Since the assumption is that service and resource man-
agement have limited capabilities, the process of inform-
ation supplier agents’ prioritization of corresponding tasks
has to be performed before assigning them to resource man-
agement. Prioritization of information acquisition tasks
depends on which enemy unit the information agent and
its supplier represent, and the prioritization metric is, by
design, common to all agents.

However, the prioritization of tasks should not ultimately
depend only on estimated plans. It should depend on in-
formation uncertainty as well. For this application, we pro-
pose an approach of measuring how inferred information
is sensitive to changes of underlying information. In other
words, we pose an issue: is underlying information consid-
ering its uncertainty reliable and sufficient to infer robust
a conclusion? If diminishing large uncertainty in underly-
ing information causes small changes in the inferred result
combined with low threat level, then we can say that large
uncertainty is acceptable in this case. However, there are
cases where large dispersion in inferred results is obtained
from information with low uncertainty. Consequently, we
say that this kind of underlying information which for small
changes causes significant changes in result is more sensit-
ive. To measure sensitivity, we propose to use a method that
samples and estimates the standard deviation of inferred
plans. If it turns out that the estimations of plans for a
particular unit is very sensitive to uncertainty of data in a
particular situation then information about this unit should
get higher priority.

Finally, we state that prioritization of tasks is conditioned
on both activity (subsequently expected impact; further dis-
cussed in [25]) and information sensitivity. The solution
to automatic task prioritization could be modeled by us-
ing some soft computing method, e.g., a Bayesian network
(BN) as in Fig. 5 that takes as an input unit activity and unit
uncertainty (sensitivity to uncertain information).

In the scenario depicted in Fig. 6, the plan recognition al-
gorithm assumes that the first (i.e., the rightmost encircled
vehicles) and the last hostile platoon are attacking with very

Figure 5: An example of the task priority Bayesian network
maintained by the information supplier agent.

high probability. Information acquisition tasks for those
two platoons should get high priority. At the same time, we
are uncertain about the platoon in the middle and its inten-
tions. Its estimated plan is sensitive to smaller changes. We
do not know what the middle platoon is going to do. Finally,
task prioritization use some a priori rule, implemented in a
BN in this case (Fig. 5), to combine sensitivity and activity
in order to get priorities that sensor management can use.

Figure 6: A hostile company (in the center of the figure with
units moving in the directions of the arrows) and a friendly
platoon on the right (from [12])

The other type of problem, when bridging from high-
level information need to sensor management, is the task
decomposition problem. There are different ways to express
and decompose the information need into tasks. If there is
a clear structure that assigns a task from higher levels and



decomposes this to lower levels in order to reach a level
of comprehensible tasks for service space, then we can say
that we have a structure that decomposes high-context in-
formation and its corresponding information need to the
task space. This decomposition task should be performed
by some task decomposition scheme in the task creation.
The relational structure of information agents can be used
when devising a decomposition scheme. In our case, e.g.,
we have the relation that a platoon consists of three tanks,
and this information about relations can be used when de-
composing the task of getting the position of a platoon to
subtasks of getting positions of tanks. It could, e.g., be the
direction of motion of a platoon that is requested. Decom-
position, with the help of the agent hierarchy yields com-
prehensible tasks concerning the directions of the tanks that
the platoon is composed of. A simple allocation scheme can
now assign the tasks to feasible services (for instance the
UAV with camera if the returned information is expected to
reveal the direction of the tanks). If there are more tasks in
the task space, their individual priorities will decide which
tasks will be served first.

This task decomposition scheme takes into account pri-
oritization of higher tasks and propagates it to lower levels.
In some cases, tasks are overlapping, and we say that they
have some commonality. By solving one task, a part of the
other task might be solved simultaneously. Tasks that have
been assigned priority and commonality, and that are re-
fined to a comprehensible level to services are mapped to
service space. Two examples of services are image service
and signal intelligence service. By taking commonality of
tasks into account, in some cases, one service can satisfy
more than one task. For example, taking a picture of a cer-
tain area that can be useful for several tasks.

Finally, services have to use sensor resources in order
to fulfill requirements posed by task management. For
instance, a camera mounted on a UAV (unmanned aerial
vehicle) can be used to satisfy an image service.

5 Discussion and future work

The challenging task of connecting high-level information
fusion and sensor management should be studied further. In
our article, we demonstrate how the concept of using a gen-
eric framework partitions and models the bridging process
from information fusion to sensor management.

We have constructed the framework to encompass as
much as possible of the sensor management concept. Yet,
there are a few aspects of sensor management that are dif-
ficult to capture with our framework. For instance, decom-
position of information acquisition tasks appears to be more
complex than task decomposition in general. When decom-
posing information acquisition tasks, one has to make sure
that the resulting, acquired information can be treated ap-
propriately by the (possibly decentralized) data fusion pro-
cess. Hence, the decomposition of tasks is dependent on
the available fusion processes. We currently do not try to
address this problem in the framework.

In the example concerning high-level information in Sec-
tion 4, we suggest that both the agent (enemy) activity and

its sensitivity to underlying information should have an im-
pact on the prioritization of tasks.

In the case of [12], knowledge about hierarchical rela-
tions between information agents can be used. That means
that in our example, the estimation of enemy’s plans on
company level is dependent on the estimations of plans on
platoon level that in turn among other things depend on
estimation of positions and velocities of the tanks. This
kind of information is supposed to be delivered by sensor
resources.

We could bring the decentralized (multi-agent system)
idea, here adopted, even further and introduce service
agents and resource agents. Service agents would have the
natural responsibilities of checking whether it is feasible
(i.e., if there are resources available to make it achievable),
and respond to requests posed by task agents. Resource
agents could assess the status (e.g., remaining battery power
and whether the resource is currently available) of the cor-
responding resource.

As mentioned in Section 4, the knowledge about rela-
tions between information agents can be used for decom-
posing tasks. This kind of approach enables modeling a
flexible structure that performs mapping from the informa-
tion agents hierarchy to the task decomposition structure.

A good cooperation with domain experts should be estab-
lished when designing a bridge between information need
and acquisition. The general framework represents a trans-
parent and easily understood workflow process. It is easier
to model and modify such a framework when bearing in
mind clear distinctions between different functions of the
transition from information need to information acquisition.

To date, only a few studies have been performed in this
field. In fact, most studies treat the transition from inform-
ation need to acquisition only implicitly. Moreover, the
transition is often simplified by static task sets, low-level
information need, and homogeneous sensors. We hope that
this paper will arouse increased interest in this subject.
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