
Task prioritization

Ronnie Johansson

26th April 2004

Abstract

Abstract

1 Introduction

Prioritization of information acquisition tasks (or information tasks for short)
realizes the focus of attention function of our system, i.e., the information tasks
with the highest priority (according to the prioritization assignment described
below) are in focus. Here we present an intuitively appealing method to calculate
the priorities of tasks.1 The tasks all involve determining the state (in this case
the position and direction) of a particular (military) unit. The priority measure
we assign to a task depends on both the estimated threat posed by the enemy
unit that corresponds to the task as well as the estimated improvement potential.
The prioritization focuses on describing the urgency of tasks without considering
how or what resources can satisfy them.
Overview

2 System view and goals

The overall goal of the system is plan recognition, i.e., estimating the current
plans or activities of observed enemy companies. In our scenario, the system is
a friendly platoon (or, possibly, a set of friendly platoons) that estimates the
properties of enemy units with respect to itself. Properties do not only include
attributes such as position and direction, but also intentions. For each unit, a
task may be created that requests position and direction estimates of the unit.
The creation of tasks reflects the need of the system (or some part of the sys-
tem) to improve its estimation of a corresponding unit. Acquired information
(estimates with error covariance) is fused to estimate the current plan (e.g.,
attack, march, defense, etc) of the unit. The estimation process involves utiliz-
ing a Dynamic Bayesian Network (DBN) model which produces a probability
distribution over plausible enemy plans. The DBN requires information about
an enemy position estimate and terrain properties.
The (sensing) resources available (e.g., UAVs and human observers) are,

furthermore, in general not sufficient to treat all tasks and some prioritization
1From now on, in this document, all information acquisition tasks are referred to simply

as tasks.

of tasks (i.e., focus of attention) is required. Hence, there is a conflict between
tasks which we settle through prioritization.
To calculate priorities, we integrate the estimated threat posed by the enemy

unit (Section 4) with the sensitivity of the estimation (Section 3). The following
sections will deal with these two parts in detail.

3 Plan and threat

The fusion process generates plan estimates for all (observed) companies (and
their platoon components). We let “plan” to denote the current intentions of
the enemy unit. A plan estimate is a probability distribution, P (a), over all (say
k) discrete and finite possible plans a∈A. In our case, the probability function
PA(a) is inferred through a dynamic Bayesian network based on fused observa-
tions of platoon state x̂. previously inferred plans, and terrain characteristics.
The estimate x̂ is composed of the platoon position (p̂ = (x̂coord, ŷcoord)) and
direction (d̂) estimates.
For convenience, assume that the probability function PA(a) is defined in

this way:

PA(a) =


a∗
1, if a = a1

...
...

a∗
k, if a = ak

, ai∈A (1)

The vector of length k, a∗, stores for each element a∗
i the corresponding prob-

ability PA(ai).
Given the estimated plans (i.e., generated PA(·) functions) for all enemy

platoons one could estimate the threat posed by the observed platoons. E.g.,
naturally, a unit that we expect to be attempting to attack us, poses a greater
threat to us than another unit that is merely marching somewhere. However, we
introduce two more factors that should be considered when estimating threats:

Impact E.g, what will be the consequences of an attack by a particular unit.
Will the expected (perhaps simulated) consequence be more severe than
we can afford? Impact may also have other qualities; e.g., one might
consider the impact of being noticed by a marching platoon.

Temporal separation E.g., if two units, equal in strength, are expected to
attack, the one closer to us (here, “closeness” is expressed in expected
travel time or temporal separation) should be considered to be a greater
threat than the other, more distant, unit.

Hence, we propose a threat function that integrates the three mentioned
factors: plan, impact and temporal separation. The threat function might,
for instance, be a linear, weighted summation over the elements of the plan
estimate, emphasizing threatening plans:

t
(
PA(a), imp, ts;w

)
�
∑
a∈A

w(a)PA(a) + w(imp)·imp+ w(ts)·ts, (2)

where w(·) is the weight function that emphasizes crucial plans and assigns
weights to expected impact and temporal separation.

Using the notion of a∗, we can express Equation 2 in vector notation as
t = t(a∗,w) = w·a∗T (where w is the vector of weights corresponding to the
previously mentioned weight function w(a)).
Attached to the estimated unit state is an uncertainty distribution, here

assumed to be the Gaussian pX(x)≡N(x;µx,P), where µx is the expected value
of x (approximated with x̂) and P the covariance (approximated with P̂).
As indicated the threat estimate of a unit PA(a) is actually dependent on the

state estimate x̂, i.e., PA(a; x̂) or a∗(x̂), a state which is inherently uncertain.
It is more costly (computationally), but more robust to instead estimate the
expected threat t≈µt. In order not to clutter up the remaining calculations of
this section, we have neglected the impact and temporal separation factors in
the equations.

µt = EpX [t(X)] =
∫
x

pX(x)t(x)dx = w
∫
x

N(x; x̂, P̂)a∗(x)dx (3)

The expected value in Equation 3 can not easily be calculated analytically
due the complex estimation of a∗(x). Hence, an approximative method such
as Monte Carlo simulation is recommended. In general terms, the N -sample
Monte Carlo estimate of the expected value of g(X) is

g̃N� 1
N

N∑
i=1

g(xi). (4)

Hence, in our case, with g(X) is replaced with t(X) and

µt ≈ t̃N =
1
N

N∑
i=1

t(xi) =
w
N

N∑
i=1

a∗(xi)
T =

w
N

N∑
i=1

 a∗
1(xi)
...

a∗
k(xi)

 . (5)

We accept t̃N as the estimate t. Note that a∗
l (xi) in Equation 5 should be inter-

preted as the lth component of the vector a∗(xi) determined by xi. The notation
does not imply that the lth component of a∗ could be calculated independently
of the other components.

4 Threat sensitivity

The threat sensitivity s(·) is characterized by the variance of the threat function
t(p) (which indicates the “stability” of the threat) with respect to plausible unit
states. Hence,

s(t) � f
(
V[t]

)
= f

(
E[(t − µt)2]

)
= f

(
E[t2(X)]− µ2

t

)
, (6)

for some function f(·) that maps the variance into some custom sensitivity
metric. Also in this case, Equation 6 may be difficult to calculate.
We have accepted an estimate for µt which was derived in Equation 5. The

other expectancy value can be approximated in a similar way (as in Section 3,
we leave out the impact and temporal separation factors from the calculation):

E[t2(X)] ≈ 1
N

∑N
i=1 t2(x) = {Equation 2} = 1

N

∑N
i=1

(
w·a∗(xi)

T
)2

(7)

Unfortunately, we cannot further simplify the expression in Equation 7 without
ruining the variance estimate.
Using Equation 5 and Equation 7, we can approximate the variance with

the following expression:

V[t] = σ2
t ≈ 1

N

 N∑
i=1

(
w·a∗(xi)

T
)2

− 1
N

(
w

N∑
i=1

a∗(xi)
T

)2
 (8)

5 Prioritization

Using the results from Section 3 and 4, i.e., the threat estimation and sensitivity,
the two values can now be combined into a task priority value πk(µt, σ

2
t) for

task k. πk(·) should have the properties that it yields high priority when threat
variance is high, since if the variance is high our expected threat is uncertain.
Furthermore, if both the expected threat and its variance are low, the priority
should be low, since its unit poses no threat and we are pretty certain about
that. Does this mean that we will fail to detect the attack of some enemy platoon
just because we considered it harmless at some earlier and subsequently didn’t
bother to look at it again? The answer is “no” since the lack of observations will
make the position uncertainty of the unit increase which, eventually, leads to a
higher threat variance. High expected threat and low variance should lead to
a moderate priority (somewhere in between high and low priority). The reason
is that since the threat of the enemy unit is already fairly well established,
resources could be devoted to estimating the threat of other enemy units.
Once again, for illustration, we propose a weighted linear combination; πk

is the priority of task k calculated with weights u = (uµ, uσ):

πk(µt, σ
2
t) = uµ·µt + uσ·σ2

t (9)

We propose Algorithm 1 to compute the priority value. The for-loop from
Line 4 to Line 7 samples for each iteration from N(x̂, P̂). We simplify the
sampling of the three dimensional x̂ by assuming that its three components are
independent Gaussian variables. In Line 5 the function Calculate distr that
calculates the distribution of probabilities over plans, i.e., a∗, is called. The
following two lines of the loop accumulates the contribution of the samples.
In Line 8 the approximation of µt is completed and in Line 8 the variance
is computed. Finally, on Line 11 a function, Calculate prio, is called that
combines the expected value and variance of the threat. If O(ω) is the time
complexity of calculating the probability distribution over plans, then the time
complexity of Algorithm 1 is O(ωN), where N is the number of samples.

Algorithm 1: Task priority calculation
Input: A position estimate x̂, position covariance estimate P̂,
the number of samples N
Output: a scalar priority value π
Priority(x̂, P̂, N)
(1) sum ← 0
(2) sq sum ← 0
(3) for i = 1 to N
(4) xi← sample from N(x̂, P̂)
(5) a∗

i ← calculate distr(xi)
(6) sum ← sum+ a∗

i

(7) sq sum ← sq sum+
(
w·a∗

i
T
)2

(8) exp t ← w·sumT /N
(9) exp sqr ← (exp t)2

(10) var t ← sq sum/N − exp sqr
(11) π ← calculate prio(exp t, var t)

If there are more than one friendly platoon that generates tasks we can
extend the prioritization function π in Equation 9 with the factor of the relative
(strategic) value of the friendly platoon in question. E.g., the value priority of
a task generated by friendly platoon i is scaled with a value vi reflecting i:s
significance to the overall mission of the friendly platoons,

πk(µt, σ
2
t ; i) = vi(uµ·µt + uσ·σ2

t). (10)

In an application where distributed plutoons (fusion nodes) prioritize their
own tasks before submitting them to a sensor management node that performs
the allocation scheme (i.e., the process that decideds in what order tasks should
be served), we can think of the submitted priorities as local prorities. For this
type of application, let us re-denote the priority function in Equation 9 by π

lcl(i)
k ,

i.e., the local priority of task k by node i. The sensor management node then,
based on the information it has about the mission objectives, generates global
priorities (or mission priorities), e.g., πgbl

i.k (π
lcl(i)
k ; i) = vi·πlcl(i)

k .

Comments

• Should we use “plan” instead of “activity”?
• Should we use “platoon” and “company”? Check!

