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Chapter 1

Introduction

Sensor allocation and management [1] is one of the most important problems in a future network based
defence. In order to obtain adequate common operational pictures, sensor actions must be coordinated
and planned so that fusion of their observations provides the maximal possible amount of information
regarding the enemy.

An efficient system for such sensor management will consist of three important parts:
Commanders and analysts must have high-level planning tools available that help them decide which

areas of the battlefield that they need information on. Such methods could be fully or semi-automatic,
perhaps simulating futures and fusion systems in order to determine areas of interest [2]. They could also
rely on mixed-initiative reasoning (e.g., [3]), where the computer acts as a “discussion partner” for the
commander, helping them to describe their plans and intentions and determining what sensor coverage
to request.

Sensor platforms must also be able to optimize their paths and sensor parameters so that they can
perform the tasks assigned to them. This requires sophisticated low-level platform optimization methods
that determine, e.g., flight paths so that the risk of loss is minimized and fuel consumption tolerable.

Finally, there must be a system that links the requests of the commanders to the services provided
by the platforms and determines which requests are possible to fullfill. This system will act as a bridge
between the commanders and the platforms [4, 5].

The support systems needed for these different stages differ in both the response-time needed and
the degree to which microscopic details of, e.g., sensor and platform characteristics need to be taken into
account as well as the need for user interaction. In the systems used for high-level planning, there is an
urgent need for fast response in order to facilitate experimenting and mixed-initiative reasoning. Such
systems should aid humans in the same way as they are now aided by paper and pencil. The planning
systems could be combined with impact analysis modules to allow for simulation of both enemy and
own behaviour.

On the other hand, the algorithm that actually determines how the platform should move often does
not need the same “faster than real-time” characteristics. Hence, they can use more detailed models and
more sophisticated optimization algorithms. (Note that it is of course necessary in some cases to have
“faster than real-time” behaviour also in the algorithms that control the platforms. This could be the
case, for example, when a platform is facing threats to its existence.)

Another motivation for having different methods for high and low level planning is the new kinds
of surroundings and enemies that face us in international operations. Operations in urban or semi-
urban terrain entail new demands on the amount of sensors that are needed to adequately observe an
area. The use of a large number of autonomous UxV’s1 will probably be necessary. These will require
sophisticated control algorithms to control their search patterns. However, their use also makes it even

1Unmanned Air, Ground, or Under-water Vehicles
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more important to have the kind of fast and simple-to-use high-level planning systems described above,
since the large number of platforms makes it difficult for humans to keep track of all possible resource
allocations. The planning systems need to take into account both how the output from the sensors should
be used in the fusion systems and how this output will help the commander attain their goal/effect.

In this report, we describe a class of optimization methods that we believe may be useful both for the
high-level planning tools and for the low-level platform optimization systems. The class of methods is
called stochastic dynamic programming (SDP). SDP differs from normal dynamic programming in that
it can be used when we do not have deterministic models for the environment and utility of performing
various actions.

The main purpose of this report is to be a brief introduction and survey of SDP. We describe the
background of SDP, including its relation to dynamic programming, and give the most important algo-
rithms for solving SDP problems in chapter 2. As we were learning about SDP, we discovered the more
general field of reinforcement learning. A brief survey of some of the most basic concepts in this area is
contained in section 2.5

In chapter 3 we list and briefly describe some interesting applications of SDP for problems that we
believe could be important for military applications. This list is far from complete and is meant to serve
as a sample only.

We conclude in chapter 4 by briefly listing some reasons why SDP and related concepts might be
especially useful in the new kinds of operations that the Swedish armed forces are facing.

Our interest in SDP was originally raised by the suggestion that it could be used to directly improve a
sensor plan evaluation method that we previously implemented in the IFD03 Information Fusion demon-
strator [6] and subsequently improved [2]. Since our knowledge of SDP was very limited, we decided
that we needed to learn more about it. In order to do this as fast and efficiently as possible, we divided
the subject between us and undertook to summarize the parts for each other. This report is the result of
this process. We hope that it will prove useful for others who are interested in resource management.

2
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Chapter 2

Problem formulation and algorithms

In this chapter we formulate a simple version of the stochastic dynamic programming problem and
describe some of the algorithms used to solve it. We also briefly describe the standard dynamic pro-
gramming problem and reinforcement learning. More detailed descriptions and reviews can be found
in [7] and [8].

2.1 Problem formulation

Consider the situation of a decision maker (agent) acting in an environment. Every decision being made
influences the environment and brings the decision maker into a new situation (state). This situation can
be more or less valuable, which can be modeled mathematically by associating it with a value or a cost.
The objective of the decision maker is to find an optimal policy of how to act in each given situation in
order to maximize the accumulated value over time. The described problem is called a Markov Decision
Process (MDP) and solutions are studied in the fields of Reinforcement Learning1 and Optimal Control.

More formally, consider an agent acting in an environment during a sequence of time-steps (t =
0, 1, 2...). In a finite MDP the environment is always presented to the agent as being in one of a finite
number of states. For each such state, xt ∈ X , the agent can make a decision by choosing from a finite
set of actions/controls, U(xt). The consequences of performing action u ∈ U(xt) when in state xt = x
is described by a transition probability,

p(x, u, x′) = Pr(xt+1 = x′|xt = x, ut = u), (2.1)

which for each state x′ ∈ X gives the probability of ending up in that state. As can be seen, this model
for determining the next state only depends on the immediate preceding state, which makes the process
Markovian.

After performing an action the agent gets feedback in the form of a reward. The reward is a number,
R(x, u), that can depend on the old state and the action taken to get there. The agent’s goal is to find
an optimal policy π = {π0, π1, π2, ...} that maximizes the accumulated reward over time. A policy is a
time-dependent function that gives the preferred action u for each state x.

If we have complete knowledge of the interactions with the environment, i.e., we know all p(x, u, x′)
and R(x, u), the MDP can in theory be solved exactly using dynamic programming, which is described
in the next section. To have such a complete model of the environment is seldom the case, and even if
we did, the number of states and actions are often so large that making an exhaustive computation is not
feasible. Fortunately, a number of well established approximation methods are available.

1Reinforcement Learning is also known as Neuro-Dynamic Programming, referring to its characteristics of combining
methods inspired by dynamic programming and neural networks.
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Figure 2.1: Example problem to be solved using dynamic programming. Links are labelled with their
costs.

2.2 Dynamic programming

Here we briefly describe the concept of dynamic programming, which can be seen as the basis for all
stochastic dynamic programming methods.

Let us start with an example where dynamic programming is used for solving a shortest path prob-
lem. The example is depicted in figure 2.1.

Our goal is to find the shortest path from node A to node G by following the arcs. The cost of
moving between two nodes x and y is denoted c(x, y) and shown in the figure; it is only possible to
move between those nodes that have an edge between them. This requires a policy or sequence of
decisions divided into stages where at each stage a decision is made. A decision in this case is the
choice of moving from a node at one stage to another node at the following stage. Each decision, in this
case movement, is associated with a certain cost (negative reward).

Mathematically we introduce a cost function that is constructed stepwise, starting from the end. The
cost function fj(x) represents the minimal cost of moving from a generic node x to destination node by
taking an optimal decision at each stage j. We must also store the actual node to visit in each stage, i.e.,
the one that minimizes the cost.

The problem can be written as

fj(x) = min
nodes y in stage j+1

{c(x, y) + fj+1(y)} , (2.2)

which represents a set of equations that is solved backwards.
In our example we start first with the base case f6(G) = 0 meaning that there is no cost associ-

ated with moving from the goal state to the goal state. We proceed by calculating the cost function
recursively:

At stage j = 5 we use our local cost functions. However, no decision choices have to be made

4
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because in both cases, the decision ”go to end state” is the only alternative. From equation 2.2, we get
fj=5(N) = 5 and fj=5(D) = 10

Next come the nodes at stage 4, R, M , and T . Nodes M and T only have one possible successor,
while for node R there are two alternatives, giving

f4(R) = min
y∈{N,D}

{c(R, y) + f5(y)} . (2.3)

The result is that f4(R) is 16 and the policy at node R should be ”go to node N”.
We now perform the same procedure recursively for stage three and so on backwards. By calculating

pairs of values and decisions at each level, we can determine which decision to make at each stage.
Dynamic programming can be used to solve a large number of different problems. Even if those

problems can differ significantly from application to application there are some general (common) char-
acteristics for all DP problems:

1. The problem can be divided into stages where decisions can be made at each stage

2. At each stage there are a number of states (in our previous example a node could be interpreted as
certain state)

3. The decision at one stage transforms one state into a new state in the next stage.

4. Given the current state, the optimal decision for each of the remaining states does not depend on
the previous states or decisions. (In our example it was not necessary to know how you got to a
node, only that you did).

5. There exists a recursive relationship that identifies the optimal decision for stage j, given that
stage j + 1 has already been solved.

6. The final stage must be solvable by itself. In deterministic dynamic programming both the imme-
diate payoff (cost) and the next state given a certain decision are known. If there is uncertainty in
state, pay-off or in the decisions executed then we have a stochastic dynamic programming prob-
lem. The basic ideas of determining stages, states, decisions, and recursive formulae still hold but
can be calculated in different manner using different algorithms.

In the following section, we will see how the dynamic programming algorithm briefly described
above can be augmented to handle also such stochastic problems.

2.3 Algorithms

In this section we will describe two of the most important algorithms used for solving stochastic dynamic
programming, value iteration and policy iteration. We begin by formulating the problem in terms of
policies.

Our aim is to find an optimal policy, π∗(x). The policy, which is a function that maps states to
actions, should be optimal in the sense that it maximizes the cumulative reward V π(x0) of the acting
agent given its starting state x0,

π∗ ≡ arg max
π

V π(x0). (2.4)

The cumulative reward function V π(x) for a policy π(x) is sometimes expressed as a γ-discounted
reward,

V π(xt) = R(xt, π(xt)) + γR(xt+1, π(xt+1)) + γ2R(xt+2, π(xt+2)) + . . . =
∞∑
i=0

γirt+i, (2.5)

5
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which simply means that we sum the instantaneous rewards rt = R(xt, π(xt)) for each t but weigh each
term by a factor that decreases for future rewards.

Thereby, the reward function (and, hence, the agent) prefers rewards closer in time. Other alterna-
tives are the finite horizon reward and average reward. The finite horizon reward corresponds to equa-
tion 2.5 with γ = 1 and an upper limit to the summation, i.e., only the rewards from the next h steps
are taken into account. The following discussion will merely concern the discounted, infinite-horizon
reward.

Note that the expression in equation 2.5 can be rewritten as a recursive function

V π(xt) = R(xt, π(xt)) + γV π(xt+1). (2.6)

In equation 2.5, the reward function R(x, u) and transition function p(xt, u, xt+1) (implicit in equa-
tion 2.5) are assumed to be deterministic and known. These assumptions can be relaxed. For example,
the transition function may be known but non-deterministic, i.e., P : X × U → Π(X ), where a
member of Π(X ) is a probability distribution over states. If so, we need to form an average over all
possible states, and the value function becomes

V π(x) = R(x, π(x)) + γ
∑
x′∈X

p(x, π(x), x′)V π(x′), (2.7)

where p(x, π(x), x′) is the probability of ending up in state x′ from state x after taking action π(x).
In equation 2.4, we determined the optimal policy by calculating the cumulative reward function

V π(x0) for all possible policies and choosing the one that gave the maximum cumulative reward. In-
terestingly, it is often more convenient to work in terms of the optimal value function V ∗ instead of the
optimal policy.

The optimal value function is defined as

V ∗(x0) ≡ max
π

V π(x0). (2.8)

Note the subtle similarity to equation 2.4. In analogy to equation 2.6, we can also determine the optimal
value function by solving the set of equations

V ∗(x) = max
u
{R(x, u) + γ

∑
x′

p(x, u, x′)V ∗(x′)} (2.9)

for all states x. (Note the similarity to the toy problem described in the previous section, equation 2.2.)
Given the optimal value, it is of course possible to determine the optimal policy.

The approach using the optimal value function is used in the value iteration algorithm, while the
formulation using the cumulative reward is more useful in understanding policy iteration.

2.3.1 Value iteration

Value iteration [9] is an algorithm that can be used to find the optimal policy for a given problem. The
idea is to first establish the optimal value function V ∗(x) = V π∗

(x) and then to define the optimal
policy π∗(x) as

π∗(x) = arg max
u∈U

Q(x, u). (2.10)

Here, Q(x, u) is an estimate of the maximum discounted cumulative award that can be achieved starting
from state x and using the first action u. The algorithm proceeds by first calculating Q(x, u) from the
current approximation to V ∗(x) and then changing the optimal value function for each state x by the
maximal possible Q(x, u). The algorithm stops when a sufficiently good policy has been found; it can
be shown that it converges to the optimal value function.

The algorithm [8] is

6
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initialize V (x) arbitrarily
while policy not good enough do

for all x∈X do
for all u∈U do

Q(x, u)← R(x, u) + γ
∑

x′∈X p(x, u, x′)V (x′)
end for
V (x)← maxu∈U Q(x, u)

end for
end while

It is not trivial to determine when to stop, i.e., when a good enough policy has been found. Some
bounds on how much additional iterations change the utility have been obtained, but in practice trial
runs must be used in order to determine when to stop. It has been observed that the convergence rate
slows considerably when the discounting factor γ approaches 1.

The value iteration algorithm lends itself very well to parallelization, since the updates of V can be
done asynchronously. For more details on this as well as proofs of convergence, we refer the reader
to [10, 11, 12].

It would be interesting to try to combine the value iteration algorithm with the concept of satisfy-
ing rationality (as described in [13]) and possibly user interaction. Very briefly, satisfying rationality
compares the benefits and costs of various decision alternatives and provides a way of resolving some
of the apparent paradoxes that appear in how humans actually make decisions. A decision support sys-
tem could run the value iteration algorithm in the background while displaying the currently best found
policies along with their benefits and costs to the user.

2.3.2 Policy iteration

Instead of determining the correct value function and optimizing it to determine the policy to use, the
policy iteration algorithm constructs the optimal policy incrementally. The algorithm consists of two
steps. First, an approximation of the value function for the current policy is computed. Then, this value
function is used to improve the policy.

The algorithm is

choose an arbitrary initial policy π′

repeat
π ← π′

compute approximate value function V π(x) by solving equations 2.11
π′(x)← arg maxu∈U{R(x, u) + γ

∑
x′ p(x, u, x′)V π(x′)}

until π = π′

The equations to solve in the first step are (compare equations 2.7)

V π(x) = R(x, π(x)) + γ
∑
x′∈X

p(x, π(x), x′)V π(x′), (2.11)

Exact expressions for the algorithms worst-case behavior are missing.
Some work has been done on combining the two approaches, see [8]

2.4 A note on problem formulation

Our formulation of MDP as well as the algorithms we have briefly described assumes that several pa-
rameters are given, in particular that we know the transition probabilities p(x, u, x′) and reward function

7
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R(x, u). When trying to apply the methods described in this report to a military problem, it is important
to remember that the most important source of errors is not approximations made in the algorithm, but
rather inaccuracies in these parameters.

In order to be useful, any application of SDP and related techniques in the military domain must
include also methods for determining and validating these parameters. Unfortunately, such methods are
lacking in the currently available literature. Depending on the application at hand, this might be more
or less difficult. For some problems, there might be some sort of universality, so that the solution to the
problem does not depend sensitively on the problem parameters. In other cases, however, small changes
of parameters might lead to significantly different results.

One possible approach to dealing with these problems is to use robust Bayesian methods (e.g., [14,
15, 16]) to quantify the uncertainty in the parameters. This method, however, might prove difficult to
implement in practice. Another possible approach is to apply learning methods also to the parameters.
This could be done by running several implementations using different parameters simultaneously and
then comparing their output [17, 18], or perhaps by adapting the indirect learning methods described
below.

In practice, it might be simpler to accept that we may not be able to determine the optimal solution
to the problem, and instead try to construct an algorithm that finds a good enough solution.

2.5 Reinforcement learning

In this section, we will briefly describe the more general method of reinforcement learning. Stochastic
dynamic programming can be seen as a special case of reinforcement learning; it is included here for
completeness. For more details on reinforcement learning, we refer the interested reader to [7].

When calculating the optimal policy using dynamic programming there is not much of real learning
involved. The model of the environment is fully known from the beginning and the process can be
performed entirely off-line, and is hence often referred to as planning. The large complexity of the
planning process can often make the method infeasible. A way of getting around this is to use Monte
Carlo techniques to calculate the value function from samples.

However, an agent acting in an new and maybe hostile environment very rarely has complete knowl-
edge. Hence, other reinforcement learning methods are needed, based on direct agent-environment
interactions and experiences built on trial-and-error. These kinds of methods can be divided into two
categories, direct and indirect learning.

2.5.1 Direct learning

Direct learning is also known as model-free learning. The learning is completely based on trial-and-error
and no learning of the environment model is obtained while performing a task. An important class of
direct learning algorithms is Temporal-Difference Learning. The most basic representative of this type
of method is called TD(0). In TD(0), after choosing an action according to the policy, π(xt), the next
state xt+1 is observed and used directly to update the value function,

V (xt) = V (xt) + α(R(xt, π(xt)) + γV (xt+1)− V (xt)). (2.12)

The parameter α controls the learning rate and should be slowly decreasing to guarantee convergence.
By iterating this procedure, we get a better and better approximation of the value function. The drawback
of this method is that in order to converge to the correct value function, we need to perform the update
in equation 2.12 many times.

As its name suggests, TD(0) is a simpler version of the more sophisticated TD(λ) method. In this
algorithm, we do not restrict ourselves to only updating the value function for the old state xt. Instead,

8
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we calculate an eligibility function e(x) for all states and update all states using

V (x) = V (x) + α[R(xt, π(xt)) + γV (xt+1)− V (xt)]e(x). (2.13)

The eligibility is defined as

e(x) =
t∑

k=1

(λγ)t−kδxk
x , (2.14)

where δ is the Kronecker delta. In other words, we use the reward gained by performing action π(xt)
in state xt to change the value function for all states x that have been visited in the past. The degree to
which the value function of a state is updated depends on the discounting rate γ and λ. Note that for
λ = 0 we get the TD(0) method.

Another important Temporal Difference method is Q-learning. This method takes its name from the
fact that it learns the expected reward function Q introduced in the discussion of value iteration. Recall
that Q(x, u) is the estimated reward of taking action u in state x and that the optimal policy is obtained
by choosing actions so that this function is maximized. In contrast to value iteration described above
we here need to learn the Q function, since our lack of knowledge of the environment and the relations
between states and actions prevents us from calculating it. The method uses experience in the form of
4-tuples (x, u, r, x′) describing the reward r gained by taking action u in state x as well as the resulting
new state x′ of the environment. The Q function is updated using a learning rate α as

Q(x, u) = Q(x, u) + α(r + γ max
u′ Q(x′, u′)−Q(x, u)). (2.15)

2.5.2 Indirect learning

Indirect learning is sometimes called model-based learning. The direct methods described in the previ-
ous section gave us an optimal policy and its value function directly, without providing us with approx-
imations of the reward and transition functions. Sometimes, it might be necessary to obtain also these,
in which case indirect learning is appropriate.

If we learn also the reward and transitions functions, we do not need as much experience to determine
optimal policies. This means that indirect learning could be very important in military applications,
where we typically want our agents/soldiers to perform as few actions as possible. After learning the
transition and reward functions during the first steps of the agents, we can later use simulations instead
of real-world experience to determine the optimal policy. In doing this, we must of course be careful not
to extrapolate too much from the real experience.

The simplest indirect learning method is simply to store histograms of rewards and state-transitions
seen by the agent. This method, however, does not make optimal use of the experience gained: it takes
too long to obtain accurate histograms.

One of the most important indirect learning methods is the Dyna method [19]. Dyna combines
updates of its knowledge of the environment with value iteration. Each iteration of the algorithm has
four steps

• Update the model of the environment (reward function and transition function) using the experi-
ence tuple (x, u, r, x′)

• Update Q(x, u) as in Q-learning

• Select k state action pairs (xi, ui) at random and update Q(xi, ui)

• Use the Q function to choose which action to perform in the current state x′

9
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Compared to normal Q-learning, Dyna requires considerably less experience to determine the opti-
mal policy to use, but it uses much more computational resources.

An important improvement of the Dyna method is to select the k additional state-action pairs to up-
date more intelligently. This can be accomplished by associating each state with a priority, and choosing
the states with highest priority in the update step [8].

It would be interesting to see if methods for indirect learning could be combined with knowledge
stored in an organizational memory system. Ideally, such a system would use the experience stored to
determine the first few actions, and then gradually switch over to using the knowledge gained from the
current operation.

10
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Chapter 3

Applications

In this chapter we briefly review some of the most interesting applications of stochastic dynamic pro-
gramming that we have found. The chapter is not meant to be an exhaustive listing of interesting ma-
terial, but instead aims to provide a brief survey of some of the different types of problems relevant for
military applications that SDP can be used to solve. A common characteristic of all the papers reviewed
here is that they only apply their methods to simulated experiments; none of the methods have been
implemented in a real system.

In [20], the problem of assigning indistinguishable, unreliable, and non-renewable resources to tasks
is discussed. Multiple resources may be assigned to the same task. The resources are indistinguishable
in the sense that they are unlabeled (i.e., all resources have the same capabilities), unreliable in the sense
that they may fail to complete the task that they have been assigned, and non-renewable in the sense that
once employed they cannot be reused. It is, furthermore, assumed that success or failure of employed
sensors, in the first stage of assignments, can be observed which should affect the second (and final)
stage of assignments. Possible applications discussed in the paper include employment of sonobuoys
for submarine detection. Note that the paper does not apply the method to a real problem: all test data
is generated randomly.

The formal components of the problem are the N tasks to be handled by M resources. Each task i
is assigned a reward value Vi that is related to the importance of the task and is obtained only if the task
is completed. To each resource a cost C is assigned.

Assuming that the probabilities pi(1) that a resource completes task i in the first stage are inde-
pendent, the probability that task i is not completed in the first stage is PS(i, 1) = (1 − pi(1))xi(1),
where xi(1) denotes the number of resources assigned to task i in the first stage. After the first stage
has been executed, we observe which tasks have completed. This information is stored in a vector
ω ∈ Ω = {0, 1}N , where the ith component ωi is 0 if the task was completed in stage one and 1
otherwise.

The solution sought is a resource allocation vector x(1), and a set of so called recourse strategies
x(2, ω). The recourse vector tells us which resources to allocate for which tasks in the second stage,
given that we have observed a specific outcome ω of the first state.

We now need an expression for the probability that task i is not completed after the second stage.
Using pi(2) to denote the probability that a resource completes task i in this stage, and again assuming
independence, we get

PS(i, 2) =
∑
ω∈Ω

P (ω|x(1))δ1
ωi

[1− pi(2)]xi(2,ω), (3.1)

where δ is the Kronecker-delta and we have introduced P (ω|x(1)) as the probability that we observe a
specific ω given that we chose a certain resource allocation vector x(1) in the first stage. An approx-
imation for P (ω|x(1)) can be readily obtained by again assuming independence of the events that a
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resource completes a task,

P (ω|x(1)) =
∏

{i:ωi=0}
[1− (1− pi(1))xi(1)]×

∏
{j:ωj=1}

(1− pj(1))xj(1). (3.2)

The resource allocation vector and recourse strategy should be chosen so that the expected incom-
plete task value plus the expected cost of using the resources is minimized, i.e., we want to find

min E

{
N∑

i=1

ViPS(i, 2) + C
N∑

i=1

(xi(1) + xi(2, ω))

}
, (3.3)

subject to constraints
N∑

i=1

(xi(1) + xi(2, ω))≤M,∀ω∈Ω.

In order to formulate the problem as a stochastic dynamic programming problem, the authors first
obtain a fast algorithm for determining the optimal recourse strategy x(2, ω) and its associated optimal
cost J∗

2 (ω, M2) assuming that M2 resources remain after stage one has been completed. The algorithm
uses an incremental optimization property of the problem, wherein a solution for a given number of
resources M2 is used to construct the solutions for any number M > M2 of resources; please see the
paper [20] for details. The solution for the first state can then be obtained by solving the recursive
stochastic dynamic programming problem for the optimal value

J∗ = min
x(1)∈{0,...,M}N

∑
ω

P (ω|x(1))J∗
2 (ω, M −

N∑
i=1

xi(1)) + C
N∑

i=1

xi(1),

with the constraint
∑N

i=1 xi(1)≤M .
The problem can be solved approximately by incremental optimizing in a similar manner as the

solution to the second stage. Note, however, that for the first stage the incremental optimizing property
is only approximately valid, hence we only get an approximate solution (again, we refer to the paper for
additional details on the specific algorithm). A severe problem with this solution, however, is that the
time-complexity of the algorithm is exponential in the number of tasks.

To achieve a more efficient solution the authors replace the constraints of the original problem in
equation 3.3 with a single average utilization constraint,

N∑
i=1

∑
ω∈Ω

P (ω|x(1))(xi(1) + xi(2, ω))≤M. (3.4)

The restated problem is one of monotropic programming. The new solution is established where the
solution is expressed in so called mixed local strategies. A mixed strategy is one that selects one of the
pure strategies with some probability, and hence an infinite number of mixed strategies are available.
A local strategy has the property that xi(2, ω) = xi(2, ωi). The authors motivate such a solution with
the claim that given any pure strategy, there is a mixed strategy using only local strategies that achieves
the same expected performance and the same expected resource use. Finally, the time complexity of the
solution is O ((M + N) log N).

The conclusion is that although the SDP solution finds optimal (or nearly optimal solutions) its time
complexity is daunting, and the relaxed problem with a monotropic programming solution is consider-
ably faster with little efficiency loss.

A similar application is studied in [21]. Here, the combinatorial explosion in the number of states
that must be explored is handled by Monte Carlo simulations.

12
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In [22], the problem of mission assignments in Joint Air Operations is approached using an approx-
imate SDP-solution (ASDP). A number of striker and weasel aircrafts are to be assigned to different air
packages. An air package is a composition of m strikers and n weasels sharing target and launch time.
The targets differ in value and some are hidden during random time intervals. In addition, SAM-sites
threaten the aircrafts on the route to and from the targets. The objective is to hit as many targets as
possible while preserving own aircraft.

The actors in the scenario (the aircrafts, the SAM-sites and the targets) are modeled as finite-state,
stochastic automatons. For instance, the states of an aircraft are {BASE, INGRESS, EGRESS, DEAD}
and the event set to move between the states is {LAUNCH, THREAT ENGAGE, TARGET ENGAGE,
LAND}. An aircraft in state INGRESS that engages a threat can end up either DEAD or stay in
INGRESS with some given probability. The complete model of the scenario is given by the compo-
sition of each actor’s automaton.

The authors solve the mission assignment problem by first formulating it as an SDP. Then, to cope
with the inherent complexity an approximation known as the Rollout Algorithm is applied. A Rollout
policy is a one-step lookahead policy, meaning that all possible controls are evaluated only for the first
step, t = 0. For t = 1, ..., N the same pre-determined base-line policy is always used. Still, evaluating
this policy can be quite complex and a Monte Carlo strategy is used to further reduce computations.

The ASDP approach is compared and shown superior to a heuristic using only the base-line policy
mentioned above for a number of small example scenarios. The scenarios are of the “toy problem”
variety, and deal with a limited number of aircraft. The paper should be seen as a proof of concept paper
only; it remains to be seen if the method can also be applied to larger, more realistic scenarios.

The technical report [23] describes simulation experiments where reinforcement learning is used as
a method of controlling cooperating UAVs performing multi-target tracking. The core problem is to find
a good balance between the indiviual goal of each UAV to track high value targets and the cooperative
team-goal of covering as many targets as possible. To manage this the state-space of each UAV must
incorporate information of the distances to all targets and their respective values and the distances to the
other UAVs. Handling these as separate parameters will yield a state-space too large to learn efficiently.
Approximations are needed, and the authors describe a way of summarizing the information from the
state-space in terms of two potentials. The first potential summarizes the target information,

N∑
n=1

Vn

1 + d2
n

(3.5)

where Vn is the value of target n and dn is the distance to it. The second potential describes the spatial
relations between the cooperating UAVs,

M∑
m=1

1
1 + d2

m

(3.6)

where dm is the distance to UAV n.
The authors show that these potentials are sufficient for constructing the reward function for each

state. This means that it is enough for each UAV to only consider these two potentials when determining
its next move. Briefly, the individual UAV’s should move towards locations with many targets, but move
away from locations with many other UAV’s. The paper combines fuzzy rules with the TD(λ) learning
method and describes an experiment with 3 UAV’s and 6 targets. The report describes the findings of
the first phase of an ongoing project, and the authors conclusion is that their results indicate not only
that the solution method is feasible but also adequate.

Next, we turn to two applications of SDP techniques to the optimal stopping problem. The optimal
stopping problem refers to the problem of determining when an obtained solution is good enough that it
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is not worthwhile to continue searching for a better. An example of this problem type is that of a female
individual choosing a mate. For each potential mate the individual meets, she has two options: to choose
the current mate, or to consider another.

Military problems that can be mapped into this problem include determining who in a crowd to
search or arrest, or, more generally, when a decision support system should stop planning or computing
a situation-picture and present its conclusions to the user. One way of implementing this could be
to run a stopping problem algorithm as a controller on top of the planning/analysis system. Methods
for solving the stopping problem could also be used in mixed-initiative reasoning systems, where the
computer needs to determine when to interrupt the reasoning of the user. This can be modeled as a
stopping problem: the user should be interrupted when the probability that it will improve its current
analysis or plan is sufficiently low. The main difficulty in applying stopping problem algorithms to
these two problems is to find sufficiently accurate models to use for the reasoning processes (compare
section 2.4); this makes the approach described in [24] extra interesting.

The first example of SDP techniques for the stopping problem is [24]. Typical approaches to the
problem assume that an apriori distribution of potential mates are known. In [24], however, an SDP ap-
proach is used that allows the female (or more generally, the decision-maker) to learn the male distribu-
tion while inspecting the males. More specifically, the authors assume that the family of the distribution
of males is known. In their example, Wi, i = 1, . . . are random variables that represent the quality (in
some sense) of the ith male inspected by the female. All Wi are assumed to be governed by the same
normal distribution N(µ, σ), where the parameters µ and σ are the mean and standard deviation, respec-
tively. Each observed Wi incurs a cost c, which may correspond to the time consumed by observing or
loss of energy. At each observation the female can update its knowledge of the distribution N(µ, σ).
She updates the mean as

µn+1 = µn + (ωn+1 − µn)/(n + 1), (3.7)

where ωn+1 is the outcome of Wn+1, i.e., observed quality of the n + 1th male. The standard deviation
is subsequently updated in the following way:

σn+1 =

√
1

n + 1
[n(σ2

n + µ2
n) + ωn+1]−

[
µn +

ωn+1 − µn

n + 1

]2

. (3.8)

Now, let the Bellman function

V (ωn, µn, σn, n) = max
{

ωn,

∫
R

V (ω, µn+1, σn+1, n + 1)dFµn,σn

}
, n = 2, 3, . . . (3.9)

be the expected maximal gain of the female. Here Fµn,σn is the distribution function for each Wi and R
its domain. Moreover, µn+1 is shown in equation 3.7 and σn+1 in equation 3.8.

In the final solution, an intermediary function is utilized in a rewritten form of equation 3.9

V (ω, µ, σ, n) = max {ω,−c + µ + δn(σ)} , (3.10)

and some of the values of δn(σ) for different σ and costs c are precalculated.
The resulting strategy is then for the female (or decision-maker) to select the nth mate, if the previous

n − 1 have been rejected and the quality wn of the currently observed candidate mate is greater than
−c + µn + δn(σn). Otherwise, she decides to observe also the (n + 1)th candidate.

The other stopping problem application [25] deals with the problem of finding a policy for selecting
among a set of sensing techniques. The application in mind is one of robotic assembly, where the
successful combination of parts by a robot manipulator can be described by a sequence of discrete
contact states, denoted γ1→γ2→. . .→γn. The aim is to collect high quality sensory information while
keeping the sensory processing time low.
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In order to detect a state transition, an event e, a number of alternative sensing techniques, called
process monitors (PMs), are at one’s disposal. The output of a PM is a pair {e, C}. C ∈ [0, 1] is a
measure of the confidence of the recognised event e ∈ Eγ , where Eγ is a set of all possible events (i.e.,
state transitions) for state γ.

A PM encapsulates the combination of one or more sensor measurements and algorithms for analysing
the information from sensors. The assembly task, in the paper, has three process monitors at its disposal.
Two of them are fast, and the third one is slow, but accurate. The time required by the ith PM is called
its cost ci.

The problem of finding a policy for selecting a process monitor during robotic assembly is formal-
ized as an optimal stopping problem and solved using SDP. The solution describes a confidence state
space S = {si}, an action spaceA = {ak}, a reward function R(si, ak) and state transition probabilities
Psi,sj (ak). The actions are a1 terminate, i.e., activate no more process monitors, and a2 continue, i.e.,
that the next “best” PM should be used.

The confidence state space contains different levels of confidence
S = {0.0, 0.5, 0.75, 0.875, 0.9375, 0.96875, 0.984375, 0.9921875, s∞}. The reward function is defined
by: R(si, a1) = R(i) and R(si, a2) = maxl cl − cn, where R(i) denotes the i’th component of the
vectorR = [0, 0, 1, 2, 3, 4, 5, 6, 0].

The SDP problem then, for each ordering of PMs, becomes

Vn(γ, si) = max

⎡
⎣R(si, a1), R(si, a2) + β

Ns∑
j=1

Psi,sj (γ, a2)Vn−1(γ, sj)

⎤
⎦ , (3.11)

where β is the DP discount factor.
Finally, the best policy an(γ, si) at stage n is

an(γ, si) =
{

a1, if Vn(γ, si) = R(si, a1)
a2, otherwise

(3.12)

The SDP algorithm is run off-line and calculates Vn and an for every possible ordering of the process
monitors, e.g., monitor orderings 1− 2− 3, 1− 3− 2, etc. The algorithm terminates when the optimal
action is a1 or when there are no PMs left. The method is well suited for real-time operation as only the
lookup tables are used on-line.

The authors emphasize, however, that for applications where the parameters of the monitors are
time-varying, the off-line generation of a lookup table is undesirable. For such systems, adaptation
on the monitor parameters and an on-line algorithm are needed. This, however, reduces the real-time
performance of the sensor selection method. The method is also most suitable for highly structured
environments, such as industrial, where states and state transitions can easily be defined and anticipated.
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Chapter 4

Discussion

As shown in many of the applications described in chapter 3 , SDP can be fruitfully utilized for sensor
allocation. While most of the applications of reinforcement learning so far seem to be to autonomous
systems, we hope that it and SDP could play an equally important role in higher-level optimization and
planning systems.

In the new kinds of operations that face us in military operations other than war (MOOTW), we are
less likely than before to meet opponents that follow a rigorous doctrine that we have detailed knowledge
of. Instead, we may face adversaries that base their decisions on cultural or religious facts which we do
not understand. This means that our models for the other actors in an operation must include stochastic
simulation and learning. By implementing learning in the high-level planning systems, we might be able
to help human analysts understand adversary actions that, at first glance, seem irrational. This could be
done by implementing an organizational memory that describes situations encountered previously, and
using this in an SDP algorithm to predict what the enemy is trying to do.

An interesting extension of many of the planning systems currently in use is to consider the prob-
lem of allocating surveillance and other resources when there are several antagonistic sides. This is a
situation that will arise in, for example, peace-enforcing or nation-building operations. The planning
systems will also need to provide support for coordinating actions and platform routes with several dif-
ferent coalition partners. Here, too, there is a need for stochastic simulation, since we will need to model
uncertainties in the actions and capabilities of our partners.

Another area where planning tools based on stochastic dynamic programming might be important
is logistics. Here it is important to take into account the randomness of both demand and supply of
resources at various sites as well as of, e.g., the possibility that transports are intercepted and destroyed.

In conclusion, we believe that stochastic dynamic programming, reinforcement learning and related
algorithms are important parts of the toolbox needed to build the high-level planning, bridging and
low-level optimization systems of future network-based defence systems.
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[6] J. Schubert, C. Mårtenson, H. Sidenbladh, P. Svenson, and J. Walter. Methods and system design
of the IFD03 information fusion demonstrator. In CD Proceedings of the Ninth International
Command and Control Research and Technology Symposium, Copenhagen, Denmark, pages 1–
29, Washington, DC, USA, Track 7.2, Paper 061, 2004. US Dept. of Defense CCRP.

[7] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[8] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[9] R Bellman. Dynamic Programming. Princeton University Press, 1957.

[10] D P Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, 1987.

[11] D P Bertsekas and J N Tsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

[12] D P Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[13] Henrik Kriisa. Ett adekvat beslutsstöd utan optimala ambitioner. C-uppsats, Uppsala Universitet,
Filosofiska Institutionen, 2004.

[14] Stefan Arnborg. Robust Bayesianism: Imprecise and paradoxical reasoning. In Proc 7th Int Conf
Information Fusion, pages 407–414, 2004.
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I det framtida nätverksbaserade insatsförsvaret blir 

resursallokering (att ha ”rätt sak på rätt plats vid rätt 

tidpunkt”) allt viktigare. Sensorplattformar måste styras 

till rätt plats så att de kan ge rätt information till 

fusionsnoder som skapar lägesbilder. Soldater och andra 

resurser (t ex sjukvårdare) måste placeras där de 

förväntas göra mest nytta. För att planera insatser 

behöver befälhavare lättanvända verktyg för 

högnivåplanering, så att de kan avgöra vilka delar av 

operationsområdet de ska begära sensorbevakning av. 

Befälhavarnas  begäran måste sedan matchas mot 

sensorplattformarnas förmåga och prioriteringar göras 

för att avgöra vilka som ska utföras, innan plattformarnas 

banor bestäms av lågnivå ruttplaneringsverktyg. I den 

här rapporten presenterar vi en klass av metoder, 

stokastisk dynamisk programmering (SDP), som vi tror 

kan vara användbara för såväl hög- som 

lågnivåplanering. SDP är en vidareutveckling av klassisk 

dynamisk programmering som bygger på att tillåta 
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reaktioner på våra åtgärder. Att tillåta sådana modeller 
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insatser (”MOOTW”, Military Operations Other Than

War) som möter det svenska försvaret idag.

I rapporten går vi igenom den grundläggande 

formuleringen av ett SDP-problem samt de två viktigaste 

SDP-algoritmerna. Vi beskriver också kort området 

”reinforcement learning”, som går ut på att konstruera 

metoder som lär in modeller för omgivningen. Sådana 

metoder kan vara användbara t ex då vi har att göra med 

motståndare som inte följer en väldefinierad doktrin eller 

om vilka vi saknar bakgrundskunskap.

Rapporten fortsätter med en kort genomgång av några 

intressanta tillämpningar i vilka SDP-metoder använts. 

Exemplen handlar om t ex placering av sonarbojar, 

allokering av flygplansresurser samt det så kallade 

stopproblemet, som kan användas för att avgöra när en 

planeringsprocess ska avbrytas och resultatet 

presenteras för operatören.
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