
An algorithm calculating upper bounds on the

sizes of max-cliques using subgraphs

Svante Hellstadius and Ronnie Johansson

June 8, 1999

Abstract

In this text we provide an algorithm giving an upper bound on the size

of the maximum clique in a graph. The algorithm uses induced subgraphs

and rules designed to decrease a set of properties as much as possible.

Time and memory requirements are O(n5) and O(n3) respectively. Eval-
uation on random graphs suggests that the upper bounds depend linearly

on the graph orders, and the slope depends on the probability that certain

edges exist in a random graph. This paper also provides an introduction

to variants of the clique problem and discusses a memory e�cient data

structure representing undirected graphs.

1. Introduction

Many di�erent algorithms can be constructed to solve one speci�c problem.

Some might be more e�cient than others. An algorithm's e�ciency is deter-

mined by its time and memory consumption. Often these measures are analyzed

by theoretical means, but when an algorithm's behavior is too complex to un-

derstand, simulations and statistics might come in handy.

Computational complexity

When analyzing algorithms theoretically using mathematics we talk about com-

putational complexity. An algorithm's time complexity is studied by investigat-

ing how the algorithm behaves for various inputs with di�erent problem sizes.

It is often useful to examine what kind of input constitutes the worst case input

of the algorithm. Memory usage is another crucial property that has to be ad-

dressed. Throughout this text computational complexity will be an important

matter of discussion.

1

Problem classes

Also the problems themselves are analyzed theoretically. Sometimes the issue

is whether a problem can be solved at all computationally, as there are many

problems known to be undecidable or hard to solve due to the fact that no

reasonable algorithm exists. Figure 1.1 shows three sets of problems.

tractable
problems

intractable
problems

undecidable
problems Noncomputable

problems

Problems requiring
super-polynomial

algorithms

Problems admitting
polynomial-time

algorithms

Figure 1.1. Algorithmic problems. Undecidable, intractable,

and tractable problems can be regarded as three sets.

No algorithm requiring less than cnk computational steps for problem size n and

any constants c and k exists for intractable problems. Polynomial algorithms

do exist for tractable problems.

NP-completeness

Various complexity classes can be identi�ed. In a complexity class there are

many problems related to each other. Thousands of natural computational

problems belong to the class of NP-complete (NPC) problems. The graph col-

oring problem, the traveling salesman problem (TSP), the Hamiltonian path

problem, and the clique problem are some well known NPC problems.

These are important properties of NPC problems:

• A given solution to an NPC problem can be veri�ed in polynomial time.

• Any NPC problem can be transformed into any other NPC problem by

using polynomial-time transformations.

It is unknown whether NPC problems are tractable or not. Most computer

scientists are convinced, however, that this is not the case. The fact that no-

body has yet been able to present a polynomial-time algorithm solving an NPC

problem, despite extensive research e�orts, indicates that no such algorithm

exists. However, the intractability of NPC problems has not been shown. A

consequence of the properties above, is that all NPC problems are tractable if

one of them is tractable.

2

No matter what status NPC problems have, instances of them do occur in ap-

plications and we have to cope with them. Finding a polynomial-time algorithm

is hard, and using a super-polynomial algorithm is no good on large inputs, so

trying to �nd a good approximate solution seems to be the best we can do. Such

a solution might not be optimal, but we seek to make it reasonably good.

Cormen, Leiserson, and Rivest provide a good survey of NPC problems in [1].

The clique problem

In this text, we will attack the clique problem. A clique in an undirected graph

G = 〈V, E〉 is a complete subgraph of G. In other words, a clique is a subset

V ′ ⊆ V of vertices, each pair of which is adjacent. The size of a clique is

|V ′|. Sometimes we call a clique with size k a k-clique. When speaking about

the order (or problem size) of a graph G = 〈V, E〉 we mean |V |, sometimes

also denoted by n. Also let ω(G) denote the actual size of a largest clique,

often called max-clique, in a graph G. We use the notation V [G] for the set of
vertices of the graph G, and E[G] for the set of edges of G. For convenience we

sometimes use the �sloppy� notation |G| meaning |V [G]|.
The clique problem, which is an NPC problem, is the problem of answering

whether there is a k-clique in a given graph. The corresponding optimization

problem, �nding the largest clique of a graph, is called an NP-hard problem.

Figure 1.2 illustrates a maximum clique.

4

9

1

2

8
3

11

6

12

10

75
1

11

6 10

Figure 1.2. In this graph with 12 vertices, the maximum clique

size is 4. To the right, the max-clique is shown extracted.

Finding an approximate solution to the problem is hard too. Håstad has shown

that if NPC problems are intractable, no tractable algorithm can �nd a clique

in a graph G whose size is within a factor of n1−δ of ω(G) for any constant

δ > 0 [2].

When we create a random graph G, p is the probability that two vertices vi, vj ∈
V [G] are adjacent, for any i 6= j, and we also call p the coverage of G. In

a random graph with coverage 1
2 , the expected max-clique size is ∼ 2 log2 n.

3

Generally the expected max-clique size in a random graph with coverage p is

∼ 2 log1/p n [2].

The problem of �nding complete subgraphs in the complement graph is called

the independent set problem, which is essentially the same as the clique problem..

2. Data representation

An important problem that has to be solved e�ciently is that of data represen-

tation. How should an undirected graph be represented in memory requiring

as little resources as possible? With resources we mean time and memory. The

discussion in this chapter is general and the results can be applied to any graph

algorithm implementation. Note that we will only consider undirected graphs

in this text.

Adjacency lists

If the graphs to be stored are sparse (that is, the average valency of the vertices

of the graph is low) adjacency lists are suitable. Each vertex has a link to a

dynamically allocated and linked adjacency list. That list contains the names or

some other kind of references to the other vertices that the vertex is connected

to, as shown in Figure 2.1. This representation is easy to implement and easy

to understand which makes it a natural choice in many applications. Our test

implementation of our algorithm uses linked lists.

1 2

5 4
3

1
2
3
4
5

1

5

1 4

2

2 5

4

3 4

Figure 2.1. The advantages of the linked list representation is

that it is very easy to understand and implement. The short-

comings are many though, which makes this representation un-

suitable to us.

The problems with linked lists are many though. If the graph to be stored is

not sparse then the linked list implementation is not e�cient requiring lots of

elements in the linked lists. Considering the fact that not only the name of a

vertex is part of a list element, but also a pointer to another element, it is not

hard to see why linked lists are not preferable when the graph is dense. Not

only are lists memory consuming (n2 list elements are required if the graph is

complete [worst case] with n vertices) but also time intense because you need to

4

search linearly though the entire adjacency list of a vertex to examine whether

a certain connection exists.

Adjacency matrices

To be able to run our algorithm on �large� problems we need another represen-

tation that is faster and less memory consuming.

In a graph with n vertices there can at most be

(
n
2

)
connections (the maxi-

mum case occurs when the graph is complete). The idea of adjacency matrices

is to have a matrix element for each possible connection. The vertices are listed

both vertically and horizontally giving rise to a square matrix where each ma-

trix element corresponds to a combination of two vertices. If those two vertices

are connected, an edge marker is put in that matrix element. If not connected,

another kind of marker is put there, as shown in Figure 2.2.

1 2

5 4
3

1 0 0 0 1 1
2 0 0 1 1 0
3 0 1 0 0 0
4 1 1 0 0 1
5 1 0 0 1 0

1 2 3 4 5

Figure 2.2. The adjacency matrix is a neat way of representing

a graph which is also very understandable.

Optimized adjacency matrices

A quick implementation of this would likely implement the matrix as a two

dimensional byte array. Some improvements can be done though. First note

that we only need one bit to indicate whether an edge between two vertices

exists or not. Using bits instead of bytes reduces the memory demand nicely

(only 1
8 th is required) but not asymptotically. Also note that it is unnecessary to

store the diagonal of the matrix since no vertices are connected to themselves.

This observation saves n bits of memory. Finally note that the transpose of

an adjacency matrix A should be identical to A (that is, AT = A) since the

operation of connecting vertices is commutative (if vertex v1 is connected to

vertex v2, then we can be sure that v2 is connected to v1 as well). Thus, half of

the remaining matrix is redundant and should be omitted. We end up with an

optimized adjacency matrix, which we, for the sake of brevity, will often refer to

as �adjacency matrix� in the remainder of this text.

No further improvements regarding memory consumption can be done (unless

the resulting bit pattern can be compressed with some algorithm). For a graph

5

with n vertices,

(
n
2

)
= n2−n

2 ∈ O(n2) bits of information are required at

most. Figure 2.3 illustrates this for n = 5. As seen the memory complexity

is squared with respect to the number of vertices, so we might get memory

problems when the number of vertices increases�especially if we need to store

many graphs (later we will see that our algorithm will need at least n+1 graphs,
which implies that we get a cubic memory complexity, which is uncomfortable).

1 0 0 0 1 1
2 0 0 1 1 0
3 0 1 0 0 0
4 1 1 0 0 1
5 1 0 0 1 0

1 2 3 4 5
1 0 0 1 1
2 1 1 0
3 0 0
4 1
5

0
0 0
0 1 0
1 1 0 0
1 0 0 1 0

1 2 3 4 5

Figure 2.3. The optimized adjacency matrix representation

reduces the memory consumption by half, but it adds more un-

wanted complexity.

An advantage of the adjacency matrix representation is that it is fast. If one

wants to know whether two vertices are connected one only has to �nd the right

index in the matrix and check the corresponding element. That is an operation

which takes constant time.

Finding the right index in an optimized adjacency matrix

We will store the bits in a dynamically allocated array of bytes. That means we

need
⌈

n·(n−1)/2
8

⌉
bytes for a graph of order n. Seven bits might be wasted, but

worse is that the reduction of matrix size makes it tricky to �nd right indices

in the array. We need a function to map a pair of vertex numbers to an index.

Once we have that we will have a minimal but e�ciently working data structure.

Before continuing let us make a de�nition.

De�nition. The term index refers to a position in the array representing the

adjacency matrix. The term adjacency matrix vertex, or Amv, refers to the

matrix ordering number of a vertex.

In other words an index refers to an element of the matrix, or equivalently a pair

of coordinates. Amv speci�es a coordinate. For instance, in Figure 2.4 we can

check whether the two vertices with Amvs 3 and 5 are adjacent by examining

index 12 of the adjacency matrix.

Suppose we want to �nd the index of two vertices numbered a and b (given that

Amvs start at 1 and increases unitary, the �rst element of the array has index

6

0 and we have n vertices in the graph). Also assume, without loss of generality,

that a > b. For convenience in the rest of this text, let us call the indices of the

vertices α and β respectively, and de�ne a to be the greatest Amv and b to be

the smallest Amv. More formally we de�ne a function

f

([
α
β

])
=

[
a = max (α, β)
b = min (α, β)

]
α 6= β

mapping (α, β)→(a, b). Figure 2.4 visualizes a and b.

0 1 32 4 5

1211 13 14

6 87 9 10

15 16 17

18 19

20

1 32 4 5 6 7
a

2

4

3

5

6

7

1

b

Figure 2.4. In this matrix, n = 7. We only need (72−7)/2 = 21

bits to represent this matrix, as can be seen in the �gure.

We now want to �nd what index corresponds to a = 4 and b = 3, for instance.
The answer is 11, as can be seen in Figure 2.4. A function (N3 → N) is needed

to map a, b and n onto a single index.

To make reasoning simpler, consider Figure 2.5 showing how the matrix is stored

in a linear array.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.5. The matrix of Figure 2.4 shown in a linear fash-

ion. The vertical lines mark the beginning of a new row in the

corresponding matrix.

Let g indicate the index of the start of every row in the corresponding matrix.

It is seen that g depends on b, the row number, and n, the order of the graph.
The function mapping b and n to g is

g(b, n) =

∑b

m=2(n−m + 1) b > 1 ∧ a > b
0 b = 1 ∧ a > 1

undef. a ≤ b

7

Now, given g(b, n) let us �nd the o�set value o in the row, enabling us to �nd the

right index i by adding g and o. It is not hard to see that the function o(a, b) =
a− b− 1 will provide the correct solution. The iterative summing procedure of

the g function can be replaced with a simpler formula if we only consider the

cases where a > b and b > 1. The summation rule
∑n

k=1 k = n(n + 1)/2 can be

used. Rewrite
∑b

i=2(n− i + 1) to (b− 1)(n + 1)−∑b
i=2 i. Then note that the

summation rule can be applied if
∑b

i=2 i is rewritten to −1 +
∑b

i=1 i. Now we

can express g(b, n) as bn + b− n− 1− b(b+1)
2 + 1.

Checking whether two vertices are adjacent is an operation which is conducted

a large number of times in a graph algorithm, and our algorithm is no excep-

tion. Therefore any simpli�cations of the above formula (resulting in fewer

computations) will yield nice time savings.

g(b, n) = bn + b− n− 1− b(b+1)
2 + 1 =

b(n + 1)− b
2 (b + 1)− n =

b
2 (2(n + 1)− (b + 1))− n =

b
2 (2n + 2− b− 1)− n =

b
2 ((2n + 1)− b)− n

So �nally we get the function i(a, b, n) = b
2 ((2n + 1)− b)−n+a−b−1. As can be

seen, the function is quite complex requiring many more arithmetic operations

than a simple lookup in a two-dimensional array. This extra complexity is the

price for gaining memory. However, the function can still be used in O(1) time,

so the loss in time e�ciency is not asymptotically signi�cant. Its details can

also be hidden nicely by abstraction.

Dynamic optimized adjacency matrices

We now have a memory e�cient and acceptably fast data structure for repre-

senting an undirected graph. However, the structure is static and a problem we

still have to deal with is how to modify the data structure when vertices are

added or deleted from the graph.

The linked list representation easily allows vertex deletion and insertion�only

some straightforward routines manipulating the lists are needed. Adjacency

matrices are harder to modify.

One idea is to simply make an additional graph, copy whatever is needed from

the original graph to the new graph and possibly extend it, and �nally delete the

original graph. This is straightforward, but requires two graphs in the memory

8

at the same time, which is unacceptable. We therefore need to modify the actual

data structure, deleting or adding data.

Inserting vertices

Consider the operation of adding k vertices to the graph. The linear array of

bits must then be modi�ed in many places re�ecting the insertion of k matrix

elements into each row and the appending of k new rows to the matrix.

Recall that our array was allocated dynamically.1 Since the graph is to be

extended we need to append more allocated memory to the array.2

When the array has been enlarged the bits have to be moved since with a new

n, where n is the number of vertices, the previous locations in the matrix do not

correspond any longer to the same vertices. When moving bits around we must

not overwrite bits that has not already been moved to a safe place. Since bits

are to be moved to higher indices, we have to work from the end of the array

to the start. Whenever we �nd a 1, we observe its current index, calculate the

new index (which can not be smaller), replace the 1 with a 0, and put a 1 at the

calculated location. Figure 2.6 illustrates an example where n = 5 is increased

to n = 6.

0 1 32

87

4 65

9

1 32 4 5 6

2

4

3

5

6

1 0 1 32 4

109 11

5 76 8

12 13

14

1 32 4 5 6

2

4

3

5

6

1

0 1 2 3 5 6 7 9 10 124 8 11 13 14

Figure 2.6. The elements of the array need to be copied around

when the graph changes its size. Here a graph with 5 vertices is

transformed into a graph with 6 vertices.

Given an old index in, the size n of the original graph G, and the enlargement

parameter k, how do we �nd the new index? Assume that we know in what row

the index resides in G, let us call it b as usual.

1A malloc call is used in C to allocate memory dynamically.
2In C the function realloc is used to append more memory to a previously allocated array

of bytes. Here we assume that all bits are cleared when allocated.

9

We will see that we can easily compute the new index in+k by using our function

i(a, b, n) previously de�ned. Simply replacing n with n + k yields the equation

in+k =
(

b

2
· (2 (n + k) + 1− b)− (n + k)

)
+ (a− b− 1)

This expression is quite complicated though, and we should be able to come up

with a smaller formula. Let us instead �nd the di�erence ∆k
+ between the new

and old index. Recall that we were given the current index in. The equation

in =
(

b

2
(2n + 1− b)− n

)
+ (a− b− 1)

still holds and by taking the di�erence in+k − in we get ∆k
+.

∆k
+ = in+k − in = bk − k = k(b− 1)

So now we can �nd the new index in+k seemingly elegantly by using the function

in+k = in + ∆k
+ = in + k(b− 1)

0

1

2

3

4

5

6

0 5 10 15 20

b

i

Figure 2.7. The mapping from in and n to b is given by a

discrete function, as seen above for n = 7.

However, we still have a tricky problem left. In the above calculations we as-

sumed that we know b, the row number in the matrix corresponding to the

index in. We have to �nd this value. Now recall that we do have a func-

tion g(b, n) yielding the �rst index of a row given the row number and the

order of the graph. Then the equation in − g(b, n) = 0 will hold. Solv-

ing this equation for b yields two solutions. One is discarded, but the other

b =
⌊(

n + 1
2

)−√(
n + 1

2

)2 − 2 (in + n)
⌋
is correct, and is displayed in Figure

10

2.7 for n = 7. Unfortunately this function is not elegant, and the �nal expression
for the new index becomes

in+k = in + k

(
n +

1
2

)
−

√(
n +

1
2

)2

− 2 (in + n)

− 1

Deleting vertices

Deleting vertices is similar to inserting vertices, but there is an important dif-

ference. When adding vertices, only the number of vertices k to be added needs

to be speci�ed. When deleting k vertices we need more information than just

the number k. We also need to know which vertices are to be deleted if we want

a more useful operation than just random deletion.

Let us outline the algorithm we will use for vertex deletion. Let L be the set of

vertices to be deleted. Initialize the variable d marking entries to be deleted to

0. Let A be the array of bits representing the adjacency matrix. Go through

all indices i in A from the beginning (starting with index 0) to the end. Call a

function h(i) deciding whether the entry at index i should be preserved in the

�nal matrix. If h(i) returns false implying that the entry at index i corresponds
to a vertex which will be deleted, we simply add 1 to d and move to the next

index. If h(i) returns true, which means that the entry at index i is still needed,
the entry at index i is moved to index i−d. The example of Figure 2.8 provides

intuition.

The function h(i) has to be constructed. h(i) decides whether index i should
be preserved by computing what row b and what column a the index belongs

to in the adjacency matrix. We already have a function for computing b, but
none for a yet. Recall that we constructed a function g(b, n) that �nds the �rst
index of row b in a matrix representing a graph with n vertices. We found that

the equation i = g(b, n) + (a− b− 1) holds3 and can now use it to �nd a since

we know g(b, n) and b. When solving for a we get

a = i + b + 1−
(

b

2
((2n + 1)− b)− n

)

h(i) returns true if a ∈ L ∨ b ∈ L and false otherwise.

Let us analyze the time complexity of the deletion operation. There are n2−n
2 ∈

O(n2) indices to be processed with calls to h(i) if there are n vertices in the

graph. If we hash all members of L into a hash table with n elements, using

the identity function as hash function, h(i) will have O(1) time complexity since

calculation of a and b takes constant time (assuming arithmetic operations are

O(1)) and whether a and b are members of L can be looked up in O(1) time.

In total we get O(n2) performance, which is good.

3(a− b− 1) is the o�set value to be added to g(b, n) to �nd index i.

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 32 4 5

1211 13 14

6 87 9 10

15 16 17

18 19

20

1 32 4 5 6 7

2

4

3

5

6

7

1

Figure 2.8. Deleting vertices in an adjacency matrix. Here

we have n = 7 and wish to delete vertices 3 and 5. The �gure

displays which elements are removed and how the remaining

elements are moved, resulting in a graph with n = 5.

Identifying vertices

With the ability to dynamically insert and delete vertices, our data structure

is �exible. In many applications, however, there is a need to identify vertices

and we can not do that yet. For example consider the operation of deleting

vertices. When some vertices are deleted, the remaining vertices often change

Amvs and we lose track of them. In our algorithm the ability to identify vertices

is essential. Thus we need to extend our data structure further.

Identi�cation of vertices is possible if each vertex is assigned a unique name.

A name could be any combination of characters, but for e�ciency reasons we

will only use integers as names. In algorithms we will often refer to vertices by

name and let a function �nd the corresponding Amvs in the adjacency matrix.

More formally let x be the name of a vertex. The function s(x) maps x to its

corresponding Amv α. s−1(α) works the other way around mapping the Amv

α to the corresponding name x. If the name of a vertex v is q, we may say that

v is called q.

When we refer to vertices in pairs we can identify three layers of abstraction.

The names x and y of two vertices are mapped by s to their Amvs α and β
respectively, and those Amvs are mapped by the previously de�ned function f
to �nd the right a and b to be used when retrieving adjacency information from

the matrix. It is crucial that s is bijective in order to avoid con�icts. A name

must only refer to one Amv, and an Amv must only refer to a single name.

How should names be incorporated into the data structure? One way to solve

the problem is by introducing a database where all the name-Amv pairs are

12

stored, thereby implementing both s and s−1. We will implement the database

with an array. This solution requires 2n elements in the database if the order

of the graph is n. However, if the elements are unordered, a lookup will require
n
2 comparisons on the average, which is not e�cient. Therefore we will keep

the array sorted with respect to names and Amvs. That will enable us to use

the binary search algorithm, which takes O(log n) time to �nd an element in a

sorted array with n elements.

Recall that no matter what operations we choose to perform, the Amvs of the

adjacency matrix start at 1 and increase to n with unitary steps, if the order

of the graph is n. Therefore let us keep the pairs sorted with respect to Amvs.

Now note that �nding the right name given an Amv is an O(1) operation. Also
observe that storing the Amvs is not necessary, reducing the array's size by half.

Figure 2.9 illustrates this fact.

1

3

2

4

3

6

4

7

5

9

6

12

3

6

1

3

4

7

5

9

2

4

6

12

AMV

name

AMV

name

Figure 2.9. Di�erent name-Amv database implementations

using arrays. Retrieval is faster with a sorted array. Note that

the Amvs need not be stored in such an array.

To be able to use binary search when searching for a name we must be sure that

the array always is sorted with respect to the integer names. We will prove this

after stating some rules.

• Let m be the maximum integer name of the graph. When a vertex is

inserted it is given the name m + 1. (This re�ects the behavior of our

insertion algorithm which always inserts vertices with greater Amvs.)

• Vertices can never change names, i.e. renaming is not allowed.

Theorem 2.1. The name-Amv array is sorted with respect to Amvs and integer

names.

Proof. A graph can only be modi�ed with respect to its vertices and edges.

Modifying the edges does not a�ect the name-Amv array. Thus it su�ces to

show that a sorted array is left sorted after insertion or removal of vertices.

An added vertex always gets Amv n + 1 if the graph had n vertices before the

addition of the vertex. According to a rule, the name of the new vertex will be

13

m + 1 if the greatest vertex name of the graph was m prior to the insertion of

the vertex. Thus insertion will add an element to the end of the array, which

will remain sorted. Inductively this will hold no matter how many vertices we

add.

Deletion of a vertex will remove one element from the array. The deletion

procedure will compact the array in order to save memory. Removing one

element from a sorted array results in a shorter but sorted array. (The Amvs

are trivially always sorted.) Inductively this will hold no matter how many

vertices we remove. This completes the proof.

The introduction of names forces us to do minor modi�cations of the insertion

and deletion algorithms previously discussed. A variable keeping track of the

graph's greatest integer name is needed, and the database has to be updated

whenever vertices are inserted or deleted. These are straightforward extensions

though and they do not a�ect the time complexity of the algorithms.

There is a problem with this scheme that we want to address, although it will

not cause us any trouble in practice. A new vertex is given the name m + 1 if

the previously greatest name is m, even if there is an available name less than

m, left by a deleted vertex. Thus it is possible that the integer names become

large after many deletions and insertions, despite the order of the graph being

low. One way to solve this problem is to, when inserting a vertex, search for

a name left by a deleted vertex. That would, however, force us to rewrite our

insertion algorithm to re�ect the fact that a new vertex is no longer assigned

the greatest Amv of the adjacency matrix.

To eliminate the need of using O(log n) binary search to map a name to an

Amv, it is possible to introduce a second array mapping names to Amvs. The

array would be used as a hash table with the identity function as hash function.

Many entries in the table would be empty, but it would enable us to map names

to Amvs in O(1) time.

Additional functionality

In a graph package some other basic functionality is welcome. The complement

graph of G = 〈V, E〉 is de�ned as Ĝ =
〈
V, Ê

〉
where e ∈ Ê ⇔ e /∈ E. Given

a graph G its complement can be obtained simply by inverting all bits in the

array representation of the adjacency matrix, which takes time O(n2). Finding
the valency of a vertex v ∈ V is done by checking adjacencies with all other

vertices and counting them, an O(n) operation.

Another very useful feature is random graphs. In a random graph, the proba-

bility that two vertices are adjacent is p, where 0 ≤ p ≤ 1. By letting a function
(returning 0 or 1 with probabilities p and 1 − p respectively) decide for each

element in the adjacency matrix whether there should be a 0 or 1, a random

14

graph is obtained. Later we will frequently use random graphs when evaluating

our algorithm. The special case p = 1 gives a complete graph. This is a O(n2)
operation. The order n of a graph is stored in conjunction with the matrix and

is therefore easy to retrieve in O(1) time.

3. Algorithm

After having studied some properties of NPC problems and our way of repre-

senting graphs, it is now time to focus on our algorithm designed to provide an

upper bound on the size of the max-clique in a graph G. Hopefully this upper-

bound will be ω(G). Our ambition, when starting this project, was indeed to

�nd a tractable algorithm for solving an NPC problem. As mentioned, there are

thousands of such problems. Although they all belong to the same complexity

class, we do believe some problems are easier to reason about and are more

intuitive than others.

To get a better understanding for our viewpoint, we will look at some classic

NPC problems and argue what we think makes these problems di�cult to reason

about.

The graph coloring problem

First let us study the graph coloring problem. An undirected graph G is given

as input. Assign a color to each vertex so that no adjacent vertices share the

same color. Let χ(G) denote the minimum number of colors needed to do this.

Deciding whether k ≤ χ(G) is an NPC problem.

Approximation algorithms often use greedy strategies, but usually the outputs

are not optimal. Good decisions are made locally, but in a wider context the

algorithm makes sub-optimal choices. When choosing colors, it seems like one

has to consider almost every possible coloring.

The traveling salesman problem

Another well known NPC problem is the traveling salesman problem (TSP).

Given is a connected and directed graph with weights (or costs) associated with

each edge. A route is a path in the graph visiting every vertex once, and its cost

is the sum of all the weights the path passes. The problem is to �nd a route

with minimum cost.

Many ways to �nd good TSP approximations are known. They su�er from the

fact that greedy choices sometimes are sub-optimal. Algorithms try to overcome

some of this by interchanging a constant number of vertices in a route to see if

it gets cheaper, but alike the graph coloring problem, the whole graph has to be

considered when making decisions. Intuitively, reducing the problem size seems

hard to us.

15

The clique problem

The introduction provided a formal description of the clique problem. Recall

from Chapter 1 that �nding a polynomial-time approximation algorithm which

�nds cliques whose size is within a factor n1−δ of ω(G) for any constant δ > 0,
is impossible unless a tractable algorithm can solve an NPC problem. Thus, we

can not expect to construct an approximation algorithm that guarantees good

performance. The best known approximation algorithm, designed by Boppana

and Halldórsson, has a performance guarantee of O
(

n
(log n)2

)
[3].

Due to its NPC status, �nding correct solutions to the clique problem is assumed

to be hard. Tarjan and Trojanowski develop a recursive O
(
2n/3

)
-algorithm that

solves the clique problem correctly [4].

Our objective is to provide an approximation algorithm that works well on the

average, or at least for some types of graphs. We will describe it in detail, and

try to analyze and evaluate it by using theoretical and practical methods.

Applications

Alike the graph coloring problem and TSP, variants of the clique problem arise

in a variety of applications. In fact the clique problem is related to the graph

coloring problem (optimal graph coloring can be done by �nding max-cliques in

the complement graph) and clique algorithms might therefore be useful when

solving graph coloring problems.

Time tabling and scheduling involves coloring graphs indicating which events

can not be scheduled for the same time slot. When assigning di�erent frequencies

to mobile radios, two radios su�ciently close can not be assigned the same

frequencies, and consequently the graph coloring problem arises if one wants to

use as few frequencies as possible [4]. The problem also arises when assigning

variables to registers during compilation of a program.

Some cryptographic applications of the clique problem have been proposed by

Juels and Peinado [2]. Hidden cliques in random graphs can be used in one-way

functions and hierarchical key creation.

Another real world application of the clique problem is printed circuit board

testing. When checking whether a circuit board is working correctly, probes

are placed on it. Since probes have �xed sizes, only some components can be

veri�ed in one pass. If we let a vertex represent a component and an edge

represent two components that can be checked simultaneously, a clique is a set

of components that can be checked in one pass [4]. The clique problem has also

arisen in analysis of archaeological data and pattern matching.

16

Interesting questions

There are some interesting questions concerning the clique problem which can

be taken into consideration when designing a new clique-�nding algorithm:

• Can dividing the problem into many new smaller ones be a productive

approach?

• Most algorithms created are deterministic. Can randomization provide

any progress?

• Can parallelization be used successfully? Can one solve the problem more

e�ciently with multiple processors?

• Often we analyze graph algorithms by examining how it behaves when

given random graphs as input. What do graphs arising in real world

applications of the clique problem look like? Do they di�er from the

random graphs, and in that case, can we design algorithms that e�ciently

deal with di�erent classes of �real world graphs?�

• Perhaps an algorithm does poorly for a class of instances of the clique

problem, and does well for others. Can these classes of instances be iden-

ti�ed?

As a side note, we can observe that one class of instances of the clique problem which

we clearly can distinguish is planar graphs. A graph is planar if it can be drawn

without any edge crossings. It is proven that a graph is planar if and only if it does

not contain K5 (the complete graph with 5 vertices) or K3,3 (the bipartite graph with

6 vertices, where each vertex has valency 3) shown in Figure 3.1. Thus, if a graph

is planar we know that we can not �nd a clique of greater size than 4. An example

of this can be seen in Figure 1.2. In fact Hopcroft and Tarjan has shown that it is

possible to determine whether a graph is planar in O(n) time [5], so their test can

be used at �rst in any clique-attacking algorithm. If the graph is planar then we can

use a polynomial-time algorithm (checking all subsets of size less than 5) to �nd the

max-clique.

Figure 3.1. K5 and K3,3. If a graph does not contain K5 and

K3,3 it is planar.

17

Induced subgraphs

The rest of this text will be devoted to our proposed algorithm. Input is a graph

G = 〈V, E〉 and we will calculate an upper bound on the size of the max-clique

of G. Sometimes G is called a mother graph. Let n = |V | as usual. One of

the most important concepts of our algorithm, which will be described later, is

induced subgraphs. For brevity, we will use the shorter term �subgraph�.

De�nition. The subgraph of a vertex v ∈ V of the graph G = 〈V, E〉 is de�ned
as G′ = 〈V ′, E′〉 where E′ = {e = (z, x)|e ∈ E ∧ z ∈ V ′ ∧ x ∈ V ′} and V ′ =
{w|w = v ∨ (w, v) ∈ E}. The notation e = (z, x) means that the edge e connects

vertices z and x.

4

9

1

2

3

5

6 8

7

1

5

6 8

4

2

3

6 8
4

9
2

3

5

4
1

3 5

6 8

7

4

2

3

5

6

4

1

2

5

6 8

9

5
7

1

2

5

6 8

93

7

Figure 3.2. A graph G with 9 vertices, and its corresponding

subgraphs. The master vertices are marked with black borders.

The max-clique is marked, and appears in ω(G) = 4 subgraphs.

The vertex v, adjacent to all other vertices in its subgraph G′, is denoted the

master vertex of G′. Intuitively, the subgraph of v ∈ V consists of v and all ver-

tices adjacent to v, as well as all edges between these vertices that can be found

18

in E. Figure 3.2 shows a mother graph with 9 vertices, and its corresponding

subgraphs.

Our strategy is to induce n subgraphs, one for each vertex v ∈ V . In total we

obtain n + 1 graphs. The next theorem will hint at what makes this approach

interesting.

Theorem 3.1. (1) The max-clique of G is contained in exactly ω(G) subgraphs
of G. (2) Deciding whether a k-clique is present in G can be done by applying

clique-�nding algorithms to n− (k − 1) subgraphs of G.

Proof. (1) There are ω(G) vertices part of the max-clique M . Each of these

vertices w ∈ V [M] have subgraphs. Since w is part of the max-clique, it is

adjacent to all other vertices which are part of M , and according to the de�nition

of a subgraph, these vertices will be included in the subgraph of w, along with the
master vertex w itself and all the edges of the max-clique. Figure 3.2 illustrates

this. To see that the max-clique can not appear in more than ω(G) subgraphs,
observe that if it appears in the subgraph of a vertex u not in the max-clique, u
is adjacent to all vertices of the max-clique, thus the max-clique size is greater

than ω(G)�which is a contradiction. (2) According to (1) the max-clique can be

found in exactly ω(G) subgraphs. Looking after a k-clique we need to examine

n − (k − 1) subgraphs with a clique-�nding algorithm to be sure to �nd a k-
clique, if one exists in G. If we are �unlucky�, we will miss k− 1 subgraphs with

k-cliques, but the remaining kth subgraph with a k-clique will be examined

according to the pigeon hole principle, and we will �nd the k-clique anyway.

A clique �nding algorithm

Implicitly the above proof outlines a simple recursive algorithm, Recursive-

Clique, for checking whether a k-clique is present in a graph. It induces all the

subgraphs of the input graph, and then applies itself recursively to n− (k − 1)
subgraphs (or n subgraphs for simplicity [the constant k does not a�ect the time

complexity]). To avoid endless recursion, it removes the (redundant) master

vertex of each subgraph.

Recursive-Clique(G)

1. n← order(G)
2. if n = 1 return 1

3. for i = 1 . . . n do

4. Gi ← subgraph of vertex with Amv i without master vertex

5. ci ← Recursive-Clique(Gi)
6. return max(c1, c2 . . . cn) + 1

Let us study what happens when Recursive-Clique is used. In a graph

with order n, the algorithm will make n recursive calls on its n subgraphs,

19

respectively, as seen on line 5. Note that the recursion stops on line 2 when

the order is 1. The recursive nature of this algorithm produces a search tree, as

can be seen in Figure 3.3. Note that the maximum depth of the tree is ω(G).
The size of the search tree will be dependent on the coverage of the graph. The

worst case is given by coverage 1. Then ω(G) = n and we get n! leaves in

the tree. According to Stirling's formula, n! ∼ nn+ 1
2 e−n

√
2π and consequently

Recursive-Clique is super-polynomial.

However, with coverage 1
2 we get better performance. Then

1 +
ω(G)−2∑

j=0

j∏
i=0

n

2i

will be the expected number of vertices in the search tree. That is O(ω(G) ·
nω(G)). The expected size of the max-clique in a random-graph G with coverage
1
2 is ∼ 2 log2(n), so clearly we will not have exponential performance in this

particular case, but neither polynomial, because limn→∞ (log(n)) = ∞ and

there is no constant to bind log(n) from above.

– 1

n/2

n

n/4

2

1

Figure 3.3. The search tree produced by Recursive-Clique.

Its height is given by ω(G) − 1. With coverage p in a random

graph the expected size of the max-clique is 2 log1/p n.

The problem with Recursive-Clique is that too many recursive calls are pro-

duced. When searching for a k-clique we saw that at most n − k + 1 recursive

calls at one level are needed, but that k can not improve the time complexity.

The algorithm can be turned into a probabilistic one. Assuming we have a

k-clique in a graph with order n, at least k subgraphs will contain a max-

clique.
⌈
−n·ln(1−p)

k

⌉
recursive calls will ensure us making a recursive call on

a subgraph containing a max-clique with probability p [6]. This only gives a

constant improvement though.

Our algorithm soon to be presented is inspired by Recursive-Clique, but

to admit reasonable running times we will reduce the need of recursion, or

completely eliminate it.

20

Properties and rules

Subgraphs is one key ingredient of our algorithm. We will now also introduce

the concept of properties and rules. Assume that we will only allow a polynomial

number of subgraphs to be created. Now we will assign a constant number c of
various properties pv,1, pv,2, . . . , pv,c to each vertex of every graph. All of these

will be initialized to n and can not be less than 0. In our algorithm c = 1. Sim-

ilarly graphs are assigned a constant number l of properties pg,1, pg,2, . . . , pg,l.

In our algorithm l = 1. Future extensions might increase c or l.

Our algorithm will be equipped with a constant number m of rules, forming

a set of rules R. The rules are designed to decrease pv,1, pv,2, . . . , pv,c and

pg,1, pg,2, . . . , pg,l as much as possible. The rules are evaluated sequentially, and

when no rule can decrease a property the algorithm terminates. In total there

is a polynomial number of properties and a constant number of rules. Conse-

quently the running time of this scheme, called Property-Rule-Clique, is

polynomial. However, the quality of the solution is unknown, and so is whether

there exists a �nite set of rules Rs such that application of Property-Rule-

Clique presented below solves the clique optimization problem.

Interestingness

The concept of interestingness is important. Each vertex in every subgraph has

an interestingness. Originally it is n. If a vertex in a subgraph is k-interesting,
then we know that the vertex can be a part of a k-clique, but not a (k+1)-clique.
Naturally, our algorithm will try to decrease these values as much as possible.

This property is our pv,1.

Greatest possible clique

Every graph will have a number called its greatest possible clique number, or

Gpc. If a graph G has Gpc k then it is possible that a k-clique exists in G,
but not a (k +1)-clique. The Gpc of the mother graph therefore gives an upper

bound on the size of its max-clique, and is our primary result. Using the rules,

our algorithm Property-Rule-Clique will try to decrease the Gpcs as much

as possible. This property is our pg,1.

Property-Rule-Clique(G)
1. U = G

⋃
{The subgraphs of G}

2. while a rule r ∈ R decreases a property in a graph g ∈ U do

3. apply r to g
4. return Gpc of G

21

Property altering rules

The rules in R emanate from invariant properties of graphs and cliques, and each

rule must ful�ll the following requirements: (1) An algorithmic implementation

corresponding to a rule must not require super-polynomial time. (2) Application

of a rule must not increase any property. (3) A rule must not decrease the Gpc

of a graph G below ω(G). (4) If a vertex v is part of a k-clique in a graph G,

then a rule must not decrease the interestingness of v in G below k.

Now we will present a number of rules, stated as theorems with formal proofs.

Theorem 3.2. Let G be a subgraph and let m be the maximum valency of a

vertex in G. Then Gpc of G ≤ m + 1.

Proof. Assume there exists a (m + 2)-clique in G. In a clique with m + 2
vertices, each vertex must be adjacent to the other m + 1 vertices, thus having

valency m+1, contradicting the assumption that m is the maximum valency of

G. Hence Gpc ≤ m + 1.

Theorem 3.3. Let G be a subgraph and let m be the number of vertices in G
which are g-interesting, where g ≥ k. If m < k then G has Gpc < k.

Proof. According to the de�nition, a vertex is g-interesting if it is possible that
it is part of a g-clique but not a (g + 1)-clique. To make a k-clique in G, at

least k g-interesting vertices are needed, where g ≥ k. If we can not �nd those

vertices, then clearly there is no k-clique in G and Gpc< k.

Theorem 3.4. Let i be the number of subgraphs with Gpc ≥ k. If i < k then

the mother graph must have a Gpc < k.

Proof. Assume there is a k-clique in the mother graph. Then at least k of its

subgraphs will contain k-cliques, and their respective Gpcs ≥ k. If we can not

�nd k such subgraphs, then there is no k-clique in the mother graph and Gpc

< k.

Theorem 3.5. Let m be the Gpc of the mother graph. Then no subgraph can

have Gpc > m.

Proof. Each subgraph is a subset of the mother graph G, and the maximum

clique of a subgraph can also be found in G. Hence, if the maximum clique of

the mother graph has size m, no subgraph can contain a (m + 1)-clique. Thus
no subgraph has a Gpc > m.

Theorem 3.6. If the subgraph of v has Gpc k, then the interestingness of v in

any subgraph ≤ k.

22

Proof. We know for sure that the clique of maximum size that v is part of (not

necessarily the max-clique) is in the subgraph of v, G. If Gpc of G < k, then
clearly v can not be part of a k-clique in any subgraph.

Theorem 3.7. Let G be a subgraph with Gpc k. No vertex in G can be g-
interesting, where g > k.

Proof. If G has Gpc k, then no (k + 1)-clique can exist in G. Then trivially no

vertex in G can be more than k-interesting.

Theorem 3.8. For the subgraph of vertex v to have Gpc k, it is required that

v is at least k-interesting in at least k subgraphs.

Proof. If v is part of a k-clique, then v will occur in k subgraphs, and it will

be at least k-interesting in those graphs. If v can not be found to be at least

k-interesting in k subgraphs, then clearly v is not a part of a k-clique.

Theorem 3.9. Let v be a vertex in a graph G and let x be its valency. If x < k,
then v is less than (k + 1)-interesting in G.

Proof. If a vertex is part of a k-clique, it has at least valency k − 1 because it

is adjacent to all other vertices of the clique. Thus if a vertex has valency < k
then it can not be part of a (k + 1)-clique.

Theorem 3.10. Let v be a vertex in a subgraph G. If v is not connected to at

least k − 1 g-interesting vertices in G, where g ≥ k, v can not be k-interesting
in G.

Proof. Trivially, if v is not adjacent to k− 1 at least k-interesting vertices, then
there is no way that v could be part of a k-clique.

Theorem 3.11. Let v be a vertex in the mother graph and let m be the number

of subgraphs in which v is k-interesting. If m < k then the subgraph of v can

not have Gpc k.

Proof. Assume that v is part of a k-clique. Then v appears in the k subgraphs

corresponding to the vertices of the k-clique. Clearly v will be at least k-
interesting in all of those subgraphs. Consequently, if v does not appear as

g-interesting in k subgraphs, where g ≥ k, v is not part of a k-clique, and there

is no chance that a k-clique exists in the subgraph of v. Thus the subgraph of

v has Gpc < k.

The union of theorems 3.2-3.11 is our rule set R, which we will use in the

algorithm Property-Rule-Clique. To be useful in an implementation, the

theorems need to be converted into algorithmic functions which apply the rules

respectively to the graphs in memory. They should all return Boolean values,

indicating whether the application of the corresponding rule altered any prop-

erties. Appendix A discusses the conversion from theorems to algorithms in

detail.

23

4. Evaluation

After having described our proposed algorithm, it is now time to evaluate it the-

oretically and in practice. First we will study the time and memory complexities

of the algorithm.

Time complexity

The algorithm runs until no property can be decreased. An attempt to decrease

a property is done by applying, in turn, the functions corresponding to theorems

3.2�3.12. How many such attempts occur in the worst case? We have O(n2)
vertices including the subgraphs, and every vertex has a constant number t
of properties, all of which are set to n originally. If the application of the

functions does not a�ect any property, the algorithm terminates. Thus, the

worst case performance occurs when only one property is decreased by one in

every conducted attempt. Since no property can be negative, the algorithm

makes at most tn · O(n2) = O(n3) attempts.

Now we have to investigate the time complexity of an attempt. Note that we

only have a constant number of rules in the set R previously described (see

Chapter 3). Assume |R| = k, and that the time complexities of the algo-

rithmic implementations of the functions corresponding to the rules in R is

O(c1(n)), O(c2(n)), . . . , O(ck(n)) respectively. Then the time complexity of an

attempt is O(c1(n) + c2(n) + . . . + ck(n)). Thus, the time complexity of an at-

tempt will be determined solely by the single function ci(n) which grows fastest

when n → ∞. According to our discussion in Appendix A, the algorithmic

implementation corresponding to theorem 3.10 has the worst time complexity,

O(n3). Hence the running time of our algorithm is O(n3) ·O(n3) = O(n6).4

Space complexity

As usual let n denote the number of vertices in the input graph. With our data

structure, O(n2) bits are required to store the graph. With n subgraphs, we

get a total requirement of n · O(n2) = O(n3) bits. Also, the properties of the

vertices need to be stored somewhere. If each vertex has c properties (in our

case c = 1) then we get memory complexity c · O(n3) = O(n3). Additional

structures attached to a graph, like the name-Amv arrays, do not a�ect this

result.

Experimental evaluation

What our algorithm does can probably be investigated by theoretical means.

Theoretically, one can argue that the algorithm will not work well, since it

4Later in this text we will show an optimization reducing this to O(n5).

24

depends on patterns and correlations between subgraphs, and these patterns

disappear as the problem sizes increase. This is indeed a realistic point of view,

and we will soon see whether it is correct. Nevertheless, the algorithm might

still be useful for some classes of input graphs, like sparse graphs.

Although it is tempting to adopt the pessimistic view and claim that the al-

gorithm does not work well, we want to test the algorithm in practice to learn

about its behavior in di�erent situations. Because of this, we have implemented

the algorithm and our test results will be presented later in this chapter.

Naive solution

In many situations during evaluation, knowing the correct solution to a speci�c

instance of the clique optimization problem is useful. That would enable us to

verify how well (or badly) our own algorithm performs. Consequently we have

implemented an algorithm which, given a graph, �nds the optimal solution.

This algorithm is super-polynomial and can only be used on relatively small

problem sizes. Implementing a naive algorithm is not as easy as it seems. In

Appendix B, some naive implementations are discussed.

It can be noted that in many situations �nding an actual max-clique might not

be essential. In fact, in large graphs one can with an amazing accuracy predict

the size of the max-clique. For instance, in random graphs with coverage 1
2 the

max-clique size is expected to be 2 log2 n.

Input sizes

When evaluating our algorithm, how large graphs should be used? To minimize

the risk of correlations emerging due to the input graph being too small (and

thereby causing the algorithm to perform treacherously well), we will use graphs

as large as possible.

First, we should be quite happy with the O(n3) memory usage of our algorithm.

Our equipment will enable us to use graphs with n ≈ 1500, which we think is

su�cient.

Theoretically an algorithm using O(n6) time is considered to be nice due to

its polynomial behavior, but to some people, polynomial algorithms might seem

anything but tractable. Figure 4.1 shows the rapidly ascending function y = n6,

and although we can hope for much better performance than the worst case, the

�gure does indicate that the running times will get much longer as the problem

sizes increases.

25

0 100 200 300 400 500 600 700 800 900 1000
10

5

10
10

10
15

10
20

Figure 4.1. y = n6 displayed for 0 ≤ n ≤ 1000. Obviously the

running times increase dramatically with n.

Great speed-ups are achieved if the most time consuming rules are abandoned,

but on the other hand that might lead to poorer output. This is an issue that

should be investigated in the future, if the algorithm proves to be useful.

Results

Our algorithm has been tested with three di�erent coverages; p = 0.1, p = 0.5,
and p = 0.9. In Figure 4.2 the output is shown for p = 0.5 and various problem

sizes n where n ≤ 1000.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250
p=0.5

Order of graph

C
liq

ue
 s

iz
e

Figure 4.2. Results for p = 0.5, n ≤ 1000. The dashed line is

ω(Gn,0.5) = 2 log2 n, the stars are output data, and the straight

line is adjusted to �t the stars.

The stars symbolize output data, the straight line is a line adjusted to �t as close

as possible to the stars, and the dashed line is ω(Gn,0.5) = 2 log2 n�the expected

size of the max-clique of a random graph Gn,0.5 with order n and coverage 1
2 .

We would have preferred the output to follow the logarithmic curve, but clearly

26

it does not. It is linear with slope k ≈ 0.2. Indeed, this is a disappointing result,
as the algorithm can not be worse than linear (k = 1 gives the worst possible

algorithm which outputs n as upper bound on the max-clique size for Gn,0.5).

Only for small inputs does the algorithm provide output close to ω(Gn,0.5) since
0.2·n

2 log2 n → ∞ as n → ∞. Given random input, it is quite interesting that the

output �ts k ≈ 0.2 so well.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700
p=0.9

Order of graph

C
liq

ue
 s

iz
e

Figure 4.3. Results for p = 0.9, n ≤ 800. The dashed line

is ω(Gn,0.9) = 2 log10/9 n, the stars are output data, and the

straight line is adjusted to �t the stars.

Figure 4.3 shows that the situation does not improve with p = 0.9. In this

case, the slope is k ≈ 0.74 and the line diverges even faster from the logarithmic

function ω(Gn,0.9) = 2 log10/9 n. Again all outputs �t nicely to the line.

0 500 1000 1500
0

2

4

6

8

10

12
p=0.1

Order of graph

C
liq

ue
 s

iz
e

Figure 4.4. Results for p = 0.1, n ≤ 1500. The dashed line is

ω(Gn,0.1) = 2 log10 n and the stars are output data.

The situation in Figure 4.4 looks interesting. It shows the output when the

random graph is sparse, p = 0.1. The data do not suggest sub-linear perfor-

mance. However, the algorithm performs quite well, often �nding the optimal

27

upper bound ω(Gn,0.1) for orders as high as 800. Using a naive algorithm, the

max-clique size was most often con�rmed to be what was expected.

Although the situation gets dramatically worse for higher orders due to the linear

characteristics of the output, the results suggest that the algorithm might be

useful for sparse graphs. It has been proposed that asymptotically, the slope of

the lines of Figure 4.2�4.4 is approximately p2 [6].

Time requirements

Figure 4.5 shows the running time of the algorithm during our tests5. The data

suggest that it gets slower as p is increased. However, for a complete graph

(p = 1) the algorithm is fast, since it would terminate after just one application

of each rule.

200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500
Calculation time

Order of graph

M
in

ut
es

Figure 4.5. Execution times for various n and p = 0.1 (dashed),

p = 0.5 (dashed and dotted), and p = 0.9 (straight).

A sparse graph (p = 0.1) with 1500 vertices required approximately the same

time as a dense graph (p = 0.9) with 500 vertices.

Hidden cliques

When the algorithm terminated for random graphs, virtually all properties

landed at the Gpc, g, of the mother graph. We had hoped that there would

be several subgraphs with Gpcs less than g in order to extend our algorithm

with some rules using di�erences in Gpcs. Unfortunately, when the algorithm

terminates all vertices seem to have equal properties, making it unnecessary to

implement our supplementary ideas.

Additional testing of the algorithm suggests that deliberately hidden cliques

with size s within the random graph are spotted if s > kn (i.e s is above the

5We used Sun Ultra-5 Sparcs with UltraSPARC-IIi 270 MHz processor and 128 MB RWM.

28

line). This is done by observing that the subgraphs of the vertices part of the

hidden clique have a distinct higher Gpc value (typically the size of the hidden

clique) than the other subgraphs. For instance, with p = 0.1 we can often spot

cliques larger than 8 for n < 1000.

Optimization

It is possible to speed up the algorithm to O(n5), without a�ecting its space complexity.

However, we did not implement this optimization6. A lot of time is spent in routines

counting properties in neighborhood areas, but the need to do that can be eliminated.

Equip each vertex in every subgraph with an additional array with n elements, as

shown in Figure 4.6. In the array of the vertex v in the subgraph G we store the number

of vertices which are at least k-interesting and adjacent to v in G for k = 1, 2, . . . , n.
O(n3) memory is required for the arrays. This does not a�ect the space complexity

of the algorithm, but the operation of �nding out whether there are k at least k-
interesting vertices adjacent to the vertex w in the subgraph of the vertex v becomes

an O(1) operation�instead of O(n).

1

2

3

4

1

2

1

2

3

4

2

3

4 2

3

4

Figure 4.6. The running time of the algorithm can be decreased

signi�cantly by using an array attached to each vertex.

Assume that d, 1 ≤ d ≤ n3 properties are decreased by every attempt. Then the time

complexity of the algorithm is O
(

n3

d

)
·
(
O(n2) + d ·O(n)

)
= O

(
n5

)
. The �rst factor

is the number of attempts. The second factor is the number of computational steps

required to do an attempt. The �rst term represents the time it takes to use the rules.

If we use the O(1) name-Amv mapping of Chapter 2 it is O(n2). The second factor

represents the updating. d properties have changed (possibly a�ecting dn arrays), and

since the updating of one array takes O(1) time, we get dn ·O(1) = d · O(n).

6Although the optimization does not require more space asymptotically, it does need a lot

of extra memory�and due to lack of memory we would not have been able to conduct some

of our tests using the optimization.

29

Appendix A

Algorithmic implementation of rules

Recall that our algorithm uses a set R of rules. These rules were presented as

theorems 3.2�3.11. To make use of them in an implementation, they need to be

converted into algorithmic functions. In this appendix, we will take a look at

how such a conversion can be done.7

Each algorithm returns a Boolean value, indicating whether the application of it

a�ected any of the two propertiesGpc and interestingness. For convenience, Ta-

ble A.1 summarizes the mapping between the theorems and the algorithms, the

later of which will be examined and presented in pseudo code in this appendix.

Theorem Algorithm Time complexity

3.2 Order-Check O(n)
3.3 Interestingness-Count O(n2)
3.4 Gpc-Count O(n)
3.5 Subgraph-Check O(n)
3.6 Interestingness-Scan O(n2 · log n)
3.7 Gpc-Inflict O(n2 · log n)
3.8 Vertex-Distribution O(n2 · log n)
3.9 Valency-Check O(n2 · log n)
3.10 Interesting-Neighborhood O(n3)
3.11 Global-Count O(n2 · log n)

Table A.1. Theorems 3.2�3.11 are associated with algorithms

presented in this appendix.

Order-Check(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. H ← subgraph of vertex with Amv i in G
5. o← order of H
6. if Gpc of H > o
7. Gpc of H ← o
8. r ← true

9. return r

First let us study Order-Check implementing theorem 3.2. Each subgraph is

visited at line 4, and the Gpc is decreased at line 7 if the number of vertices in

7We will not use the optimisation of Chapter 4, nor will we use O(1) name-Amv mapping.

This appendix was especially intended to support our implementation e�orts.

30

the graph is lower than the Gpc. The for-loop of line 3 gives n iterations, and

since we do not use any names in the algorithm, lines 4�8 are O(1). Thus the
time complexity of Order-Check is O(n).

Interestingness-Count(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. H ← subgraph of vertex with Amv i in G
5. c← 0
6. o← order of H
7. g ← Gpc of H
8. for j = 1 . . . o do
9. if interestingness of vertex with Amv j in H ≥ g
10. c← c + 1
11. if c < g
12. Gpc of H ← g − 1
13. r← true

14. return r

Interestingness-Count implements theorem 3.3. The nesting of for-loops

gives O(n2) performance, since it is possible that o = n, and lines 5�7 and 9�13

are O(1). Each subgraph is visited at line 4, and the number of vertices which

are at least g-interesting are counted at line 10.

Gpc-Count(G)

1. c← 0
2. g ← Gpc of G
3. n← order of G
4. for i = 1 . . . n do

5. H ← subgraph of vertex with Amv i in G
6. if Gpc of H ≥ g
7. c← c + 1
8. if c < g
9. Gpc of G← g − 1
10. return true

11. return false

What Gpc-Count does is counting the number of subgraphs which have Gpcs

at least as great as the Gpc of the mother graph. If those are not numerous

enough, the Gpc of the mother graph is decreased at line 9. Since the for-loop

at line 4 gives n iterations and lines 5�7 are O(1) this is an O(n) procedure. It
corresponds to theorem 3.4.

31

Subgraph-Check(G)

1. r ← false

2. g ←Gpc of G
3. n← order of G
4. for i = 1 . . . n do

5. H ← subgraph of vertex with Amv i in G
6. if Gpc of H > g
7. Gpc of H ← g
8. r ← true

9. return r

Corresponding to theorem 3.5, Subgraph-Check makes sure that no subgraph

has a higherGpc than the mother graph. This is a O(n) procedure visiting each
subgraph once.

Interestingness-Scan(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. H ← subgraph of vertex v with Amv i in G
5. h← Gpc of H
6. o← order of H
7. for j = 1 . . . o do
8. K ← subgraph of vertex with Amv j in H
9. g ← interestingness of vertex v in K
10. if g > h
11. interestingness of v in K ← h
12. r← true

13. return r

Interestingness-Scan, implementing theorem 3.6, is a little bit more tricky

than the other algorithms to implement. At line 3 all n vertices of G is processed.

In particular, let us say we examine vertex v as we do at line 4. Then at line

7, all vertices in the subgraph of v are processed, because we know that v will

appear in those subgraphs and will not be allowed to be more than h-interesting,
where h is the Gpc of the subgraph of v.

Let us analyze the time complexity of this scheme. At line 4 we �nd the name

v of a vertex with Amv i in the graph G, to be used later. The operation is

O(1), as is the operation of line 8. However, �nding the interestingness of a

vertex by referencing to a name and not Amv takes O(log n) time, since we use

binary search to map a name to Amv. Hence lines 9 and 11 are O(log n). The
binary search and the two for-loops of lines 3 and 7 give Interestingness-

Scan O(n2 · log n) time complexity.

32

Gpc-Inflict(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. H ← subgraph of vertex with Amv i in G
5. o← order of H
6. p← Gpc of H
7. for j = 1 . . . o do
8. g ← interestingness of vertex v with Amv j in H
9. if g > p
10. interestingness of v in H ← p
11. r← true

12. return r

Gpc-Inflict implements theorem 3.7. This procedure visits every subgraph

and makes sure than no vertex can have a higher interestingness value than the

Gpc of the subgraph it is a part of. The two for-loops of lines 3 and 7 give

O(n · o) = O(n2) iterations, and since the implicit name-Amv conversion of line

10 uses binary search, Gpc-Inflict is O(n2 · log n).

Vertex-Distribution(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. c← 0
5. v ← vertex with Amv i in G
6. H ← subgraph of v
7. k ← Gpc of H
8. for each vertex u ∈ V [H] do
9. S ← subgraph of u
10. g ← interestingness of v in S
11. if g ≥ k
12. c← c + 1
13. if c < k
14. Gpc of H ← k − 1
15. r ← true

16. return r

TheGpcs of the subgraphs are attacked by the algorithmVertex-Distribution

implementing theorem 3.8. The idea is that the subgraph of v can not haveGpc

k if v is not at least k-interesting in k subgraphs. The for-loops of lines 3 and 8

give O(n2) iterations. The implicit name-Amv conversion of line 10 is O(log n)
so the algorithm is O(n2 · log n).

33

Valency-Check(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. H ← subgraph of vertex with Amv i in G
5. o← order of H
6. for j = 1 . . . o do
7. g ← interestingness of vertex v with Amv j in H
8. w ← valency of v
9. if g > w + 1
10. interestingness of v ← w + 1
11. r← true

12. return r

Valency-Check implements theorem 3.9. As there are two nested for-loops

visiting every vertex of every subgraph and an implicit name-Amv conversion at

line 10, the time complexity of the algorithm is O(n2 · log n). Valency-Check
makes sure that no vertex has a interestingness higher than its valency plus

one, and since valencies are static it is easy to see that this algorithm is applied

successfully at most once.

Interesting-Neighborhood(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. H ← subgraph of vertex with Amv i in G
5. o← order of H
6. for j = 1 . . . o do
7. v ← vertex v with Amv j in H
8. k ← interestingness of v
9. c← 0
10. for each u ∈ the set of vertices adjacent to v in H do

11. if interestingness of u ≥ k
12. c← c + 1
13. if c < k − 1
14. interestingness of v ← k − 1
15. r← true

16. return r

Theorem 3.10 is implemented by Interesting-Neighborhood. This algo-

rithm checks that every vertex in every subgraph can defend its current level

of interestingness by verifying that a vertex which claims it is k-interesting in a

subgraph S is adjacent to k − 1 other at least k-interesting vertices in S. The
for-loops at lines 3, 6, and 10 give O(n3) iterations of line 11 since we have at

most n2 vertices in the subgraphs, and each of them might be adjacent to n− 1
other vertices. At lines 8 and 14 we need to do name-Amv conversions, using

34

O(log n) binary search. In total we get O (n · (n · (log n + n))) = O(n3) time

complexity.

Global-Count(G)

1. r ← false

2. n← order of G
3. for i = 1 . . . n do

4. v ← vertex with Amv i in G
5. H ← subgraph of v
6. k ← Gpc of H
7. c← 0
8. for each vertex u ∈ V [H] do
9. S ← subgraph of u
10. if interestingness of v in S ≥ k
11. c← c + 1
12. if c < k
13. Gpc of H ← k − 1
14. r ← true

15. return r

Let us do a quick analysis of the time complexity of Global-Count. We have

two for-loops at lines 3 and 8. The name-Amv conversion of line 11 is O(log n)
since we use binary search. Consequently the algorithm is O(n2 · log n).

According to Theorem 3.11, if a vertex v is not g-interesting in at least k sub-

graphs, where g ≥ k, then v can not be k-interesting anywhere. In the cor-

responding implementation of the algorithm Global-Count, what value for

k should we use? We shall start at the maximum interestingness value that v
has in any subgraph. How do we get that value, without peeking into every

subgraph? Theorem A.1 implies that k should be the Gpc of the subgraph of

v.

Theorem A.1. Let k be the highest interestingness value of vertex v in any

subgraph. If Interestingness-Scan and Vertex-Distribution are applied,

and no other algorithm thereafter, then k = m, where m is the Gpc of the

subgraph of v.

Proof. The proof is divided into two parts. (1) Interestingness-Scan makes

sure that v can not have a higher interestingness than m in any subgraph. Hence

k ≤ m. (2) Let the Gpc of the subgraph of v be m. Then assume that v is

not m-interesting in any subgraph. Then following from part 1 of this proof, v
must be less than m-interesting in all subgraphs. This is impossible, since after

applying Vertex-Distribution the Gpc of v could not be m if there are no

g-interesting vertices, where g ≥ k. Thus v is m-interesting in a subgraph. (1)

and (2) implies that k = m.

35

Now we have found the time complexity of each algorithm, and the results are

summarized in Table A.1. It is useful to us in the time complexity analysis

part of Chapter 4, where we need to know the worst time complexity of all the

algorithms.

Appendix B

Naive solutions

As discussed in Chapter 4, when evaluating our own polynomial algorithm, it is

sometimes useful to know the actual size of the max-clique. With that knowledge

we can compare the outputs of a correct problem solver and our algorithm, and

we are enabled to see exactly how well our algorithm performs.

Although the size of the max-clique can be estimated accurately in large random

graphs, we felt it would be convenient at times, for evaluation and development

purposes, to not only know the size of the max-clique, but also where it is

located. Therefore we implemented a naive solution to the problem. In this

appendix we will address some issues concerning naive solutions.

Naive iteration

Since the optimization problem of �nding the max-clique in a graph is NP-hard,

any naive solution is super-polynomial, expressing the fact that we have to test

all possible combinations of vertices in the graph, looking for cliques, to be able

to tell where the max-clique is located.

A straightforward implementation is Naive-Clique-Iteration. It simply in-

creases a variable i from 0 to 2n−1, where n is the order of the input graph, and

lets the binary representation of i indicate which vertices are to be tested. That

way we know for sure all combinations will be tested. Figure B.1 illustrates how

the max-clique eventually is found.

Naive-Clique-Iteration(G)
1. B ← ∅
2. n← order of G
3. for i = 0 . . . 2n − 1 do

4. H ← Induce-Binary(G, i, n)
5. if H is complete ∧ |H | > |B|
6. B ← H
7. return B

The set B always contains the largest clique found so far, and is initiated to

∅ at line 1. Line 3 increases i from 0 to 2n − 1 and at line 4 we use the

36

algorithm Induce-Binary to get H , the subgraph of G corresponding to the

binary representation of i. If H is complete then lines 5 and 6 test whether H
is larger than B and resets B if necessary.

Induce-Binary(G, i, n)
1. V [M]← E[M]← ∅
2. for j = n− 1 . . . 0 do
3. if i ≥ 2j

4. V [M] = V [M] ∪ vertex v with Amv j + 1 in G
5. E[M] = E[M] ∪ {e|e = (v, w) ∈ E[G] ∧ w ∈ V [M]}
6. i← i− 2j

7. return {V [M], E[M]}

Given the graph G, its order n and the number i, Induce-Binary induces a

graph out of G corresponding to the binary representation of i. At line 1 the

sets V [M] and E[M] are initialized to ∅. We will work ourselves backwards in

i. First we check whether the most signi�cant bit of i is set. If it is, that is

i ≥ 2n−1, then we act accordingly at the lines 4�6. Then we check bits in i
sequentially until we have examined the least signi�cant bit.

4

9

1

2

8
3

11

6

12

5

710

13

1
1

2
0

3
0

4
0

5
1

6
1

7
0

8
0

9
0

10
0

11
1

12
0

13
1

Figure B.1. Naive-Clique-Iteration tests all combinations

of vertices. Eventually the max-clique is found.

If we execute line 4, we have found a set bit at position j. At that line, V [M]
is extended with the vertex corresponding to j. Line 5 adds all edges connected
to the j vertex in G to E[M], but ignores edges not incident of two vertices in

V [M]. At line 6 the jth bit of i is cleared.

The running time of Naive-Clique-Iteration is Ω(2n) since the algorithm

counts from 2n − 1 to 0. Hence it is virtually useless in practical applications.

37

Depth First Search

Another naive, but much better way to solve the problem is by building up a

search tree which can be searched recursively using the search technique known

as Depth First Search. The algorithm DFS-Clique does this.8 Only a minor

part of the search tree will have to be stored in memory.

DFS-Clique(G)

1. return DFS-Recursive-Clique(G, ∅, ∅)

DFS-Recursive-Clique(G, C, B)

1. a← false

2. for each u ∈ V [G]− C do

3. if {u ∪ C, E[G]− {e|e = (a, b) ∧ (a /∈ u ∪C ∨ b /∈ u ∪ C)}} is complete

4. N ← DFS-Recursive-Clique(G, u ∪ C, B)

5. a← true

6. if |N | > |B|
7. B ← N
8. if a = false

9. return C
10. return B

First DFS-Clique calls DFS-Recursive-Clique (the recursive main proce-

dure) with the arguments G (the input graph), ∅ (the clique currently under

investigation), and ∅ (the greatest clique found so far by the algorithm).

Given these inputs, DFS-Recursive-Clique tries to enlarge the clique by

testing whether adding a vertex yields an even bigger clique. C is the set of

vertices which are part of the clique currently under investigation.

B is the set of vertices which forms the largest clique found so far. The variable

a, initialized at line 1, is a �ag telling us whether any larger clique was found.

If it remains false at line 8, we are at the base case of the recursion and return

C. Otherwise line 10 returns B, the set of the vertices part of the largest clique
found so far.

The lines 3�7 check whether the vertices part of the set U can be used to enlarge

the current clique. If so, DFS-Recursive-Clique is executed recursively at

line 4, and it is this part that produces the search tree.

What makes this algorithm better than the iterative one previously discussed

is that it does not continue searching branches which have failed (i.e. do not

represent cliques) and it requires less time if the input graph is sparse. Also,

the recursion depth does not become greater than the size of the max-clique.

8We implemented DFS-Clique, but not the optimization described below. Hence our

naive problem solver was very slow and could only be used successfully on sparse graphs.

38

This scheme can be optimized. Assume that all vertices can be sorted with

respect to some relation Q (vertex Amvs can be used for this purpose). For a

speci�c clique consisting of vertices in the set C there will be |C|! paths from
the root to leaves representing the clique in the search tree. Speci�cally ω(G)!
paths will represent the max-clique. To avoid exploring all those paths leading

to the same clique, only continue searching paths which are sorted with respect

to Q.

Acknowledgments

We thank some people who contributed to this project.

• Johan Håstad, professor at KTH, provided mathematical support and

comments on the preliminary version of this paper.

• Frej Drejhammar gave us TEX support and contributed to the look of this

document. Frej also helped us with Unix and programming problems.

• For helping us with implementation problems we thank Roland Persson.

• Mikael Goldmann at KTH helped us with programming problems.

• Finally professor Stefan Arnborg should be credited for letting us do this

project within the frameworks of a regular KTH course in computer sci-

ence.

References

[1] Cormen, Leiserson, and Rivest, Introduction to Algorithms, The MIT Press,

1990.

[2] Juels and Peinado, Hiding cliques for cryptographic security, Proceedings of

the Ninth Annual ACM-SIAM SODA, 1998, pp. 678�684.

[3] Alon, Krivelevich, and Sudakov, Finding a Large Hidden Clique in a Ran-

dom Graph, Proceedings of the Ninth Annual ACM-SIAM SODA, 1998,

pp. 594�598.

[4] Unknown author, Clique and Coloring Problems�A Brief Introduction,

with Project Ideas, ftp://dimacs.rutgers.edu/pub/challenge, 1992.

[5] Hopcroft and Tarjan, E�cient planarity testing, Journal of the ACM, 21:549�

569, 1974.

[6] J. Håstad, personal communication.

39

