Recovering Pixel Coordinates

Ronnie Johansson

February 28, 2001

Abstract

Image processing can be made more efficient by reducing the amount of data
being processed. One problem that arises is how the coordinates of a pixel in
the original image can be recovered when its coordinates in the reduced image
are known (pixel coordinates recovery). This article explains how mathematical
functions can be defined that easily maps coordinates between a modified and an
original image under the condition that the modified image is the result of only
cropping and subsampling. Crop and subsample transforms, which generate the
suitable pixel coordinates mapping functions, are defined. The main focus of this
work is to map row and column coordinates to other row and column coordinates,
but it also considers the case where the pixels of the modified image are stored in
a vector, and the index in that vector is the only information available about the
location of a pixel.

Preface

In the summer of 2000, while | was working on my Master’s ThesiSta Institute

of Physical and Chemical ReseatofRIKEN), Saitama, Japan, my supervisor at the
institute was working on his project which, at the time, involved analyzing image data.
At one point, he asked asked me to have a closer look at the following problem:

An imagelmgunc has been created by, firstly, cutting a rectangular piece out of an
initial imagelmgorg (cropping), yielding an intermediate imatagm, and, secondly,
keeping only everkth pixel in every row ofimgm (in effect subsamplingmgimt).

Given a pixel inlmgync With coordinatesXrunc, Ytrunc), how can the corresponding
coordinates ofMdorg (Xorg: Yorg) b€ recovered?

This article is the result of my study.

I would like to thank Svante Hellstadius for his comments on this article, and Dr.
Igor Paromtchik for posing the problem.

Even though some parts of this article may look complex, itis based on fundamental
mathematics. The intent of the article was to make its contents general and, hence, to
satisfy many needs. To many readers, however, this generality is not necessary, and
they will probably find it useful to read Section 1 and Appendix A first.

1 Introduction

Many applications (e.g., in surveillance, robotics, medicine etc) concerns the process-
ing of image data, but algorithms that operate on images are quite often slow and,

Lhtp:/iwww.riken.go.jp

therefore, not suitable for real-time applications. Sometimes, however, input images
contain more information than necessary, and efficiency can be gairtesnoating
them. Two motivations to truncate an input image are:

1. only the information in some region of the inputimage is relevant,

2. subsamplingwill, to some degree, not prevent the success of the applied image
processing algorithm.

Motivation 1 arises when, e.g., only a part of the image is interesting for the moment
(in a surveillance application this could be a region in which possible motion has been
detected, which should be studied more closely). Motivation 2 arises when, e.g., an
image is being scanned to detect (fairly large) regions of a particular color.

It is evidently useful, in some applications, to truncate an image to decrease the
execution speed of image processing algorithms. However, how dogixtie in
the truncated imagbmgunc relate to the pixels in the original imadmgorg? This
guestion is important if the purpose of the image processing is to locate some image
data in the coordinates trfngorg.

E.qg., say that we have an application which wants to display an ifmaggy and
mark a possible “blue color’-region of the image with, e.g., a polygon. Let us further
assume that it is useful to create a truncated imauggync to increase the efficiency
of the localization of the “blue color”-region. If the region is found, it can be expressed
in the coordinates dfmgunc, but this is not sufficient information for the application
since it has to draw a polygon, surrounding the “blue color”-region, in the coordinates
of Imgorg.

One way to solve this problem, to acquire the correspontimgy coordinates
given thelmgunc coordinates, would be to create a lookup table of all pixels
Imgrunc Mapping to coordinates imgorg (created inO(plogp)). This lookup table
would be built at the same tirmeng,ync is created. It would be fairly fast to look up
image coordinates¥(log p) using binary search), but the memory requirement would
grow linearly ©O(p)) in the number of pixels ilmgync.

Another way is to design, if possible, a formulanc that takes thémgync CO-
ordinates (denoted, €.d%runc, Ytrunc) OF (Cirunc, Mtrunc)) and returns the coordinates of
IMgorg (denoted, €.9.(Xorg, Yorg) OF (Corg,forg)). Unlike, the solution with the lookup
table, it requires no preparatory wérkoordinates are acquired in constant time (sim-
ply computing the formuldyunc), and even the memory complexity is constant (no
extra memory is needed).

The properties of the two solutions are summarized in Table 1.

Table 1: Comparison between lookup table and formula solutions

[Solution | Initial cost | On-line cost | Memory cost ||
Lookup table O(plogp) O(logp) O(p)
Formula 0(1) 0(1) 0(1)

2|.e., removing information from the image.

3Subsampling of an image is a sort of destructive data compression. An image that is subsampled loses,
for instance, every other row and column, and the result is an image with smaller dimensions.

4Pixel” is an abbreviation of “picture element” and simply refers to the smallest indivisible entity of a
computer image.

5No initial work is necessary if the formula is not created in real-time.

This article deals with the latter solution.

Section 2 defines some of the terms used in this article. Section 3 describes the two
image modification tools: crop and subsample, and their corresponding pixel coordi-
nates mapping transforms. Section 4 gives examples of how to apply the transforms.
Section 5 explains how row and column coordinates can be exchanged with pixel in-
dices. Section 6 summarizes the article. Appendix A gives a very concrete example of
how to use the contents of this article. In Appendix B, derivations of the pixel index to
row and column functions are presented.

2 Definitions

An image is a 2-D array, a matrix, whose elements are pixels. In this article, images
are classifieflas

e original image)mgorg,
e intermediate imageémgim, or
e truncated imagdmgrunc.

In the following discussionmgorg refers to a “raw” image that has not been mod-
ified. Imgm is an image that is the result of a modification made to another image.
Finally, Imgunc is the resulting image after some (possibly none) modifications.

There are two tools discussed in this article for modifying images:

e Crop
e subsample

Cropping is the same as cutting a piece out of an image. In this article, only rect-
angular cuts are treated. Figure 1 provides an example.

The subsample tool removes columns and rows of pixels of an image. See Figure
2 for an example.

Crop

—_—

Figure 1. The left image is cropped resulting in the image on the right. Only the part
of the left image that is within the dashed rectangle is preserved in the right image.

What is important when finding the corresponding coordinates of an original image
and a modified one is not the values of the matrix (image) elements, rather it is the

6please note that one and the same image can belong to more than one class, depending on the situation.

Subsample Subsample

Figure 2: In a first subsampling (1), the image in the middle only keeps every other
row of the original on the left. In the second subsampling (2), only every other column
is preserved.

indices of the images. In the most simple case, |gikal coordinates mappin@PCM)
from the original imageémgorg to itself be a function

i< G | "

In Formula (1),r andc are a row and column value respectively, aodig(r) and
colorg(c) row and column mapping functioniyg(r,c) is illustrated in Figure 3.

forg(ly: G)

Mg g Mg g
® Do]
—_—
(.) 0)) T2 6

forg(rll Cl)
Figure 3: Thd g function maps rows and columns from an imageog to itself.

In general, letyync be a PCM from an imagemgrunc to an original imagémgorg.
If firune = forg thenImgrunc andimgorg are identical.

Let the pixel coordinates mapping functibbe transformed when the correspond-
ing image is modified. Th€ is the crop transform, and thethe subsampling trans-
form.

3 Truncation

This article describes two tools for truncation:
e Crop
e subsample

Given an imageémageA(possibly already modified), the (possibly repeated) applica-
tion of one or both of the truncation tools on the image will yield a new modified image
ImageB This section defines the transforms that should be applied to the PCM function
of ImageAto produce the PCM function fdmageB

3.1 Cropping

Let C be the crop transform, arfgh; be a PCM function from an imagengm; to an
original imagelmgorg. Furthermore, lekmgunc be the result of applying the crop tool
to Imgmt. The PCM function frommgrunc t0 IMgorg firunc Will now be acquired by
applyingC to fimt, i.e.,frunc = C{fimt }-

Let us have a closer look at a crop operation to find out the details of the crop
transformC. Figure 4 shows the cropping of the imagagm: to imagelmgrunc.
srtrowi: andsrtcoly; are the least indices of the rows and columnkag; that are
included inIlMg@unc. lorowsrune @andlocokyync and the start indices of the rows and
columns ofimgunec.

If a PCM functionfyuncimt for each pair of coordinates Imgunc (ftrunc, Ctrunc)
to the correspondingimt,Cimt) in IMgimt can be found, then the PCM function from
IMQrunc to IMgorg is also determined, since the PCM functigf = (roWim¢ (Fimt), COlimt (Cimt)),
i.e., the mapping frommgiy; to IMgorg, is known.

srteol, locol, .
Img;
mt
strow,, —————— 71— — lor oW, IMGtrunc
—_— ! T —_—
| | Crop
: | —
(rimt ' Cimt) (rtrunc ! Qrunc)

Figure 4: The image on the right is the truncated imbggunc Which has a lowest
row indexlorowync and a lowest column inddrcokyync. The image on the left is the
intermediatd mgmt. The srtrowi: andsrtcoly: are the indices of the least row and
column ofImgny; that is included inmMg;unc.

Figure 5 provides an example. The purpose of the example is to show that the
transform takes row and column indices into consideration and does not restrict indices
to start at certain numbers.

1 | Grunc
§ i e N el] M 2 I MGrunc
| | Crop
limt ! L lrunc
(rimt ’ Cimt) (rtrunc ' Ctrunc)

Figure 5: This figure illustrates that row and column indices are not restricted to start
at certain numbers. l.e., the row numberindoignc Starts with 2 and its column
numbering with 0.

Notice that the mapping of rows and columns can be handled separately. The row
mapping is only dependent ofiync, |0roWrync, andsrtrowy, while the column map-
ping only is dependent aQ;ync, [0COkunc, @ndsrtcoky:. Letg(x;lo,srt) be a function
which takes one variabbe and two parametets andsrt:

g(x;lo,srt) =x—1o +srt (2)

The mappings of rows and columns frdmgync to Imgm: can now be expressed
as

FOWsrunc—imt (Ftrunc) = 9(Ftrunc; |0rOWtrunc, SItFOWimt) =
Itrunc — |0rOWirunc + SIrOWimt 3

and

COkrunc—imt (Ctrunc) = 9(Ctrunc; 10COkrunc, SItCOkmt) =
Ctrunc — |0COkyunc + SItCOkmt 4)

respectively. Finally, the transfor@ can now be defined as

C[SItroWmt, Srtcokmt, lorowrunc, 10€Okrunc] {fimt } =

roWtrunc(ftrunc) = rOWimt (g(rtrunci lorowtrunc, srtrowm)) _
COkrunc(Ctrunc) = COlimt (g(ctrunc; locOkrunc, Srtcokmt))

r('JWtrunc(rtrunc) = rOWimt(rtrunc — lorowsyync + SrtrOV\ﬁmt)
COItrunc(Ctrunc) = COlimt(Ctrunc — locokrunc+ srtcokmt)

®)

3.2 Subsampling

Let S be the subsample transform, afyg, once again, be a PCM function from an
imagelmgimt to an original imagémgorg. Furthermore, letmgunc be the result of
applying the subsample tool tongm;. The PCM fromimgunc t0 IMgorg frrunc will
now be acquired by applying to fimt, i.e.,frunc = S{fimt }-

Figure 6 shows the subsampling of the im&@ejm: to imagel Mgunc. The param-
etersste prowy: andste pcaly: decide how many rows and columns respectively should

be kept. E.g., always keep the first row and then egteyprowswth row from there

on. Columns are handled analogously. The same as with the crop transform, if we can
find a PCM functiorfyync—imt for each pair of coordinates Imgunc (ftrunc, Girunc) tO

(fimt, Cimt) IN IM@imt, then the PCM function fromgrunc to IMgorg is also determined,
since the PCM functiofimt = (rowimt (rimt), COlimt (Cimt)), i.€., mapping fromimgim; to

IMQorg, is known.

lorow

trunc
locol ., stepcol
locol
trunc
Imgi - l/il
rTgtrunc
_ Subsample
SteprOWi mt N
(O=<— rtrunc
imt Ctrunc

Figure 6: In the process of subsampling imag®,: to imagelmgunc, only every
ste prowm:th row and evergte pcainth column are keptorowiy, |0COlmt, lorowsrync,
and locokync are the indices of the first rows and columnslofgy: and IMmgrunc
respectively.

Mapping of rows and columns can be handled separately also in the case of the sub-
sample transform. The row mapping is only dependent@ft, |10rowsrync, |0roWin,
and steprowmn:, While the column mapping only is dependent QRinc, 10COkrunc,
locolint, andstepcoly. Let h(x;loNewloOld,step be a function which takes one
variablex, and three parametei@Old, loNew andstep

h(x;loNewloOld,step = (x—loNew - step+ 100Id (6)

The mappings of rows and columns frdmgync to Imgm: can now be expressed
as

roWtrunc—imt (Ftrunc) = N(Ftrunc; |0rOWtrunc, |OroWimt, Ste prowmt) =
(rtrunc — 10rOWtrunc) - Ste prownt + 1orowimt (7)

and

COItruncaimt(Ctrunc) = h(Ctrunc; loCOkrunc, lorowimt, ste pCQt'nt) =
(Ctrunc — 10COkrunc) - Ste pcat + locolimt (8)

respectively. Finally, the transforgican be defined as

S[lorowimt, locolimt, lorowrunc, 10COkrunc, Ste provime, ste pcolmt] {fime } =

roWrunc(Ttrunc) = rOWim (N(Ttrunc; 10r0Wrunc, [0roWimt, steprownt)) | _
COltrunc(Ctrunc) = COlimt (h(Ctrunc; locokrync, loCOlimt, Ste pCOil'nt))

rOWrunc(Ftrunc) = FOWimt ((Ftrunc — |0TOWrunc) - St€ Provint + 10roWin) ©)
COItrunc(Ctrunc) = COlimt ((Ctrunc - |000|trunc) -stepcahy + I0CO|imt)

4 Recovery of Coordinates

With the help of the transforms from Section 3, it is now possible to construct a PCM
function for any manipulation of an imadmgorg as long as only the tools crop and sub-
sample are used. The transforms (configured with the appropriate parameters) should
be applied tdog correspondingly to the transformation of thegeg to acquire the
PCM functionfyync for Imgyunc.

Once the sequence of image transformations is known, the PCM function can be
calculated.

Here is an example:

Say that we want to modify an imadegorg With one crop and one subsample.
The parameters of the crop and subsample do not have to be known in advance; they
may be calculated at run-time. The PCM function for the resulting ima@gunc is
fiunc @and is calculated this way

firunc = S[lOroWimt, 10COlimt, |0roWrunc, |0COkrunc, Ste prowme, Ste pcoint]
C[Srtroworg, Srtcolbyrg, |0rowimt, 10COlimt | {forg} = {suppressing the printing of all paramet}er-s
5[]C[]{f } _ roWtrunc(ftrunc) = FOWimt (Ftrunc — |OrOWrunc + SItrOWimt) _

B COkrunc(Cirunc) = COlimt (Ctrunc — 10COkrunc + SrtcOkmt)

roWtrunc(Ttrunc) = (Mtrunc — |0rOWtrunc) - St€ Provint + 10roWime — 10roWimt + Srtrowerg _
COkrunc(Ctrunc) = (Ctrunc — 10COkrunc) - Ste PCOkyt + 10COlimt — 10COlimt + Srtcolyg
{Eliminatinglorowim: andlocolint} =

roWtrunc(trunc) = (Ftrunc — |OrOWtrunc) - St€ Provint + Srtroworg (10)
COkrunc(Ctrunc) = (Ctrunc — 10COkrunc) - St€ PCOkt + SrtCObyrg

A more general formula can easily be derived. In this case, it is assumed that
the original imagdmgorg (With PCM functionfq) is first croppech times and then
subsampledntimes. The resulting imadengunc will have the PCM functiorfin m.

fam=S"[-. Q... L ImlC [1 L nl{foot = ST Ja- L ml{fao) =

AR rOWn,0(rn,0) = roWo,o(Ino+ S o(srtrows o — lorowi;10))
el ™ | colno(Cn0) = colpo(Cno+ ¥ Lo(srtcok o —locolit 1))

OWnm(fnm) = T0Wo0(fnm- 17, Steprowj — 3 0rown j [i_, Steprows -+
lorowno + S5 (srtrow o — lorowi10)) 11)
COlm(Cnym) = COloo(Cnym- ﬂﬁ“zl stepcoh j — 25“:1 locol, j r]lj(:lste pcokb k+
locok,o+ S g (srtcok o — locoli+ 1))

Formula (11) can be made much more simple. Since the row and column indexation
is arbitrary, it can be fixed to 0, i.dgrow; ; = locol j = 0 for alli andj. This yields
the much more simple equation:

fom=S"[..Ja--- [ImlC"[. . J1- - [Jnl{foo} =

FOWnm(nm) = FOWo,0(Fnm- [11L Steprowk j + Sig srtrow o)

— 12
COln,m(Cnm) = €Olo,0(Cnym- ﬂﬁ“zl stepcolj+ zi”:Ol srtcok o) (12)

5 Recovery With Pixel Index

Sometimes, the final imagengunc is treated as a one dimensional vector of pixels
rather than a matrix with rows and columns. Given the pixel ifggx, the start pixel
indexsrtidXrunc, |0roWrunc, 10C0krunc, and the maximum column indéMcok,yne, the
transformations between pixel indices and rows and columns can be calculated this
way (the derivations of these equations are shown in Appendix B):

. Ai
Frunc(itrunc) = |OrOWrunc + \‘W[h J (13)
runc
Ctrunc(itrunc) = 10COkrync + Ai — [W[h J Wthrunc (14)
runc

In the equations, the following abbreviations are ugsids ityync — SrtidXyunc and
Wthirune = hicokyunc — 10COkrunc+ 1.

Formula (13) and Formula (14) can be inserted directly into any PCM function
f(r,c) yielding f(i) = (row(r(i)),col(c(i))). The equations inserted into Formula (10)
yield

firunc (itrunc) = 5[- .]C[. -]{forg} =

rOWtrunc(rtrunc(itrunc)) = I'OWimt (rtrunc(itrunc) — lorowrync + SrtrOV\ﬁmt)]
COltrunc(Ctrunc(hrunc)) = CO'imt(Ctrunc(Hrunc) —locohrync+ Srtcokmt)

rOWtrunc(rtrunc(itrunc)) = (rtrunc(itrunc) - |0r0Wtrunc) - SteProvim: + Srtrowerg]
COItrunc(Ctrunc(hrunc)) = (Qrunc('trunc) — |0C0|Irunc) -stepcokn + SrtCOL)rg

roWtrunc(itrunc) = ((|0rOWtrunc+ [ﬁJ) - |0r0Wtrunc) - Ste Provin: + Srtroworg
COkrunc(itrunc) = ((10COkrunc+ Ai — NQ:UHCJ Wthrunc) — 10COkrunc) - Ste PCO; + STtcObrg

{E||m|nat|ng IorO\Ntrunc andlocoltrunc} ==

rOVV[runc(itrunc) = [ﬁJ Ste pI’OWm + SrtrOWOrg

. . : (15)
COkrunc(itrunc) = (Ai — \‘WJ Wthirune) - Stepcoht + Srtcolorg
Unfortunatelywthunc is expressed withicokyync, which also has to be calculated.
This is not discussed in this article.

6 Summary and Discussion

This article presents two tools for digital image processing: crop and subsample, but the
focusis on how to translate a pair of coordinates for a pixel in a modified (or truncated)
image to the the corresponding coordinates in the original image. To construct the
necessary pixel coordinates mapping (PCM) functions (that maps coordinates from a
modified image to the original), transforrd@sand § are introduced.

Pixel coordinates may be represented as pairs of row and column indices, but some-
times, e.g., when the modified image is stored in a vector and the corresponding row
and column indices are unknown, pixel indices are better to use. The article shows
how PCM functions can be modified to take pixel indices instead of row and column
indices.

A few examples show how the transforms can be used.

The transforms are most likely to be useful in applications which crop or subsample
images, and where there is a need to recover the original coordinates of pixels. Itis also
likely that a programmer uses the transforms to construct a PCM function that is hard
coded into his or her program.

Also note that the transforms can be used with matrices containing any type of data
as long as the modifications of them are limited to crop and subsample.

A Example

This section contains a fictitious example that will illustrate how the work in this article
can be brought into practice. Let us say we have a monitoring system that monitors a
pipe to detect emerging leaks. The system receives a digitized infrared video image
of the pipe once every second. Leaks of hot water are characterized by the particular
color mark they leave on the video image.

The infrared images have a 320x256 pixels resolution, and, hence, 81920 pixels
(=320x256) each. The hardware and image processing algorithm in use does not allow
all pixels to be considered before a new infrared image is generated in the system. The
system designers make the assumption that it is sufficient to check just a subset of the
pixels in each image. They divide the image matrix into sixteen cells and decide that
for each image that is generated in the system, only the pixels of one of the sixteen
cells will be considered. The image decomposition is illustrated in Figure 7.

‘ 320 pixels

161 164 167 240

3 —

256 pixels

10
1314 |15 16

Figure 7: The infrared images are divided into 16 cells. For each image, only one
cell is considered. In this figure, Cell 7 has been magnified. The numbers above the
magnified cell are column indices of the original image, and the numbers to the right
are the row indices of the original image. The white pixels of the cell are the ones
left after a subsampling witste pcol= 3 andsteprow= 1. The numbers in the white
pixels are the pixel indices of the resulting image atwidx (the number of the first

pixel index) is 1.

Each cell contains 5120 pixels, but the designers realize that even this is too much.
What they also realize is that the accuracy of checking each pixel of the cell is un-
necessarily high, that small errors in the image might be mistaken for leaks, that it is
sufficient to detect larger regions of deviant colors, and that processing time can be
gained by reducing the data even further. It is decided that the cell should be subsam-
pled with the parameteste prow= 1 andstepcol= 3 keeping only every third pixel

10

of each row in the cell.

Furthermore, the designers decide that the 1728 pixels that are left, after the sub-
sampling, should be stored in a result vector. They write a program based on Algorithm
1.

Algorithm 1: Image processing algorithm

Input: An unmodified IR imagémgorg, and the number of the cell
which should be processeélln

Output: A list of interesting coordinates ¢dMgorg
PROCESSIMAGE(IMgorg, Cellyo)

Q) coordsec < the empty set

(2) subpics— CREATEPICOBJ(IMQorg,Cellno)

€)) Srtroworg <— GETROW(subpiq

4) srtcolbrg < GETCoL(subpig

(5) foreachpixel pxl in subpic

(6) if INTERESTINGDATA (pXI)

@) coordsec < F(pxl,Srtrowerg,srtcobrg)
(8) return coordSec

In line (1) of the algorithm, the result vector is initialized to be empty. In line
(2), Imgorg is cropped with respect teell,, and then subsampled with the parameters
described above. The result, which is storedub pic is a data object that contains,
apart from the pixels that are left, the indices of the start row and start column. Line
(3) and line (4) simply retrieves the start row and start column indices frosuipic
data object. In line (5), the loop that iterates through all pixelsubipicbegins. In line
(6) a call is made to functiorNITERESTINGDATA that analyzes the pixgixl in order
to determine if it is interesting to the application. If it is, in line (7), the coordinates
of pxl expressed in the the coordinates wigyrg are stored ircoordsec In line (8),
coordsecis returned and the execution of the algorithm completed.

So for each “interestingPxl pixel in the subsampled cell, the PCM functigi srtrowerg, srtcobrg)
calculates its coordinates imgorg. In this example, Formula (15) defines tRéunc-
tionin line (7):

A J .Steprown; + srtrow
f(i; Srtroworg, SrtCobyrg) = [“fth"“”c A o =
Qi — {wthnuncJ “Wthrunc) - St€ PCOkyt + SrtCobrg
Srtroworg = 1,Stepcobrg = 3, Wthyune = 27 (see Figure 7) _
Ai =i — srtidx= {the pixel index numbering starts with £i—1 [

[|15#]+srtrovor |
[((i—1)— {%J :27) - 34 SItCObrg J
(16)

E.g., leti = 84 in Figure 7 withsrtrowgrg = 65 andsrtcobrg = 161. Insert the
values into Formula (16):

82| +65
f(84:65161) = [(L(;;_Jl)— [%Jz?) 34 161] N { 61327] an

The result in Formula (17) agrees with Figure 7.

11

B Pixel Index Formula Derivation

The purpose of this appendix is to show how Formula (13) and Formula (14) can be

derived.
Let us consider the reverse, the pixel indeas a function of row and column
coordinates. From Figure 8 the following formula is derived:

i(r,c) = (row(i) — lorow) -wth+ (col(i) — locol + 1) + (srtidx— 1) = ...
... = (row(i) — lorow) - wth+ (col(i) — locol) + srtidx ~ (18)

locol

srtidx
col(i)
lorow =¥
Trow(i)—lorow

row(i) i

col(i-locol+1

Figure 8: Pixel index in the figure has the corresponding coordingtesv(i),col(i)).
srtidxis the first pixel index numbewth is the width in pixels of the image.

Try and solve Equation (18) with respectrtw(i):

i(r,c) —srtidx

. col(i) — locol
e = (row(i) — lorow) + —~———

wth
{LetAi =i(r,c) — srtidx} =
{%J = {(row(i)—lorOW) +WJ

{ |row(i) —lorow| = row(i) — lorow, since the subtraction yields an integ?r.
=

0 < @rlocdl 1 (sincewth = hicol —locol + 1) = [7‘:0'“&;}0”'J =0

Ai . . Ai
{W]J = row(i) — lorow = row(i) = lorow+ {W]J (29)
|
Let us finally derivecol(i), once again using Equation (18):

col(i) = locol + (i(r,c) — srtidx) — (row(i) — lorow) -wth=>
Ai =i — srtidx N

row(i) from Equation (19)
col(i) = locol + Ai — (lorow+ Lﬁ—th —lorow) -wth =

12

{Eliminatinglorow} =

col(i) = locol + Ai — {%J -wth (20)

13

