
Recovering Pixel Coordinates

Ronnie Johansson

February 28, 2001

Abstract

Image processing can be made more efficient by reducing the amount of data
being processed. One problem that arises is how the coordinates of a pixel in
the original image can be recovered when its coordinates in the reduced image
are known (pixel coordinates recovery). This article explains how mathematical
functions can be defined that easily maps coordinates between a modified and an
original image under the condition that the modified image is the result of only
cropping and subsampling. Crop and subsample transforms, which generate the
suitable pixel coordinates mapping functions, are defined. The main focus of this
work is to map row and column coordinates to other row and column coordinates,
but it also considers the case where the pixels of the modified image are stored in
a vector, and the index in that vector is the only information available about the
location of a pixel.

Preface

In the summer of 2000, while I was working on my Master’s Thesis atThe Institute
of Physical and Chemical Research1 (RIKEN), Saitama, Japan, my supervisor at the
institute was working on his project which, at the time, involved analyzing image data.
At one point, he asked asked me to have a closer look at the following problem:

An imageImgtrunc has been created by, firstly, cutting a rectangular piece out of an
initial imageImgorg (cropping), yielding an intermediate imageImgimt, and, secondly,
keeping only everykth pixel in every row ofImgimt (in effect subsamplingImgimt).
Given a pixel inImgtrunc with coordinates (xtrunc, ytrunc), how can the corresponding
coordinates ofImgorg (xorg, yorg) be recovered?

This article is the result of my study.
I would like to thank Svante Hellstadius for his comments on this article, and Dr.

Igor Paromtchik for posing the problem.
Even though some parts of this article may look complex, it is based on fundamental

mathematics. The intent of the article was to make its contents general and, hence, to
satisfy many needs. To many readers, however, this generality is not necessary, and
they will probably find it useful to read Section 1 and Appendix A first.

1 Introduction

Many applications (e.g., in surveillance, robotics, medicine etc) concerns the process-
ing of image data, but algorithms that operate on images are quite often slow and,

1http://www.riken.go.jp

1

therefore, not suitable for real-time applications. Sometimes, however, input images
contain more information than necessary, and efficiency can be gained bytruncating2

them. Two motivations to truncate an input image are:

1. only the information in some region of the input image is relevant,

2. subsampling3 will, to some degree, not prevent the success of the applied image
processing algorithm.

Motivation 1 arises when, e.g., only a part of the image is interesting for the moment
(in a surveillance application this could be a region in which possible motion has been
detected, which should be studied more closely). Motivation 2 arises when, e.g., an
image is being scanned to detect (fairly large) regions of a particular color.

It is evidently useful, in some applications, to truncate an image to decrease the
execution speed of image processing algorithms. However, how does thepixels4 in
the truncated imageImgtrunc relate to the pixels in the original imageImgorg? This
question is important if the purpose of the image processing is to locate some image
data in the coordinates ofImgorg.

E.g., say that we have an application which wants to display an imageImgorg and
mark a possible “blue color”-region of the image with, e.g., a polygon. Let us further
assume that it is useful to create a truncated imageImgtrunc to increase the efficiency
of the localization of the “blue color”-region. If the region is found, it can be expressed
in the coordinates ofImgtrunc, but this is not sufficient information for the application
since it has to draw a polygon, surrounding the “blue color”-region, in the coordinates
of Imgorg.

One way to solve this problem, to acquire the correspondingImgorg coordinates
given theImgtrunc coordinates, would be to create a lookup table of all pixelsp in
Imgtrunc mapping to coordinates inImgorg (created inO(plogp)). This lookup table
would be built at the same timeImgtrunc is created. It would be fairly fast to look up
image coordinates (O(logp) using binary search), but the memory requirement would
grow linearly (O(p)) in the number of pixels inImgtrunc.

Another way is to design, if possible, a formulaftrunc that takes theImgtrunc co-
ordinates (denoted, e.g.,(xtrunc;ytrunc) or (ctrunc; rtrunc)) and returns the coordinates of
Imgorg (denoted, e.g.,(xorg;yorg) or (corg; rorg)). Unlike, the solution with the lookup
table, it requires no preparatory work5, coordinates are acquired in constant time (sim-
ply computing the formulaftrunc), and even the memory complexity is constant (no
extra memory is needed).

The properties of the two solutions are summarized in Table 1.

Table 1: Comparison between lookup table and formula solutions

Solution Initial cost On-line cost Memory cost

Lookup table O(plogp) O(logp) O(p)
Formula O(1) O(1) O(1)

2I.e., removing information from the image.
3Subsampling of an image is a sort of destructive data compression. An image that is subsampled loses,

for instance, every other row and column, and the result is an image with smaller dimensions.
4“Pixel” is an abbreviation of “picture element” and simply refers to the smallest indivisible entity of a

computer image.
5No initial work is necessary if the formula is not created in real-time.

2

This article deals with the latter solution.
Section 2 defines some of the terms used in this article. Section 3 describes the two

image modification tools: crop and subsample, and their corresponding pixel coordi-
nates mapping transforms. Section 4 gives examples of how to apply the transforms.
Section 5 explains how row and column coordinates can be exchanged with pixel in-
dices. Section 6 summarizes the article. Appendix A gives a very concrete example of
how to use the contents of this article. In Appendix B, derivations of the pixel index to
row and column functions are presented.

2 Definitions

An image is a 2-D array, a matrix, whose elements are pixels. In this article, images
are classified6 as

� original image,Imgorg,

� intermediate image,Imgimt, or

� truncated image,Imgtrunc.

In the following discussion,Imgorg refers to a “raw” image that has not been mod-
ified. Imgimt is an image that is the result of a modification made to another image.
Finally, Imgtrunc is the resulting image after some (possibly none) modifications.

There are two tools discussed in this article for modifying images:

� crop

� subsample

Cropping is the same as cutting a piece out of an image. In this article, only rect-
angular cuts are treated. Figure 1 provides an example.

The subsample tool removes columns and rows of pixels of an image. See Figure
2 for an example.

Crop

Figure 1: The left image is cropped resulting in the image on the right. Only the part
of the left image that is within the dashed rectangle is preserved in the right image.

What is important when finding the corresponding coordinates of an original image
and a modified one is not the values of the matrix (image) elements, rather it is the

6Please note that one and the same image can belong to more than one class, depending on the situation.

3

1 2
Subsample Subsample

Figure 2: In a first subsampling (1), the image in the middle only keeps every other
row of the original on the left. In the second subsampling (2), only every other column
is preserved.

indices of the images. In the most simple case, let apixel coordinates mapping(PCM)
from the original imageImgorg to itself be a function

forg(r;c) =

�
roworg(r) = r
colorg(c) = c

�
(1)

In Formula (1),r andc are a row and column value respectively, androworg(r) and
colorg(c) row and column mapping functions.forg(r;c) is illustrated in Figure 3.

00
(r , c)forg

forg

1 1
(r , c)forg

(r , c)0 0

(r , c)1 1 (r , c)0 0

(r , c)1 1

Img org Imgorg

Figure 3: Theforg function maps rows and columns from an imageImgorg to itself.

In general, letftrunc be a PCM from an imageImgtrunc to an original imageImgorg.
If ftrunc � forg thenImgtrunc andImgorg are identical.

Let the pixel coordinates mapping functionf be transformed when the correspond-
ing image is modified. TheC is the crop transform, and theS the subsampling trans-
form.

4

3 Truncation

This article describes two tools for truncation:

� crop

� subsample

Given an imageImageA(possibly already modified), the (possibly repeated) applica-
tion of one or both of the truncation tools on the image will yield a new modified image
ImageB. This section defines the transforms that should be applied to the PCM function
of ImageAto produce the PCM function forImageB.

3.1 Cropping

Let C be the crop transform, andfimt be a PCM function from an imageImgimt to an
original imageImgorg. Furthermore, letImgtrunc be the result of applying the crop tool
to Imgimt. The PCM function fromImgtrunc to Imgorg ftrunc will now be acquired by
applyingC to fimt , i.e.,ftrunc � Cffimtg.

Let us have a closer look at a crop operation to find out the details of the crop
transformC . Figure 4 shows the cropping of the imageImgimt to imageImgtrunc.
srtrowimt andsrtcolimt are the least indices of the rows and columns ofImgimt that are
included inImgtrunc. lorowtrunc and locoltrunc and the start indices of the rows and
columns ofImgtrunc.

If a PCM functionftrunc!imt for each pair of coordinates inImgtrunc (rtrunc;ctrunc)
to the corresponding(rimt;cimt) in Imgimt can be found, then the PCM function from
Imgtrunc to Imgorg is also determined, since the PCM functionfimt =(rowimt(rimt);colimt(cimt)),
i.e., the mapping fromImgimt to Imgorg, is known.

srtrowimt

srtcolimt

Img imt
lorowtrunc

locoltrunc

Img trunc

(r , c)trunc truncimt imt(r , c)

Crop

Figure 4: The image on the right is the truncated imageImgtrunc which has a lowest
row indexlorowtrunc and a lowest column indexlocoltrunc. The image on the left is the
intermediateImgimt. Thesrtrowimt andsrtcolimt are the indices of the least row and
column ofImgimt that is included inImgtrunc.

Figure 5 provides an example. The purpose of the example is to show that the
transform takes row and column indices into consideration and does not restrict indices
to start at certain numbers.

5

(r , c)imtimt

cimt ctrunc

rtrunc

trunc(r , c)trunc

rimt

Img
imt Imgtrunc

Crop

3
4
5

1
0

2

Figure 5: This figure illustrates that row and column indices are not restricted to start
at certain numbers. I.e., the row numbering ofImgtrunc starts with 2 and its column
numbering with 0.

Notice that the mapping of rows and columns can be handled separately. The row
mapping is only dependent onrtrunc, lorowtrunc, andsrtrowimt, while the column map-
ping only is dependent onctrunc, locoltrunc, andsrtcolimt. Let g(x; lo;srt) be a function
which takes one variablex, and two parameterslo andsrt:

g(x; lo;srt) = x� lo+srt (2)

The mappings of rows and columns fromImgtrunc to Imgimt can now be expressed
as

rowtrunc!imt(rtrunc) = g(rtrunc; lorowtrunc;srtrowimt) =

rtrunc� lorowtrunc+srtrowimt (3)

and

coltrunc!imt(ctrunc) = g(ctrunc; locoltrunc;srtcolimt) =

ctrunc� locoltrunc+srtcolimt (4)

respectively. Finally, the transformC can now be defined as

C [srtrowimt;srtcolimt; lorowtrunc; locoltrunc]ffimtg=�
rowtrunc(rtrunc) = rowimt

�
g(rtrunc; lorowtrunc;srtrowimt)

�
coltrunc(ctrunc) = colimt

�
g(ctrunc; locoltrunc;srtcolimt)

� �
=�

rowtrunc(rtrunc) = rowimt(rtrunc� lorowtrunc+srtrowimt)
coltrunc(ctrunc) = colimt(ctrunc� locoltrunc+srtcolimt)

�
(5)

3.2 Subsampling

Let S be the subsample transform, andfimt , once again, be a PCM function from an
imageImgimt to an original imageImgorg. Furthermore, letImgtrunc be the result of
applying the subsample tool toImgimt. The PCM fromImgtrunc to Imgorg ftrunc will
now be acquired by applyingS to fimt , i.e.,ftrunc � Sffimtg.

Figure 6 shows the subsampling of the imageImgimt to imageImgtrunc. The param-
eterssteprowimt andstepcolimt decide how many rows and columns respectively should

6

be kept. E.g., always keep the first row and then everysteprowrowth row from there
on. Columns are handled analogously. The same as with the crop transform, if we can
find a PCM functionftrunc!imt for each pair of coordinates inImgtrunc (rtrunc;ctrunc) to
(rimt;cimt) in Imgimt, then the PCM function fromImgtrunc to Imgorg is also determined,
since the PCM functionfimt = (rowimt(rimt);colimt(cimt)), i.e., mapping fromImgimt to
Imgorg, is known.

locol
trunc

lorow
trunc

Img
trunc

r
trunc

c
trunc

locol
imt

lorow
imt

steprow
imt

stepcol
imt

Img
imt

c
imt

r
imt

Subsample

Figure 6: In the process of subsampling imageImgimt to imageImgtrunc, only every
steprowimtth row and everystepcolimtth column are kept.lorowimt, locolimt, lorowtrunc,
and locoltrunc are the indices of the first rows and columns ofImgimt and Imgtrunc

respectively.

Mapping of rows and columns can be handled separately also in the case of the sub-
sample transform. The row mapping is only dependent onrtrunc, lorowtrunc, lorowimt,
and steprowimt, while the column mapping only is dependent onctrunc, locoltrunc,
locolimt, andstepcolimt. Let h(x; loNew; loOld;step) be a function which takes one
variablex, and three parametersloOld, loNew, andstep:

h(x; loNew; loOld;step) = (x� loNew) �step+ loOld (6)

The mappings of rows and columns fromImgtrunc to Imgimt can now be expressed
as

rowtrunc!imt(rtrunc) = h(rtrunc; lorowtrunc; lorowimt;steprowimt) =

(rtrunc� lorowtrunc) �steprowimt + lorowimt (7)

and

coltrunc!imt(ctrunc) = h(ctrunc; locoltrunc; lorowimt;stepcolimt) =

(ctrunc� locoltrunc) �stepcolimt + locolimt (8)

respectively. Finally, the transformS can be defined as

S [lorowimt; locolimt; lorowtrunc; locoltrunc;steprowimt;stepcolimt]ffimtg=�
rowtrunc(rtrunc) = rowimt

�
h(rtrunc; lorowtrunc; lorowimt;steprowimt)

�
coltrunc(ctrunc) = colimt

�
h(ctrunc; locoltrunc; locolimt;stepcolimt)

� �
=�

rowtrunc(rtrunc) = rowimt
�
(rtrunc� lorowtrunc) �steprowimt + lorowimt

�
coltrunc(ctrunc) = colimt

�
(ctrunc� locoltrunc) �stepcolimt + locolimt

� �
(9)

7

4 Recovery of Coordinates

With the help of the transforms from Section 3, it is now possible to construct a PCM
function for any manipulation of an imageImgorg as long as only the tools crop and sub-
sample are used. The transforms (configured with the appropriate parameters) should
be applied toforg correspondingly to the transformation of theImgorg to acquire the
PCM functionftrunc for Imgtrunc.

Once the sequence of image transformations is known, the PCM function can be
calculated.

Here is an example:
Say that we want to modify an imageImgorg with one crop and one subsample.

The parameters of the crop and subsample do not have to be known in advance; they
may be calculated at run-time. The PCM function for the resulting imageImgtrunc is
ftrunc and is calculated this way

ftrunc = S [lorowimt; locolimt; lorowtrunc; locoltrunc;steprowimt;stepcolimt]

C [srtroworg;srtcolorg; lorowimt; locolimt]fforgg=
n

suppressing the printing of all parameters
o
=

S [: : :]C [: : :]fforgg=

�
rowtrunc(rtrunc) = rowimt(rtrunc� lorowtrunc+srtrowimt)
coltrunc(ctrunc) = colimt(ctrunc� locoltrunc+srtcolimt)

�
=�

rowtrunc(rtrunc) = (rtrunc� lorowtrunc) �steprowimt + lorowimt� lorowimt +srtroworg

coltrunc(ctrunc) = (ctrunc� locoltrunc) �stepcolimt + locolimt� locolimt +srtcolorg

�
=

fEliminatinglorowimt andlocolimtg=�
rowtrunc(rtrunc) = (rtrunc� lorowtrunc) �steprowimt +srtroworg

coltrunc(ctrunc) = (ctrunc� locoltrunc) �stepcolimt +srtcolorg

�
(10)

A more general formula can easily be derived. In this case, it is assumed that
the original imageImgorg (with PCM functionf0;0) is first croppedn times and then
subsampledm times. The resulting imageImgtrunc will have the PCM functionfn;m.

fn;m = Sm[[: : :]1 : : : [: : :]m]C n[[: : :]1 : : : [: : :]n]ff0;0g= Sm[[: : :]1 : : : [: : :]m]ffn;0g=

Sm[[: : :]1 : : : [: : :]m]

�
rown;0(rn;0) = row0;0

�
rn;0+∑n

i=0(srtrowi;0� lorowi+1;0)
�

coln;0(cn;0) = col0;0
�
cn;0+∑n

i=0(srtcoli;0� locoli+1;0)
� �

=2
6664

rown;m(rn;m) = row0;0
�
rn;m �∏m

j=1steprown; j �∑m
j=1 lorown; j ∏ j

k=1steprown;k+

lorown;0+∑n�1
i=0 (srtrowi;0� lorowi+1;0)

�
coln;m(cn;m) = col0;0

�
cn;m �∏m

j=1stepcoln; j�∑m
j=1 locoln; j ∏ j

k=1stepcoln;k+

locoln;0+∑n�1
i=0 (srtcoli;0� locoli+1;0)

�

3
7775 (11)

Formula (11) can be made much more simple. Since the row and column indexation
is arbitrary, it can be fixed to 0, i.e.,lorowi; j = locoli; j = 0 for all i and j. This yields
the much more simple equation:

fn;m = Sm[[: : :]1 : : : [: : :]m]C n[[: : :]1 : : : [: : :]n]ff0;0g="
rown;m(rn;m) = row0;0(rn;m �∏m

j=1steprown; j +∑n�1
i=0 srtrowi;0)

coln;m(cn;m) = col0;0(cn;m �∏m
j=1stepcoln; j +∑n�1

i=0 srtcoli;0)

#
(12)

8

5 Recovery With Pixel Index

Sometimes, the final imageImgtrunc is treated as a one dimensional vector of pixels
rather than a matrix with rows and columns. Given the pixel indexitrunc, the start pixel
indexsrtidxtrunc, lorowtrunc, locoltrunc, and the maximum column indexhicoltrunc, the
transformations between pixel indices and rows and columns can be calculated this
way (the derivations of these equations are shown in Appendix B):

rtrunc(itrunc) = lorowtrunc+
j ∆i

wthtrunc

k
(13)

ctrunc(itrunc) = locoltrunc+∆i�
j ∆i

wthtrunc

k
�wthtrunc (14)

In the equations, the following abbreviations are used:∆i = itrunc�srtidxtrunc and
wthtrunc = hicoltrunc� locoltrunc+1.

Formula (13) and Formula (14) can be inserted directly into any PCM function
f(r;c) yielding f(i) = (row(r(i));col(c(i))). The equations inserted into Formula (10)
yield

ftrunc (itrunc) = S [: : :]C [: : :]fforgg=�
rowtrunc

�
rtrunc(itrunc)

�
= rowimt

�
rtrunc(itrunc)� lorowtrunc+srtrowimt

�
coltrunc

�
ctrunc(itrunc)

�
= colimt

�
ctrunc(itrunc)� locoltrunc+srtcolimt

� �
=�

rowtrunc
�
rtrunc(itrunc)

�
=
�
rtrunc(itrunc)� lorowtrunc

�
�steprowimt +srtroworg

coltrunc
�
ctrunc(itrunc)

�
=
�
ctrunc(itrunc)� locoltrunc

�
�stepcolimt +srtcolorg

�
=2

4 rowtrunc(itrunc) =
�
(lorowtrunc+

j
∆i

wthtrunc

k
)� lorowtrunc

�
�steprowimt +srtroworg

coltrunc(itrunc) =
�
(locoltrunc+∆i�

j
∆i

wthtrunc

k
�wthtrunc)� locoltrunc

�
�stepcolimt +srtcolorg

3
5=

fEliminating lorowtrunc andlocoltruncg=2
4 rowtrunc(itrunc) =

j
∆i

wthtrunc

k
�steprowimt +srtroworg

coltrunc(itrunc) = (∆i�
j

∆i
wthtrunc

k
�wthtrunc) �stepcolimt +srtcolorg

3
5 (15)

Unfortunately,wthtrunc is expressed withhicoltrunc, which also has to be calculated.
This is not discussed in this article.

6 Summary and Discussion

This article presents two tools for digital image processing: crop and subsample, but the
focus is on how to translate a pair of coordinates for a pixel in a modified (or truncated)
image to the the corresponding coordinates in the original image. To construct the
necessary pixel coordinates mapping (PCM) functions (that maps coordinates from a
modified image to the original), transformsC andS are introduced.

Pixel coordinates may be represented as pairs of row and column indices, but some-
times, e.g., when the modified image is stored in a vector and the corresponding row
and column indices are unknown, pixel indices are better to use. The article shows
how PCM functions can be modified to take pixel indices instead of row and column
indices.

A few examples show how the transforms can be used.

9

The transforms are most likely to be useful in applications which crop or subsample
images, and where there is a need to recover the original coordinates of pixels. It is also
likely that a programmer uses the transforms to construct a PCM function that is hard
coded into his or her program.

Also note that the transforms can be used with matrices containing any type of data
as long as the modifications of them are limited to crop and subsample.

A Example

This section contains a fictitious example that will illustrate how the work in this article
can be brought into practice. Let us say we have a monitoring system that monitors a
pipe to detect emerging leaks. The system receives a digitized infrared video image
of the pipe once every second. Leaks of hot water are characterized by the particular
color mark they leave on the video image.

The infrared images have a 320x256 pixels resolution, and, hence, 81920 pixels
(=320x256) each. The hardware and image processing algorithm in use does not allow
all pixels to be considered before a new infrared image is generated in the system. The
system designers make the assumption that it is sufficient to check just a subset of the
pixels in each image. They divide the image matrix into sixteen cells and decide that
for each image that is generated in the system, only the pixels of one of the sixteen
cells will be considered. The image decomposition is illustrated in Figure 7.

1 2

5 8

9 10

13 14 15 16

3

6

320 pixels

25
6

pi
xe

ls

128

1 2 3 27
54302928

55 56 57
82 83 84

164 167

81

65

68

161 240

Figure 7: The infrared images are divided into 16 cells. For each image, only one
cell is considered. In this figure, Cell 7 has been magnified. The numbers above the
magnified cell are column indices of the original image, and the numbers to the right
are the row indices of the original image. The white pixels of the cell are the ones
left after a subsampling withstepcol= 3 andsteprow= 1. The numbers in the white
pixels are the pixel indices of the resulting image andstridx (the number of the first
pixel index) is 1.

Each cell contains 5120 pixels, but the designers realize that even this is too much.
What they also realize is that the accuracy of checking each pixel of the cell is un-
necessarily high, that small errors in the image might be mistaken for leaks, that it is
sufficient to detect larger regions of deviant colors, and that processing time can be
gained by reducing the data even further. It is decided that the cell should be subsam-
pled with the parameterssteprow= 1 andstepcol= 3 keeping only every third pixel

10

of each row in the cell.
Furthermore, the designers decide that the 1728 pixels that are left, after the sub-

sampling, should be stored in a result vector. They write a program based on Algorithm
1.

Algorithm 1: Image processing algorithm
Input: An unmodified IR imageImgorg, and the number of the cell
which should be processedcellno

Output: A list of interesting coordinates ofImgorg

PROCESSIMAGE(Imgorg, cellno)
(1) coordsvec the empty set
(2) subpic CREATEPICOBJ(Imgorg,cellno)
(3) srtroworg GETROW(subpic)
(4) srtcolorg GETCOL(subpic)
(5) foreachpixel pxl in subpic
(6) if INTERESTINGDATA(pxl)
(7) coordsvec F(pxl,srtroworg,srtcolorg)
(8) return coordsvec

In line (1) of the algorithm, the result vector is initialized to be empty. In line
(2), Imgorg is cropped with respect tocellno and then subsampled with the parameters
described above. The result, which is stored insubpic, is a data object that contains,
apart from the pixels that are left, the indices of the start row and start column. Line
(3) and line (4) simply retrieves the start row and start column indices from thesubpic
data object. In line (5), the loop that iterates through all pixels ofsubpicbegins. In line
(6) a call is made to function INTERESTINGDATA that analyzes the pixelpxl in order
to determine if it is interesting to the application. If it is, in line (7), the coordinates
of pxl expressed in the the coordinates ofImgorg are stored incoordsvec. In line (8),
coordsvec is returned and the execution of the algorithm completed.

So for each “interesting”pxl pixel in the subsampled cell, the PCM functionf(i;srtroworg;srtcolorg)
calculates its coordinates inImgorg. In this example, Formula (15) defines theF func-
tion in line (7):

f(i;srtroworg;srtcolorg) =

2
4
j

∆i
wthtrunc

k
�steprowimt +srtroworg

(∆i�
j

∆i
wthtrunc

k
�wthtrunc) �stepcolimt +srtcolorg

3
5=

�
srtroworg = 1;stepcolorg = 3;wthtrunc = 27 (see Figure 7)
∆i = i�srtidx= fthe pixel index numbering starts with 1g= i�1

�
=2

4
j

i�1
27

k
+srtroworg�

(i�1)�
j

i�1
27

k
�27

�
�3+srtcolorg

3
5

(16)

E.g., let i = 84 in Figure 7 withsrtroworg = 65 andsrtcolorg = 161. Insert the
values into Formula (16):

f(84;65;161) =

2
4
j

84�1
27

k
+65�

(84�1)�
j

84�1
27

k
�27

�
�3+161

3
5=

�
68
167

�
(17)

The result in Formula (17) agrees with Figure 7.

11

B Pixel Index Formula Derivation

The purpose of this appendix is to show how Formula (13) and Formula (14) can be
derived.

Let us consider the reverse, the pixel indexi as a function of row and column
coordinates. From Figure 8 the following formula is derived:

i(r;c) =
�
row(i)� lorow

�
�wth+

�
col(i)� locol+1

�
+(srtidx�1) = : : :

: : :=
�
row(i)� lorow

�
�wth+

�
col(i)� locol

�
+srtidx (18)

i

srtidx
locol

lorow

wth

col(i)−locol+1

row(i)−lorow

col(i)

row(i)

Figure 8: Pixel indexi in the figure has the corresponding coordinates
�
row(i),col(i)

�
.

srtidx is the first pixel index number.wth is the width in pixels of the image.

Try and solve Equation (18) with respect torow(i):

i(r;c)�srtidx
wth

=
�
row(i)� lorow

�
+

col(i)� locol
wth

)

fLet ∆i = i(r;c)�srtidxg)�
∆i

wth

�
=

��
row(i)� lorow

�
+

col(i)� locol
wth

�
)(

brow(i)� lorowc= row(i)� lorow, since the subtraction yields an integer.

0� col(i)�locol
wth < 1 (sincewth= hicol� locol+1))

j
col(i)�locol

wth

k
= 0

)
)

�
∆i

wth

�
= row(i)� lorow) row(i) = lorow+

�
∆i

wth

�
(19)

�

Let us finally derivecol(i), once again using Equation (18):

col(i) = locol+
�
i(r;c)�srtidx

�
�
�
row(i)� lorow

�
�wth)�

∆i = i�srtidx
row(i) from Equation (19)

�
)

col(i) = locol+∆i�
�
lorow+

�
∆i

wth

�
� lorow

�
�wth)

12

fEliminating lorowg)

col(i) = locol+∆i�

�
∆i

wth

�
�wth (20)

�

13

