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Primary objectives of current work

Study effects of multi-target tracking with mobile sensors using a

game theory based algorithm

Previous properties: stationary sensors negotiating about a

partitioning of the set of targets.

Now:

• Sensors are mobile

• Sensors have limited resources

• Targets are shared
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Results

Intermediate (i.e., current)

• A framework for studying negotiation-based target-to-sensor

allocation

• Forced target sharing yields robustness to sensor failures

• Simultaneous consideration of multiple objectives allow sensors to

escape situations where a greedy approach gets “stuck”



Sensor agent negotiation

Previous work: Negotiation offers:

• complete allocation of sensors to targets

• every allocation had a value for every sensor (reward)

• the negotiation utility dependent on time and reward
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Previous work: Negotiation offers:

• complete allocation of sensors to targets

• every allocation had a value for every sensor (reward)

• the negotiation utility dependent on time and reward

Current work:

• offers are still target-to-sensor allocations, but may be overlapping

• every allocation has two associated values, reward and reward

derivative

• the negotiation utility still depends on time
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Ui(o, t) = f(orderi(o), t) = −orderi(o)− t



Sensor reward

Individual sensor measurement reward for sensor i

rm
i (Di)

∆=
∑
j∈Di

γij·rj(Sj)

Di is the set of targets tracked by sensor i and Sj the set of sensors

tracking target j.

Net reward (the reward which is considered in the negotiations)

rnet
i (Di)

∆= αi + (1− αi)rm
i (Di), 0 ≤ αi ≤ 1 ,

For the reward on every target in our experiments, we use the

information gain from Kalman filtering.



Derivative of preferred direction

A terrain function, t(p, eθ), discounts the derivatives for any tuple

of position p and any direction eθ. The preferred direction has the

highest discounted derivative, maxeθ
{t(p, eθ) · r′eθ

}.
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Experiment setting

• We implement an allocation strategy based on the negotiation

algorithm, called the N-tracker.

• We also implement a reference strategy, called the G-tracker.

• Trackers are run independently on three scenarios, including a set

of mobile sensors and a set of targets.

• With regular time intervals both trackers reconsider the target-to-

sensor assignment.
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Scen1: Tracking four targets

G-
tracker

N-
tracker

Rel-
ative

Reward 3.7372 3.3765 0.90
Lost
targets

1.1830 0.8693 0.73



Scen2: G-tracker getting stuck

Initially After some time



Scen2: N-tracker eluding deadlock
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Scen2: Results

At t = 10: The N-tracker settles on which targets to track

At t = 27: The G-tracker escapes its deadlock



Scen3: G-tracker in bad terrain

Initially After some time



Scen3: N-tracker switches targets

Initially After some time



Summary and future work

• We have developed a framework for studying negotiation-based sensor
management with mobile sensors

• Results indicate that the negotiation-based strategy (the N-tracker) has
advantages over a greedy one (the G-tracker).
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Future work

• Incorporate system model into expected measurements

• Agent uncertainty about world state


