A game theoretic model for management of mobile sensors

Presented by: Ronnie Johansson Co-authors: Ning Xiong and Henrik I. Christensen

CAS (centre for autonomous systems), the Royal institute of Technology (**KTH**), Stockholm, Sweden

The work was financially supported by the Swedish defence research agency (FOI)

Study effects of multi-target tracking with mobile sensors using a game theory based algorithm

Previous properties: stationary sensors negotiating about a partitioning of the set of targets.

- Sensors are mobile
- Sensors have limited resources
- Targets are shared

Study effects of multi-target tracking with mobile sensors using a game theory based algorithm

Previous properties: stationary sensors negotiating about a partitioning of the set of targets.

- Sensors are mobile
- Sensors have limited resources
- Targets are shared

Study effects of multi-target tracking with mobile sensors using a game theory based algorithm

Previous properties: stationary sensors negotiating about a partitioning of the set of targets.

- Sensors are mobile
- Sensors have limited resources
- Targets are shared

Study effects of multi-target tracking with mobile sensors using a game theory based algorithm

Previous properties: stationary sensors negotiating about a partitioning of the set of targets.

- Sensors are mobile
- Sensors have limited resources
- Targets are shared

Results

Intermediate (i.e., current)

- A framework for studying negotiation-based target-to-sensor allocation
- Forced target sharing yields robustness to sensor failures
- Simultaneous consideration of multiple objectives allow sensors to escape situations where a greedy approach gets "stuck"

Sensor agent negotiation

Previous work: Negotiation offers:

- complete allocation of sensors to targets
- every allocation had a value for every sensor (reward)
- the *negotiation utility* dependent on time and reward

Sensor agent negotiation

Previous work: Negotiation offers:

- complete allocation of sensors to targets
- every allocation had a value for every sensor (reward)
- the *negotiation utility* dependent on time and reward

Current work:

- offers are still target-to-sensor allocations, but may be overlapping
- every allocation has <u>two</u> associated values, reward and reward derivative
- the negotiation utility still depends on time

Evaluation of offers for some sensor agent \boldsymbol{i}

Evaluation of offers for some sensor agent i

Evaluation of offers for some sensor agent i

Evaluation of offers for some sensor agent i

$$U_i(o, \mathbf{t}) = f(order_i(o), \mathbf{t}) = -order_i(o) - \mathbf{t}$$

Sensor reward

Individual sensor measurement reward for sensor i

$$r_i^m(D_i) \stackrel{\Delta}{=} \sum_{j \in D_i} \gamma_{ij} \cdot r_j(S_j)$$

 D_i is the set of targets tracked by sensor i and S_j the set of sensors tracking target j.

Net reward (the reward which is considered in the negotiations)

$$r_i^{net}(D_i) \stackrel{\Delta}{=} \alpha_i + (1 - \alpha_i) r_i^m(D_i), \quad 0 \le \alpha_i \le 1$$

For the reward on every target in our experiments, we use the *information gain* from Kalman filtering.

Derivative of preferred direction

A terrain function, $t(\mathbf{p}, \mathbf{e}_{\theta})$, discounts the derivatives for any tuple of position \mathbf{p} and any direction \mathbf{e}_{θ} . The preferred direction has the highest discounted derivative, $\max_{\mathbf{e}_{\theta}} \{t(\mathbf{p}, \mathbf{e}_{\theta}) \cdot r'_{\mathbf{e}_{\theta}}\}$.

Derivative of preferred direction

A terrain function, $t(\mathbf{p}, \mathbf{e}_{\theta})$, discounts the derivatives for any tuple of position \mathbf{p} and any direction \mathbf{e}_{θ} . The preferred direction has the highest discounted derivative, $\max_{\mathbf{e}_{\theta}} \{t(\mathbf{p}, \mathbf{e}_{\theta}) \cdot r'_{\mathbf{e}_{\theta}}\}$.

Derivative of preferred direction

A terrain function, $t(\mathbf{p}, \mathbf{e}_{\theta})$, discounts the derivatives for any tuple of position \mathbf{p} and any direction \mathbf{e}_{θ} . The preferred direction has the highest discounted derivative, $\max_{\mathbf{e}_{\theta}} \{t(\mathbf{p}, \mathbf{e}_{\theta}) \cdot r'_{\mathbf{e}_{\theta}}\}$.

- We implement an allocation strategy based on the negotiation algorithm, called the N-tracker.
- We also implement a reference strategy, called the G-tracker.
- Trackers are run independently on three scenarios, including a set of mobile sensors and a set of targets.
- With regular time intervals both trackers reconsider the target-tosensor assignment.

- We implement an allocation strategy based on the negotiation algorithm, called the N-tracker.
- We also implement a reference strategy, called the G-tracker.
- Trackers are run independently on three scenarios, including a set of mobile sensors and a set of targets.
- With regular time intervals both trackers reconsider the target-tosensor assignment.

- We implement an allocation strategy based on the negotiation algorithm, called the N-tracker.
- We also implement a reference strategy, called the G-tracker.
- Trackers are run independently on three scenarios, including a set of mobile sensors and a set of targets.
- With regular time intervals both trackers reconsider the target-tosensor assignment.

- We implement an allocation strategy based on the negotiation algorithm, called the N-tracker.
- We also implement a reference strategy, called the G-tracker.
- Trackers are run independently on three scenarios, including a set of mobile sensors and a set of targets.
- With regular time intervals both trackers reconsider the target-tosensor assignment.

Scen1: Tracking four targets

	G-	N-	Rel-
	tracker	tracker	ative
Reward	3.7372	3.3765	0.90
Lost	1.1830	0.8693	0.73
targets			

Scen2: G-tracker getting stuck

Initially

After some time

Scen2: N-tracker eluding deadlock

Initially

After some time

Scen2: Results

At t = 10: The N-tracker settles on which targets to track

At t = 27: The G-tracker escapes its deadlock

Scen3: G-tracker in bad terrain

Scen3: N-tracker switches targets

Summary and future work

- We have developed a framework for studying negotiation-based sensor management with mobile sensors
- Results indicate that the negotiation-based strategy (the N-tracker) has advantages over a greedy one (the G-tracker).

Summary and future work

- We have developed a framework for studying negotiation-based sensor management with mobile sensors
- Results indicate that the negotiation-based strategy (the N-tracker) has advantages over a greedy one (the G-tracker).

Future work

- Incorporate system model into expected measurements
- Agent uncertainty about world state

