
Royal Institute of Technology
Dept. of Numerical Analysis and Computer Science

Intelligent Motion Planning for a
Multi-Robot System

by
Ronnie Johansson

TRITA-NA-E0133

NADA

Nada (Numerisk analys och datalogi) Department of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology

SE-100 44 Stockholm, SWEDEN

Intelligent Motion Planning for a
Multi-Robot System

by
Ronnie Johansson

TRITA-NA-E0133

Master’s Thesis in Computer Science (20 credits)
at the School of Computer Science and Engineering,

Royal Institute of Technology year 2000
Supervisor at Nada was Dr. Henrik I. Christensen

Examiner was Prof. Jan-Olov Eklundh

Abstract

Multi-robot systems of autonomous mobile robots offer many benefits but also
many challenges. This work addresses collision avoidance of robots solving con-
tinuous problems in known environments. The approach to handling collision
avoidance is here to enhance a motion planning method for single-robot systems to
account for auxiliary robots. A few assumptions are made to put the focus of the
work on path planning, rather than on localization.

A method, based on exact cell decomposition and extended with a few rules,
was developed and its consistency was proven. The method is divided into two
steps: path planning, which is off-line, and path monitoring, which is on-line. This
work also introduces the notion of path obstacle, an essential tool for this kind of
path planning with many robots.

Furthermore, an implementation was performed on a system of omni-directional
robots and tested in simulations and experiments. The implementation practices
centralized control, by letting an additional computer handle the motion planning,
to relieve the robots of strenuous computations.

A few drawbacks with the method are stressed, and the characteristics of prob-
lems that the method is suitable for are presented.

Intelligent rörelseplanering för flera robotar

Sammanfattning

System med flera autonoma, mobila robotar har många fördelar, men de ger även
upphov till en del besvärliga problem. Det här examensarbetet inriktar sig på att
få robotar, som arbetar med fortlöpande problem i kända arbetsutrymmen, att und-
vika att kollidera. Här undviks kollisioner genom att utöka en befintlig rörelse-
planeringsmetod för en ensam robot till att kunna hantera flera robotar. Några an-
taganden är gjorda för att lägga arbetets tonvikt på vägplanering snarare än på
lokalisering.

En metod, baserad på ”exact cell decomposition” och utökad med några regler,
har utvecklats och dess korrekthet har visats. Metoden kan delas in i två steg: dels
vägplanering, vilket sker innan roboten rör på sig, dels vägövervakning, vilket sker
under robotens rörelse. Begreppet ”path obstacle” presenteras också, vilket är ett
viktigt verktyg vid den här typen av vägplanering för flera robotar.

Metoden implementerades för att användas i ett system med fysiska robotar
och implementationen testades både i simuleringar och robotexperiment. Central
kontroll utövas av implementationen, genom att låta en särskild dator hantera väg-
planeringen, för att avlasta robotarna.

Några nackdelar med metoden belyses och faktorer som karaktäriserar problem
som metoden lämpar sig för presenteras.

Preface

Project Information

This thesis concerns the Master’s project in Computer Science of Ronnie Johans-
son, student at theSchool of Computer Science and Engineering, The Royal In-
stitute of Technology(KTH). The project was approved and monitored by staff of
theDepartment of Numerical Analysis and Computer Science(NADA), KTH. The
work was performed atThe Institute of Physical and Chemical Research(RIKEN)
in Saitama prefecture, Japan, and supervised by Dr. Igor Paromtchik,Advanced
Engineering Center, RIKEN, and Dr. Henrik Christensen,Centre for Autonomous
Systems, KTH. The Master’s project was performed in the years 2000 and 2001.

Thesis Structure

This thesis is divided into five chapters and three appendices. Two of the appen-
dices offer clarifications to some of the material in the chapters.

Acknowledgments

My first thanks go to Prof.Funakubo of Shibaura Institute of Technology, not
only for his initial work with finding me an accepting laboratory, but also for his
struggle to find sponsors for me. My contact with Prof. Funakubo was effectively
maintained by Ms.Ann Hellner , employee at the Department for External Rela-
tions, KTH.

Prof. Endo and Prof.Asama of The Institute of Physical and Chemical Re-
search(RIKEN) kindly accepted me and Prof.Eklundh (KTH) helped me with
my application to RIKEN.

Without the help of my sponsors, I had probably never even made it to Japan.
The Sweden-Japan foundationin Sweden generously offered me financial support
for everyday and travel expenses. My second sponsor is thePrecision Measure-
ment Technique Promoting foundationin Japan, which kindly supported me with
my apartment rent.

My supervisors, Dr.Paromtchik and Dr.Christensen, are thanked for their
scientific support. Dr. Paromtchik particularly for sharing his experience and knowl-

7

8

edge of scientific work and for many comments and suggestions.
In my RIKEN laboratory a few people should be mentioned: Dr.Suzuki for

never hesitating to answer my many questions, for repairing and preparing robots
for my experiments, and for assisting me on weekends and sometimes even late
nights. I thank Dr.Kurabayashi for offering scientific advice and fruitful discus-
sions at several occasions.

My practical tasks were often made simple by the accurate and swift help from
my secretary, Ms.Takahashi.

Other people who have helped me and brightened my stay in Japan are Mrs.
Uchiyama, Mrs. Okada, Dr. Takamatsu, Dr. Hong, Dr. Tsujimura , Dr. Odaka,
Dr. Kawabata, Dr. Yamamoto, Mr. Kaetsu, Mr. Murakami , Mr. Uehara, Mr.
Okina, Mr. Akamatsu, Mr. Kaneda, Mr. Sugimoto, Mr. Noda, Mr. Fujimoto ,
Mr. Motohashi, and Mr.Aoyama.

I would finally like to mention some people who supported me with encour-
agements and friendship during my stay in Japan. I would like to thankAlexander
Kirchner , Mircea Giurgiu , Peter Ghoroghchian, andAtsusa Kanno for being
good friends in Japan;Mattias Ånstrand andTorbjörn Bäck for sharing their pre-
vious experiences of performing Master’s projects in Japan;Svante Hellstadius,
Patrik Rundström , andSofie Carlssonfor their many suggestions and advice.
Last but not least, I would like to thank members of my family: my sister, my
parents, my aunts, and my cousin Viveca, who were all very supportive despite the
distance.

Contents

1 Introduction 11
1.1 Research Context 11

1.1.1 Mobile Robots . 11
1.1.2 Localization . 19
1.1.3 Multi-Robot Systems 21

1.2 Problem Specification . 24
1.2.1 Aim . 24
1.2.2 Problem Domain . 24
1.2.3 Assumptions . 26

1.3 Thesis Overview . 26

2 Development of a Motion Planning Method 29
2.1 Review of Motion Planning Methods. 29
2.2 Exact Cell Decomposition Explained. 30

2.2.1 Decomposition of Free Space 31
2.2.2 Graph Search . 34
2.2.3 Path Generation . 36

2.3 Exact Cell Decomposition for Multi-Robot Systems 36
2.3.1 Decomposition of Free Space with Many Robots. 36
2.3.2 Example . 38

2.4 Motion planning for Multi-Robot Systems 39
2.5 Method Summary and Evaluation 41

3 Implementing the Motion Planning Method 43
3.1 Restrictions . 43
3.2 Equipment . 44
3.3 Software Architecture . 45

3.3.1 Model-View-Control . 45
3.3.2 Models - data containers 46
3.3.3 Views - data displays . 47
3.3.4 Controls - data manipulators 47
3.3.5 Software interaction . 49

3.4 Summary . 50

9

10

4 Collision-Free Motion in Simulations and Experiments 53
4.1 Path Planning Simulations . 53

4.1.1 Considering Non-Moving Robots. 53
4.1.2 Considering Moving Robots 54
4.1.3 Planning Paths’ Intersections 56

4.2 Path Monitoring Simulations . 58
4.3 Real Robot Experiments . .. 59

5 Summary and Discussion 61
5.1 Summary . 61
5.2 Conclusions . 62
5.3 Future Work . 64

5.3.1 Implementation . 64
5.3.2 Method . 65

A Proofs of Motion Planning Consistency 67
A.1 Collision-Free Paths’ Intersections 67
A.2 Avoid Planning Deadlocks . 68

B Path Generation 71

C Glossary 77

Bibliography 79

Chapter 1

Introduction

In this chapter the field of mobile robotics is outlined and the problem addressed in
this thesis is presented. In Section 1.1 the work of the thesis is situated. In Section
1.2 and subsections the problem is described. The introduction is ended in Section
1.3 with an overview of the rest of the thesis.

1.1 Research Context

The research field of this Master’s project, intelligent motion planning of a multi-
robot system, aims at the development of methods which provide coherent actions
of mobile robots in systems with more than one mobile robot. This issue has at-
tracted much attention due to the advantages which can be obtained with a multi-
robot system compared to a single-robot system (e.g., [Parker, 1995]).

This section introduces mobile robots and especially multi-robot systems. Ad-
vantages and challenges connected to these issues are presented and relevant terms
defined.

1.1.1 Mobile Robots

Robot manipulators (first and foremost the popular stationary robot arms) work
fine for instance in assembly applications in factories. However, mobile robots
offer some very important advantages, for instance

Reach Mobile robots are necessary if the problem the robot should solve is not
restricted to some sufficiently small area.

Flexibility If the position of the problem to be solved is not static, the mobile robot
has the ability to pursue it.

Mobile robots can roughly be classified into two groups depending on the bal-
ance between their number of controllabledegrees of freedom(DoFs)1 and actual

1A degree of freedom is normally associated with anactuator. An actuator is typically an electric
motor or hydraulic or pneumatic cylinder. Hence, the number of degrees of freedom of a robot is

11

12

degrees of freedom. The two groups are calledholonomicandnon-holonomicre-
spectively. A strict definition in [Norvig, Russell, 1995] says that non-holonomic
robots are robots which have fewer controllable DoFs than actual DoFs. A car
for instance is non-holonomic because it has three actual degrees of freedom, two
because it can move in two directions in the plane, and one for its direction (see
Figure 1.1). A car only has two controllable DoFs, though. It can move in the di-
rection it points, or it can make a turn. For an example of work with non-holonomic
robots see [Laugier et al, 1998].

α

β
y

x

(x ,y)

1

2

1

2

(x ,y)

Car 1

Car 2

Figure 1.1. A car has three DoFs, two for its coordinates and one for its orientation.

A non-holonomic robot is normally more difficult to control than a holonomic
one. In the case of a holonomic robot, it has the same number of controllable DoFs
as it has actual DoFs. Theomni-directionalrobot (meaning that it can move in any
direction in the plane and rotate on the spot) at RIKEN [Asama et al., 1995] is an
example of a holonomic robot (Figure 1.2).

Figure 1.2. An omni-directional robot (With courtesy of theAdvanced Engineering
Centerat RIKEN).

normally equal to its number of actuators [Norvig, Russell, 1995].

13

Motion Planning

The process of generating a sequence of actions that has to be performed in order
for a robot to move through itsenvironment(also calledworkspace, see Figure 1.3)
autonomously and without collisions is calledmotion planning. Even though only
mobile robots are discussed in this thesis, similar motion planning methods can
also be used for manipulator robots.

S

G

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

Figure 1.3. A simple workspace with two obstacles and an enclosing workspace
boundary. The symbolsSandG denote start position and destination respectively for
a robot.

Methods for motion planning, in their most simple form, fall into one of two
categories,deliberativeor reactive, depending on the kind of control they exhibit2.

Characteristics of the two categories, as presented in [Arkin, 1998], are sum-
marized in Table 1.1.

Table 1.1.Characteristics of deliberative and reactive planning

Deliberative Reactive
Dependent on representation Representation-free
Slow response Real-time response
High-level intelligence Low-level intelligence

Pure reactive methods offer real-time motion response provided by simple
computations and do not use any representation of its workspace (i.e., it has no
understanding of the layout of the workspace, e.g., where obstacles are situated).
Pure deliberative methods, on the other hand, are highly representation dependent
and express a higher level of intelligence.

Thepotential fieldmethod with only local knowledge3 is an example of a re-
active method. It generates a virtual motion force for the robot by adding repulsive

2Note however that it is possible to combine methods from both categories intohybrid methods.
3Meaning that it has not global knowledge about the workspace, rather is only aware of its im-

mediate surroundings.

14

forces from obstacles with an attractive one from the destination of the robot.
Unlike reactive methods, deliberative ones use a priori knowledge to pre-calculate

robot motion. A typical way to utilize this knowledge is to plan a path through the
workspace for the robot, so calledpath planning. There are three main approaches
of deliberative methods:

Cell decomposition Thefree space4 of the workspace is decomposed into a set of
cells. The cells must be simple so that a path easily can be planned through
each cell (a suitable cell is typically a convex polygon). Achannelof free
cells (i.e., a sequence of contiguous cells) is subsequently constructed start-
ing with the cell which contains the current position of the robot and ending
with the cell that contains its destination. Finally, a path can be planned
from the start position through the channel to the destination. Cell decompo-
sition is further divided intoexactandapproximate cell decomposition. The
main differences between them are that approximate cell decomposition is
normally easier to implement, but is more coarse and can not always guar-
antee to find a free path even if one exists. Figure 1.4(a) shows how an exact
cell decomposition method (in this case trapezoidal cell decomposition) may
work with the workspace in Figure 1.3. Figure 1.4(b) shows what the result
of an approximate cell decomposition method (in this case quadtree) may
be.

S

G

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

(a)

S

G

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����
����
����

����
����
����
����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
��������

���
���
���

����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
��������
����
����

����
����
����

�����
�����
�����

�����
�����
�����

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

(b)

Figure 1.4. (a) The free space of the workspace has been decomposed into a set
of cells using the trapezoidal cell decomposition method. The white cells indicate
a channel for a robot starting in positionS with its destination inG. Finally, a path
through the channel is planned.(b) The approximate cell decomposition method
called quadtree has simplified the decomposition of the free space by discretizing
the obstacles. The white cells constitute a channel in which a path for the robot
subsequently is planned.

4Space which a robot can occupy, typically space which is not already occupied by some obstacle.

15

Roadmaps There are many different roadmap methods, but one thing they all have
in common is that they try to convert the free space of the workspace into
a graph representation (a roadmap). A collision-free path can now be con-
structed (if one exists) by connecting the start position and destination to the
roadmap. The roadmap method calledvisibility graphconstructs a shortest
path, but it is onlysemi-free5. The method calledvoronoi diagramon the
other hand maximizes the distance between robot and obstacles. Examples
of how the workspace in Figure 1.3 is treated by these methods is shown in
Figure 1.5(a) and Figure 1.5(b).

S

G

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

(a)

S

G

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

(b)

Figure 1.5. (a) In the visibility graph method, all pairs of vertices of the obstacles
in the workspace are connected. A connection between a pair of vertices is called an
edge and all edges form a possible path segment on an optimal path. In the figure
the thick path segment and the dotted thick lines fromS to G constitute a path.(b)
In the voronoi diagram method, a path is constructed by connectingS andG with
the roadmap, which consists of positions that are on a maximum distance from the
obstacles and workspace boundary.

Potential field The notion of potential field may also be used in a deliberative
way. A potential field may be calculated for the whole workspace using
knowledge about obstacles and destination. The field determines the path
for the robot from its current position to its destination.

Please notice that all of these methods, in their most fundamental form, only
are applicable to a point robot (i.e., a robot with the shape of a point). Extra mea-
sures are required to handle robots of other shapes. A tool, called configuration
space, that makes path planning for robots with a more complex shape possible, is
presented later.

The theory and ideas concerning cell decomposition and roadmap methods are
thoroughly explained in [Latombe, 1993]. These methods are well established, but

5Let pr be a semi-free path for a robotr, thenr might “touch” obstacles as it travels alongpr

16

limited in the sense that they are only applicable tostatic environments(where
obstacles do not move). Environments which have moving obstacles are calleddy-
namic(motion planning in dynamic environments is discussed in [Fujimura, 1991]).

Sometimes deliberative and reactive methods are combined to achieve motion
plans that both have an optimal, coarse path and that is insensitive to uncertainties
in the environment (e.g., unknown obstacles or erroneous workspace representa-
tion).

An alternative way of classifying motion planning methods is to say whether
they areon-lineor off-line6. On-line planning is performed in real-time, i.e., at the
same time the robot is moving, and is exceptionally useful when the environment
is not known. Off-line planning is performed before any robot motion and is not
useful unless the workspace is known. While reactive methods are inherently on-
line, deliberative methods may be classified as either on-line or off-line, depending
on the need for a rapid response.

A comparison between on-line and off-line planning, originally from [Arai, Ota, 1992],
can be found in Table 1.2.

Table 1.2.Characteristics of off- and on-line planning

Off-line On-line
Sensitive to differences be-
tween the representation of
the workspace (which is used
during planning) and the world
itself.

Can compensate for deviations
between the knowledge of the
world and the world itself.

Needs only small computation
power (and only once).

Needs relatively large computa-
tion power to achieve real-time
computation

The whole workspace can be
considered.

The planning may be local, and
there is therefore a risk that
robots get stuck in alocal min-
imum.

Configuration space

An interesting tool which can be used for motion planning isconfiguration space.
When using this tool, planning is not performed in the physical space of the envi-
ronment, rather in the possible configurations of the robot. The configuration space

6In the same way as with deliberative/reactive methods it is possible to combine on-line and
off-line methods.

17

of a robotr is denotedCr (or justC when there is no ambiguity) and has as many
dimensions as the robot has DoFs. The concept of configuration space is probably
best illustrated by a simple manipulator robot as in Figure 1.6(a). The figure shows
a workspace with an obstacle and a manipulator robotr with two joints and two
links. Figure 1.6(b) shows the corresponding configuration space ofr. Config-
uration space can also be used with mobile robots, an omni-directional robot for
instance has three DoFs (it can translate in two directions and rotate7).

Θ1

Θ2

t2

t3

t1

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������y

Obstacle

x

(a)

Θ2

Θ1

C−obstacle

t1
t2

t3

(b)

Figure 1.6. (a)A configurationq of the manipulator robot armr, which can move
in the x-y-plane, is defined by the angles,θ1 and θ2, of the two links. An obsta-
cle occupies a part of the workspace, space which may not be shared with the arm.
The configurations of the arm are shown at three moments, att1 with the start con-
figuration, att2 with an intermediate configuration, and ultimately att3 with its final
configuration.(b) In the configuration space,r is represented as a point. The obstacle
in (a) is represented as a region of forbidden configurations (C-obstacle) ofr. The
figure shows the configurations ofr at the momentst1, t2, t3 and a possible “path”
through them which corresponds to a collision-free movement ofr in the workspace.

As suggested in Figure 1.6(b), planning in configuration space is performed for
a point (the configurationq of a robot) instead of a, perhaps very complex, robot
shape. This makes it a useful tool for all of the path planning methods previously
explained (which in their most simple form assume that the robot has the shape
of a point). The main problems however, as pointed out in [Gill, Zomaya, 1998]
is the difficult mapping from Cartesian space (i.e., the spatial space or workspace)
to configuration space and the complexity of handling it (since it often has many
more dimensions than the physical space).

7If collision of a robot is not dependent on its rotation, the orientation dimension may be left out.
Hence, in this caseC � R2 instead ofC � R3.

18

The motion planning approaches presented here are summarized in Table 1.3.
The table uses the termssoundandcomplete. A method is said to be complete if it
guarantees to yield a solution (i.e., a collision-free path) if one exits and sound if it
guarantees that all its solutions are correct (i.e., collision-free).

Table 1.3.Summary of motion planning methods (Type: R = reactive, D = delibera-
tive)

Method Type Advantage Disadvantage
Potential field (local) R Real-time Not complete

Exact cell decomposition D Complete Heavy computa-
tions

Appr. cell decomposition D Sound and useful
when only a coarse
representation
(e.g., a digital im-
age) of workspace
is available

Not complete

Visibility graph D Complete and
yields minimum
length path

Generates semi-
free paths

Voronoi diagram D Complete and
generates roadmap
with maximum dis-
tance to obstacles

Possibly inefficient
resulting path

Previous work

Over the years, many different motion planning problems for a single robot have
been studied. Some researchers have developed more efficient methods for motion
planning in static environments (for instance [Habib, Asama, 1991]), while others
have addressed variations of the problem. In [Choset, Pignon, 1998] the authors
modify the general cell decomposition method for a coverage application, in which
the robot must visit all the free space (which is useful for e.g., vacuum cleaning or
inspection).

The authors of [Kant, Zucker, 1988] approach the problem of collision avoid-
ance for a single robot in dynamic environments with complete knowledge of the

19

environment, including the trajectories8 of all moving obstacles. The authors sug-
gest that geometric algorithms can be used in conjunction with a local avoidance
strategy. To accomplish this they first subdivide the collision avoidance into two
steps by using complete knowledge of the environment:

1. the path of the robot is planned to avoid collisions with static obstacles,

2. the velocity along this path is planned to avoid collisions with obstacles mov-
ing across it.

The two steps are performed off-line and result in a coarse trajectory for the robot.
To account for uncertainties (e.g., unknown obstacles), they suggest an on-line
strategy based on sensor data.

The authors of [Tsoularis, Kambhampati, 1999] use acceleration and decelera-
tion to avoid collisions along a path planned off-line. However, due to for instance
the hardware limitations of a robot, it might not always be possible for it to accel-
erate or decelerate in the required way to avoid collisions, so as a last resort they
allow it to deviate from its path.

In [Fiorini, Shiller, 1995], the concept ofvelocity obstacle, which is the map-
ping of the dynamics of the robot workspace into the robot velocity space, is uti-
lized. This approach allows any number of moving obstacles, it unifies the avoid-
ance of both moving and static obstacles, and it also allows robot velocity con-
straints to be considered.

In [Ghosray, Yen, 1996], an approximate cell decomposition method, called
quadtree, for collision avoidance between a single robot and obstacles is modified.
It also lets a single quadtree represent the set of obstacles in the workspace. Each
time an obstacle changes its position in the workspace the quadtrees have to be up-
dated accordingly. The authors claim that their algorithm is especially well suited
for problems with frequently rotating obstacles and robot.

1.1.2 Localization

It is crucial for a robot to know its position in the workspace in order for it to ex-
ecute its tasks properly, because if the robot can not determine its own position
it will be hard for it to perform a useful interaction with its environment. This is
especially important if a map of the workspace is used and it is critical for the oper-
ation of the robot that it knows its location on this map. The process of determining
a robot’s position is calledlocalization. Related to localization is the concept of
navigation. A system that can help a robot to establish its location or by some
means help it to find its way through its workspace correctly is called anavigation
system.

There are quite a few techniques available for localization. Most of them are
described in [Borenstein, 1996].

8Trajectory means path and the velocity along it.

20

Odometryand inertial navigation, so calledrelative position measurements,
are both localization techniques which can be handled by a robot itself without
external help.

A robot, which is aware of its original position in space, can after some move-
ment utilize odometry to estimate its new position. The idea of odometry is to use
information already available to the robot, such as wheel rotation, to estimate its
current position. However, due to for instance tire slippage and irregularities in the
surface of the workspace, the position estimation of the robot will quickly deviate
from its actual position.

To sum up, both of these techniques will accumulate errors in a real environ-
ment and can not be used on their own for correct localization.

A method for correcting odometry error is described in [Borenstein, 1996].
The method, calledinternal position error correction(IPEC), utilizes two mobile
robots that correct each other’s odometry errors. By cleverly connecting two mo-
bile robots, which both apply the IPEC method, a single robot with considerable
error correction skills is achieved. The commercial omni-directional robotOm-
niMate [Borenstein] developed at the Mobile Robotics Lab at the University of
Michigan is such a robot.

External measurement techniques, so calledabsolute measurement techniques,
are often used in conjunction with the relative measurement techniques to improve
localization estimates. Examples of absolute measurement techniques are

� Guidepath

� Active beacons

� Artificial landmarks

� Natural landmarks

Guidepathis one of the simplest forms of robot navigation. The guidepath can
for instance be a wire (which transmits audio or radio signals) or a magnetic stripe
[Everett, 1995], which a robot can follow. Guidepaths indicate static paths in an
environment and are not suitable in applications where mobile robots should be
allowed to move flexibly.

The method ofactive beaconsuses a set of transmitters (beacons), which lo-
cations in the workspace are known in advance. The transmitters, in most cases,
use light or radio signals to announce their presence. For a robot to be able to
use the active beacons for its localization, at some position in the workspace, at
least three of the beacons have to be “visible” (detectable) at that exact position.
This technique has mostly been utilized in large-scale out-door environments. One
successful implementation in a small-scale environment is [Kleeman, 1992].

In the method ofartificial landmark recognition, objects or images with a dis-
tinctive shape (for recognition to be performed easily) are placed in the workspace.
The position of the landmarks are known, and if three or more landmarks are de-
tectable at a certain position, an estimate of the position can be calculated.

21

The difference between artificial andnatural landmark recognitionis that the
landmarks used in the latter case are not placed in the workspace for the robotics
application, they exist in the workspace already. Ironically, natural landmarks are
mostly man-made since suitable landmarks must appear as structured to stand out
in the environment. A suitable “natural landmark” is therefore for instance the edge
formed by the joint between a wall and the floor in a straight corridor.

The landmark recognition methods rely on odometry for an approximate po-
sition in the workspace. Using the approximate position, the robot can look for
landmarks which it expects to find in the part of the workspace in which it believes
it currently is. With the help of the landmarks, the robot is able to refine its position
estimate.

1.1.3 Multi-Robot Systems

Some advantages with robot systems containing more than one robot, so called
multi-robot systems, some of them mentioned in [Parker, 1995], are:

Task enablement The solutions to some problems are inherently parallel and may
require a number of robots. Other solutions require robotic capabilities
which can not all be (efficiently) implemented on a single robot.

Improved system performance Time and efficiency can be gained by using mul-
tiple robots.

Distributed sensing Sensing robots can acquire sensor data from different posi-
tions simultaneously, yielding results which a single robot can not produce
(consider for instance a set of robots surrounding and investigating some
object).

Fault tolerance If one robot fails it does not necessarily mean that the whole sys-
tem of robots fail.

However, adding more robots to solve a task does not only yield advantages, it
also introduces some new design considerations, for instance:

1. How should tasks be distributed among the robots?

2. How should shared resources be used by the robots?

The answer to the first consideration depends on the composition of the set of
robots used. If the set of robots ishomogeneous, it means that the robots have
identical capabilities (in this thesis the definition is extended to include also the
shape and size of the robot). If it on the other hand isheterogeneous, it means that
the robots have different capabilities (which is necessary for some applications).
Task distribution in a heterogeneous set of robots becomes more complex than in a
homogeneous set since some tasks may only be suitable for some robots in the set.

22

A resource, in the second consideration, can for instance be a tool (which robots
need to use to fulfill their tasks), communication media or space. In practice, to
share space means to avoid collisions among the robots in the set. With the sharing
of resources, the deadlock problem9 also arises. Robots, which are “polite” and
wait for other robots to release their resources, might have to wait forever. Coop-
eration between robots in multi-robot systems is desired to handle these problems.

In [Uny Cao et al., 1997], the authors make an attempt to define “cooperative
mobile robotics”. They definecollective behaviorto be any behavior of a set of
agents, containing at least two agents. They further considercooperative behavior
to be a subclass of collective behavior and provide a definition: ‘Given some task
specified by the designer, a multiple-robot system displays cooperative behavior if,
due to some underlying mechanism (i.e., the “mechanism of cooperation”), there
is an increase in the total utility of the system.’ A mechanism of cooperation may
in this context for instance be a control architecture for the robot system, which
yields a performance gain over (naive) collective behavior.

One aspect of cooperation iscontrol architecture. Control architectures of a
multi-robot system can be divided into two groups:centralizedand decentral-
ized. In centralized planning, the motion planning of all robots is handled by a
single planner, a supervisor agent. In decentralized planning, however, each robot
plans its motion individually. Some characteristics of the two groups, provided by
[Arai, Ota, 1992], can be found in the Table 1.4.

The most common is the decentralized approach. Decentralized architectures
are often said to have several advantages over centralized architectures, e.g., fault
tolerance, reliability and scalability. However, [Uny Cao et al., 1997] claims that
very little work, if any, has focused on comparing centralized to decentralized ar-
chitectures, and “it is therefore not clear whether scaling properties of decentral-
ization offset the coordinative advantage of centralized systems”.

Latombe suggests two approaches to deal with motion planning in multi-robot
systems ([Latombe, 1993]). One approach is to treat all robots as one in the con-
figuration space (i.e., treating the set of robots as one robot with many degrees of
freedom), but this requires that both the initial configuration and the final config-
uration of the complete multi-robot system is known. Another and more common
approach isdecoupled planning, in which case planning for each robot is per-
formed in two steps: first a coarse plan for each robot is prepared (more or less
independently of the other robots), which in a second step can be corrected along
the way if it was not accurate enough.

In [Liu et al, 1989], a two-level planner is used to avoid collisions in a multi-
robot system. The high level of the planner finds a collision-free path (if one exists)
for each robot, and the lower planner coordinates the motions of the robots in
intersecting parts of the planned paths. The algorithm constructs a Petri-net, based

9A deadlock is a situation which involves at least two robots. Each robot waits for some other
robot to release a resource (e.g., a tool or space) it needs before it can continue. In the deadlock none
of the robots are willing to release the resources they have and have to wait forever.

23

Table 1.4.Characteristics of control mechanisms

Centralized Decentralized
Optimization of the motion of all
robots is possible since the su-
pervisor can take all of them into
consideration at the same time.

Is inherently uncoordinated to
some extent because no robot
(normally) enjoys global knowl-
edge.

The computational capacity of
the supervisor must grow with
the number of robots.

An increase in the number of
robots does not imply any extra
computational load on each of
the robots.

The fact that only one agent
is engaged in motion planning
makes the multi-robot system
vulnerable. If the supervisor
cease to function properly, so
will the whole system.

The motion planning of each
robot will probably not cease to
function, if just one robot does.

on a quadtree decomposition of the workspace, which is used by the robots for local
collision avoidance (such as moving forwards/backwards or even moving away
from the pre-planned path).

In [Yuta, Premvuti, 1992], a set of polite robots, in which all robots yield for
each other, with decentralized control is studied. The authors claim that even de-
tecting a deadlock is a difficult problem. In their experiment the authors design a
environment with a few restrictions to make it easier to detect deadlocks:

� The free space consists of straight roads

� The width of each road is fixed so that no two robots can go pass each other
on the same road

� Only three branches are allowed at an intersection in the network

Each robot broadcasts information about its status to all others. This way all
robots can enjoy global knowledge, but only as long as the communication between
the robots is reliable. The robots use a resource handling custom which the authors
call “modest cooperation”, which means that a robot will not try and take a resource
which is owned by another robot. This is especially reasonable when the resources
in question are space, since trying to take such a resource would lead to a collision.
If a robot wants to enter a part of the road which is already occupied it will have to
stop. A robot that stops at a crossroads will check, with the help of its knowledge
of the positions of the other robots, how many other robots that have stopped at this

24

crossroads and the direction of each of the other robots. By that means, a deadlock
can be detected.

To handle the deadlock, one of the robots achieves leader status. The state
of the robots involved in the deadlock changes temporarily from being fully au-
tonomous to being either leader or follower. There is a simple technique to resolve
the deadlock at the crossroads and the leader directs the followers where to go.
After the deadlock is resolved all the involved robots restore their autonomous
control.

The environment described is called road network and is used by many re-
searchers (e.g., [Rausch, Levi, 1996]). It is useful because it is a common envi-
ronment (e.g., in car traffic or supermarket applications) that often simplifies the
problem. In systems which allow deadlocks to occur the most common solution
is to let one agent in the system temporarily take charge of the motion planning
even if the system under normal operations is decentralized [Qutub et al, 1997,
Alami et al, 1997].

In [Noborio, Yoshioka, 1994], an on-line and decentralized path-planning al-
gorithm for multi-robot systems is proposed. It avoids deadlocks instead of trying
to handle them as they occur. The algorithm utilizes a set of rules to ensure dead-
lock avoidance. It, however, assumes a workspace that is infinite in all directions
in the plane.

1.2 Problem Specification

Previous works highlight the usefulness of multi-robot systems. Some problems
are not suitable for a single robot, and even for those who are, performance gain
can be achieved by adding more robots. The difficulties with having more than
one robot have been noticed, including the resource sharing problem of collision
avoidance.

1.2.1 Aim

The aim of this Master’s project was to “Develop a method for collision-free mo-
tion for mobile robots in a multi-robot system”. The developed method should be
integrated into an existing multi-robot system with omni-directional mobile robots,
and target problems such as those presented in Section 1.2.2. To make the aim even
more clear, a few assumptions are introduced in Section 1.2.3.

1.2.2 Problem Domain

The notion ofscenariois introduced in order to specify which problems the method
presented in this thesis can be applied to. A scenario is an abstract description of a
problem and consists of two parts:

� Contents

25

� Interaction and dependencies

In this project, the first part involves a workspace containing some objects. The
workspace is an area where mobile robots are allowed to operate and contains apart
from robots alsorequest generatorsand forbidden areas. Request generators, as
their name suggests, generate requests whenever they are in need of service. A
forbidden area is a part of the workspace in which mobile robots are not allowed to
enter (entering such areas may result in damage to either the robot or some object
occupying the area). Note that the definition of forbidden area is more general than
that of obstacle (forbidden area also comprises, e.g., holes in the ground or areas
which the robot should not enter for other reasons).

The second part of the scenario describes how the objects interact and depend
on each other. In this case, requests are decomposed into tasks for mobile robots.
It is assumed that mobile robots are equipped in such a way that they can provide
the request generators with suitable service. Mobile robots will have to travel to
request generators without entering forbidden areas, exiting the workspace or col-
liding with other robots. The described scenario is quite general and is realized in
various “real problems”, such as:

� An assembly line with a number of assembly machines (request generators).
Each machine performs its specific assembly operation. It requires simple
components to assemble them. A machine must be supplied with new simple
components and relieved of its assembled composites. Mobile robots can
assist them with these two tasks (a similar example is displayed in Figure
1.7).

� A nuclear power plant or a chemical factory that is composed of many dif-
ferent machines. In this context, machines in the areas which are unsuitable
for humans can be considered as request generators, and mobile robots, will
perform inspection or maintenance tasks.

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

Figure 1.7. Some robots transporting components to and from manufacturing ma-
chines in a shared workspace.

Notice about these problems that they are continuous in the sense that there
is no obvious end-state. Rather, the systems may run for an indefinite amount of
time.

26

1.2.3 Assumptions

The problem presented here in Section 1.2 is indeed very general and it is not
possible to include all aspects in this project. Therefore, for the theoretical work of
this thesis, the following assumptions are made:

� perfect localization,

� robots are fully holonomic,

� request generators, forbidden areas and workspace boundary are static,

� the system enjoys perfect knowledge of the world,

� robots are fully equipped to handle requests,

� inter-robot communication is reliable.

Consequently, the focus of this project is on motion planning for holonomic
robots sharing the same known workspace.

1.3 Thesis Overview

These are the contents of the rest of the chapters and appendices of the thesis.

Chapter 2 describes different motion planning approaches and highlights one called
exact cell decomposition, which is described in detail. Furthermore, Chap-
ter 2 explains how exact cell decomposition can be extended to account for
other known and possibly moving robots. The vital concept ofpath obstacle
is presented in order to achieve this motion planning. A motion planning
method (MPM) is then created by adding a few rules which dictates the behav-
ior of robots at paths’ intersections.MPMis composed of two parts, apath
planner and apath monitor.This chapter is supported by Appendix A, in
which the validity of the rules is proven.

Chapter 3 explains howMPMwas implemented on a robot system. At first some
simplifications of the problem are introduced to set a reasonable level of dif-
ficulty on the implementation task and then the experiment hardware (robots
and support computer) is presented. The architecture of the software devel-
oped for the hardware is presented. The software includes a path generation
algorithm which is discussed thoroughly in Appendix B.

Chapter 4 presents the results of a few simulations and one experiment. The pur-
pose of the first simulations is to show that the path planning works as in-
tended. The final simulations show that robots on a collision course will take
the necessary precautions to avoid the collision. The chapter is ended with a
presentation of a real robot experiment.

27

Chapter 5 summarizes the work of the project. It points out deficiencies with
MPM, but also the characteristics of the problems it is particularly suitable for.
Finally, the chapter discusses future directions of work and research forMPM
and its implementation.

Appendix A contains two proofs. The first one proves, using natural deduction,
that it is sufficient for robots to obey the rules from Section 2.4 to avoid
collisions. The second one is an induction proof that proves that no deadlock
will be planned.

Appendix B discusses an algorithm for path planning given a channel and start
and end positions. The algorithm is analyzed and its time complexity deter-
mined.

Appendix C provides a glossary of terms that are used in the thesis.

28

Chapter 2

Development of a Motion
Planning Method

This chapter explains how a conventional path planning method for single robot-
systems can be extended to account for multi-robot systems.

2.1 Review of Motion Planning Methods

Relatively few previous works concentrate on multi-robot systems in workspaces
with static obstacles where the only moving objects are the robots themselves.
Some of the works mentioned in Chapter 1 assume knowledge of the trajectories
of all moving objects (e.g., [Kant, Zucker, 1988]). In this work such an assump-
tion is not made since the trajectories of the robots are certainly not known, they
are calculated when they are needed. There are also works that assume that the
destinations of all robots are known ([Latombe, 1993]). In this work such an as-
sumption can not be made either, since the robot destinations are not known in
advance, they arise dynamically and depend on requests from request generators.

Since this work is restricted (see Section 1.2.3) to focus on workspaces that are
known (rather than workspaces which have to be explored), it is natural to look for
ideas among the available methods which deal with this condition for a single robot
(e.g., [Latombe, 1993]). A rough subdivision of the motion planning methods is
shown in Figure 2.1.

The motion planning approach called cell decomposition is quite attractive.
It allows generation of collision-free paths (whereas, e.g., visibility graph only
guarantees semi-free paths), it is practical (compared to, e.g., voronoi diagram
which appears more difficult to implement) and it takes global knowledge into
consideration (unlike local potential field).

Furthermore, the path generation of cell decomposition has a channel1(read
more about channels and cell decomposition in Section 2.2) as an intermediate

1A channel is simply a connected region of free space which includes both the start position and
the goal position of the robot.

29

30

result if one exists. This yields at least two advantages:

1. The channel is an efficient way to answer the question if a collision-free path
exists or not,

2. There are no restrictions on the generated path other than that it must be
inside the channel (in contrast to voronoi diagram and visibility graph where
the path is immediately generated).

Approximate Exact

Potential field

Minimal Trapezoidal

Arrangements
Cell tree

Visibility
graph

Voronoi
diagram

Silhouette

Freeway

Roadmap/SkeletonCell decomposition Approaches

Methods

Motion planning

Figure 2.1. Motion planning for a single robot can roughly be divided into three
main approaches: cell decomposition, potential field and roadmap. Most methods for
motion planning can be derived from these approaches or hybrids of these approaches.
Some of the methods are shown in this diagram.

The cell decomposition approach can further be divided into two groups: exact
and approximate. The latter is more coarse as its name suggests. It is not complete,
i.e., it does not guarantee to find a path if one exists, unlike exact cell decompo-
sition, and is most suitable when the knowledge of the workspace is represented
by an image (in which case the input data is already coarse to begin with). In
this project it is assumed (see Section 1.2.3) that the workspace is known so there
is no need for approximate cell decomposition. Hence, exact cell decomposition
constitute a good foundation for a motion planning method.

In the following sections, it is explained how the ordinary exact cell decompo-
sition works (Section 2.2), how it can be extended to be applicable to multi-robot
systems (Section 2.3), and finally how it can be integrated into a complete motion
planning method (Section 2.4).

2.2 Exact Cell Decomposition Explained

The aim of exact cell decomposition is to generate a collision-free path for a
robot r, from its current position to its destination in a known workspace. This
aim is achieved by first decomposing the free space of the workspace into non-
overlapping regions (called cells) and constructing a connectivity graph which have

31

the cells as nodes. The next step is to search the graph for a sequence of contigu-
ous cells, including the cells that hold the current position and destination ofr, and
finally generate a path through the cells. It is natural to divide this approach into
these three steps:

1. decomposition of free space,

2. connectivity graph search, and

3. path generation.

Each step requires a few inputs and generate a certain output as depicted in
Figure 2.2.

Connectivity Graph
search

ChannelStart cell

End cell

Connectivity
graph Step 2

Robot path
generation

Collision−free
path

Channel

Robot start

Robot destination

Step 3

Robot

Representation
of Workspace

Robot destination

Decomposition
of free space

Connectivity
graph

Step 1

Figure 2.2. Steps of the Exact cell decomposition method

2.2.1 Decomposition of Free Space

The first consideration to deal with is how a robot should be represented. The
exact cell decomposition approach is suitable for path planning for a point object.
However, in most cases a robot can not be approximated with a point, rather a
polygon would be much more suitable. A second consideration is how the free
space should be decomposed.

32

Configuration Space

In [Lozano-Pérez, 1983], an idea to handle the first consideration was presented. It
suggested that instead of handling a complex geometrical representation of a robot
in the Euclidean representation of the workspace, the robot can be treated as a point
in its configuration space (simply denotedC when there is no ambiguity).

The configuration space has as many dimensions as the robot has degrees of
freedom (DoFs). This project deals with omni-directional robots. A robot of that
kind normally has three DoFs, two for translation and one for rotation. E.g., a
robot r with position (x;y) and angleθ (relative to some axis in the Euclidean
space) corresponds to a point(x;y;θ) in its configuration space. If there are ob-
stacles or forbidden areas in the Euclidean space, then correspondingly there are
configurations (points in configuration space) which are not allowed (remember
the introduction to configuration space in 1.1.1).

In the special case that the robot is symmetric in its z-axis (i.e., it is rotation
invariant) theθ-coordinate may be ignored2 and C will be two-dimensional, the
same as the Euclidean workspace. In this special case the configuration space ofr
(denotedCr) will resemble the workspace (denotedW) a lot. In fact, we say that
an obstacle (and forbidden area)Ow in the workspace “grows” with the size ofr in
Cr into a configuration space obstacleCrfOwg= Oc (see Figure 2.3).

Oc

rc

Ow

rw

rx

ry

Workspace Configuration spaceW Cr

Figure 2.3.A workspaceW , containing a robotrw and obstacleOW, is being mapped
into the configuration spaceCr for rw. rw, which is symmetric in thezr axis (which is
perpendicular to thexr andyr axis), is directed out of the paper. InCr rc will simply
be a point andOc (approximately illustrated here) isOw grown with the radius ofrw

(Ow is drawn insideOc for comparison). rc touching the boundary ofOc in Cr is
equivalent torw touchingOw in W .

This project uses rotation invariant robots and enjoys the property that the con-
figuration spaces for these robots are comparatively easy to generate and visualize.

2This fact can be expressed as
8x8y8θ18θ2(allowed_con f iguration(x;y;θ1)$ allowed_con f iguration(x;y;θ2))
in mathematical terms.

33

Decomposition

The free spaceC f ree of the configuration spaceC (depicted in Figure 2.4) is the
space which is inside theC and not inside any of the configuration space obstacles
CfOig; i 2 [1;k], for somek 3.

S

Configuration space
boundary

������
������
������
������
������

������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����
����
����
����

����
����
����
����

Cfree

O
O

O1

2
3

Figure 2.4. The empty region outside some configuration space obstaclesO1, O2,
andO3 in C , but within the configuration space boundary is called free spaceC f ree.

There is not one unique way to decomposeC f ree, but there are a few general
rules common to all decompositions (according to [Latombe, 1993]):

1. The cellsKi; i 2 [1;n], of the decomposition must be non-overlapping and
their union equal toC f ree, i.e.,

S
i2[1;n] Ki = C f ree,

2. “The geometry of each cell should be ’simple’ enough to make it easy to
compute a path between any two configurations in the cell.”

3. “It should not be difficult to test the adjacency of any two cells and to find a
path crossing the portion of boundary shared by two adjacent cells.”

Convex regions, which meet the requirements of Rule 2 and Rule 3, are suitable
as cells and are often used. There are however various algorithms for generating
convex cells. A minimal decomposition yields a minimal number of convex cells,
but it was shown in [Lingas, 1982] that it is a NP-hard problem4. Fortunately, there
are efficient non-minimal decompositions, and it is not even clear if the minimal
decomposition is always the most suitable for path planning. Trapezoidal decom-
position (which gives the name to the trapezoidal cell decomposition method) is
one of those non-minimal decomposition algorithms; it divides the free space into

3Free space is defined asC f ree= Cn
S

i2[1;k] CfOig
4NP is short for “Non-deterministic Polynomial time”. A problem is in NP if you can quickly (in

polynomial time) test whether a solution is correct. Some problems are at least as hard to solve as
any problem in NP. Such problems are called NP-hard.

34

cells that are either trapezoids or triangles. A trapezoidal decomposition is con-
structed by sweeping a vertical line overC f ree from, say, left to right. Whenever
the line encounters a vertex of an obstacle, a vertical line is inserted at that vertex
(which dividesC f ree into more and more cells). Another example of a non-minimal
decomposition is decomposition of arrangements which is used in the implemen-
tation of the method (Chapter 3).

The following simple example5 illustrates how Exact cell decomposition works.
Once again, have a look at the simple configuration spaceCr with a few configura-
tion space obstacles (from now on referred to simply as “obstacles”) in Figure 2.5.
Path planning is going to be performed for a robotr, which is currently in position
Sand has the destinationG.

S

������
������
������
������
������

������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����
����
����
����

����
����
����
����

G

Figure 2.5. The simple configuration space includes a boundary and three obstacles.
Path planning is going to be performed for a robotr (which is a point since path
planning is performed in its configuration spaceCr), which has a current positionS,
and a destinationG.

Let us briefly return to Figure 2.2 and beginStep 1. In this example trapezoidal
decomposition is used to decomposeC f ree and the result is shown in Figure 2.6.

2.2.2 Graph Search

After the decomposition,C f ree has been sliced into a set of cellsK = fKigi2[1;n]. A
graphCG, a so called connectivity graph, is constructed. The nodes of the graph
are the cells ofK and an edge between a pair of nodes, e.g.,Kl andKm, indicates
adjacency betweenKl andKm in Cr . In Figure 2.7 the corresponding connectivity
graph of the decomposition in Figure 2.6 is depicted. Nodes 17 and 5 are marked
in the figure. They contain the current position of the robot and its destination
respectively and may be calledstart nodeandgoal node.

5Please note that to keep this example simple and possible to illustrate, a significant difference
between Euclidean space and configuration space is not made. However, keep in mind that in general,
the configuration space will look quite different from the corresponding Euclidean workspace (and
possibly have many more dimensions).

35

1

2

3

4 5

6

7

8

9
10

11

12

13

14
15

16

S

17

18

19

20

21

������
������
������
������
������

������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����
����
����
����

����
����
����
����

G

Figure 2.6. C f ree is decomposed into cells by inserting a vertical line at every vertex
of the obstacles (including the configuration space boundary). Each cell has been
given a unique number.

The object of the next step,Step 2, is to search theCG for a path from the start
node to the goal node. Any conventional search algorithm may be chosen for the
search (e.g., breadth-first or A*). Weights may be assigned to the edges ofCG
(where the weight may be defined as the Euclidean distance between the centroids
of the two cells connected by the edge) to improve the result of the search.

The result of the second step is a path through the graph (if there exists a path
between start and goal nodes), a so called channel. A channel is a sequence of con-
tiguous cells such that the cells of every pair of cells in the sequence are adjacent.
A possible channel for our example is shown in Figure 2.8.

6

1

3

2

4 5

7

9

8

10

12

13
11

14
15

16 18

17

20

21

19

Figure 2.7. The nodes of the connectivity graph are the cells ofCr and the edges
indicate adjacency between cells (compare to Figure 2.6). The nodes that hold the
current position forr and its destination, 17 and 5 respectively, are marked in the
figure.

36

5

7

9
10

12

14
15

S

17

������
������
������
������
������

������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����
����
����
����

����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

G

Figure 2.8. If there exists a robot path from current position to destination, then a
path will be found inCG. This path corresponds to a channel inC f ree.

2.2.3 Path Generation

Given a channel we can continue withStep 3, generating a robot path. As long
as the path we plan is inside the channel, we can be sure that it is collision-free.
When a path is created, qualities such as shortest path and all kinds of robot and
workspace constraints may be considered. A simple path can be constructed by
connecting start and goal positions through the centroids and edge points of the
cells in the channel. Remember that the generated path is a path through the pos-
sible configurations of the configuration spaceCr and not through the “real” Eu-
clidean workspace ofW . However, in this example they happen to coincide very
well. A possible path through the channel in this example is shown in Figure 2.9.

2.3 Exact Cell Decomposition for Multi-Robot Systems

When workspaces with more than one robot are studied, the path planning problem
is changed from planning in a static workspace to planning in a dynamic one.
Fortunately, all moving objects are known (because they are all known robots).

2.3.1 Decomposition of Free Space with Many Robots

Let us say that we are planning a path for a robotr1 in a workspaceW . W contains
some obstaclesO= fOigi2[1;k] and some robotsr = fr jg j2[1;l]. While planning for
r1, each of the other robotsrnfr1g are in exactly one of these two states

1. non-moving

2. moving

37

S

������
������
������
������
������

������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����
����
����
����

����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

G

Figure 2.9. When a channel is found, a path can be planned for the robot.

A non-moving robot, e.g.,r2, is nothing more than an obstacle like any other as far
asr1 is concerned. So a reasonable approach to handling non-moving robots is to
treat them just like any other forbidden area (see Figure 2.10). When considering

r2r1

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Figure 2.10. When decomposing the space for a robotr1, treat other non-moving
robots, e.g.,r2, as ordinary obstacles. This figure shows that decomposition works
the same for an obstacle (the polygon in the middle) and the robotr2 (the shape ofr2
has here been simplified to a square).

a non-moving robotr2, while planning a path forr1, the idea here is to treat the
space occupied byr2 on the rest of its path as an obstacle. Let us call this obstacle
for path obstacle(see Figure 2.11).

This idea will yield a safe path forr1 since it will avoid all the space thatr2

will occupy along the rest of its path. On the other hand, it may also be very
inefficient since the path ofr2 may be long, yielding big path obstacles forr1 and
an unnecessarily poor path. To improve the efficiency, a special property is added
to the path obstacles: paths may be planned across path obstacles.

38

r1

r2

Figure 2.11. When considering a moving robotr2, while planning a path forr1, the
space occupied byr2 on the rest of its path is considered to be an obstacle, a so called
path obstacle.

2.3.2 Example

Consider the decomposition ofC f ree in Figure 2.12, where path planning is per-
formed for a robotr1. It has its current position inSand its destination inG. On
the left there is a non-moving robotr2, and on the right there is a moving robotr3

with its corresponding path obstacle. Notice howr2 andr3 are taken into consider-
ation during the decomposition.

1
3

4

2

5

G

6

7

8

9

10

S

12

13

14

15

17

18

16

19

20

11

r2

r3�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

Figure 2.12.C f ree is decomposed for a robot in positionSwith destinationG. Notice
how r2 andr3 are taken into consideration during the decomposition.

Just as with ordinary cell decomposition, a connectivity graphCG is con-
structed (see Figure 2.13). Notice that nodes which correspond to cells that are
on either side of a path obstacle are connected by an edge.

The graphCG is in itself an ordinary graph and may be searched using any
graph search algorithm. In the example, a path can be found through the graph
from the start node to goal node. Just as in the case of ordinary cell decomposition,
the path corresponds to a channel inC f ree through which a path can be generated
(see Figure 2.14).

Until now it has only been explained when to plan a path. What has not
been shown is how this will be achieved in practice. The observant reader has

39

1

2

3

4

5

6

7
9

8

10

11

13

17

1412

16

15

18

19

20

Figure 2.13.The graph for this method is similar to one constructed in ordinary cell
decomposition. Notice, however that cells that are on either side of a path obstacle
are connected by an edge (dashed in the figure). The start and goal nodes of the robot
r1, 16 and 6 respectively, have been marked in the figure.

G

S

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������

������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

Figure 2.14. In this case there are actually two channels separated by a path obsta-
cle. A path, which is collision-free everywhere except where it is crossing the path
obstacle, is planned.

already noticed that the planned path is collision-free almost everywhere except at
the paths’ intersection. How paths’ intersections are handled will be explained in
Section 2.4, where the path planning method is extended into a motion planning
method.

2.4 Motion planning for Multi-Robot Systems

So far a method to plan paths for robots in a shared workspace has been presented.
To complete the motion planning method, it will also be explained how paths’
intersections, the only region where robots stand a risk of colliding with each other,
should be handled.

Two rules are introduced to assure that collisions do not occur:

Rule 1: A robot r1 that enters and travels a paths’ intersection has reserved the

40

region of that intersection (Figure 2.15).r1 hasallocatedthe intersection.

Rule 2: Furthermore, a paths’ intersection may only be allocated by one robot at
a time (Figure 2.16).

That Rule 1 and Rule 2 are sufficient for collision avoidance is proven in Appendix
A.1.

r1

r1�������
�������
�������

�������
�������
�������

Intersection
allocated by

Figure 2.15.A robot traveling a paths’ intersection has allocated the intersection.

Rule 1 can be realized just the way it is stated, i.e.,r1’s allocation is noted and
this piece of information made globally available. Rule 2 can be realized by not
allowing a robotr2 to enter the paths’ intersection if it is currently allocated by
some other robotr2.

r2

r1

r1

2r

�������
�������
�������

�������
�������
�������

 checks and

allocation
detects ’s

Figure 2.16.A robot r2 may not enter a paths’ intersection if some other robotr1 has
allocated it already.

Rule 2 raises the question what a robotr2 should do if it wants to enter a paths’
intersection that is currently allocated by another robotr1. The most simple ap-
proach is just to wait until the allocation has been released byr1. Simple solutions
are normally good since they keep the complexity of a method low, but since robots
may have to wait for each other, the problem of deadlock arises.

To avoid deadlocks, it is sufficient to violate at least one of the four required
conditions for deadlock ([Coffman et al, 1971]). One of the four is the “hold and
wait”-condition which states that a necessary requirement for deadlock is that
“each agent holds resources while waiting for other agents to release theirs”. A
translation (of the opposite, i.e., how to violate the condition) into the terms of
robots in this method is formulated in Rule 3.

41

Rule 3: A robot is not allowed to allocate a new paths’ intersection without first
releasing a previously allocated one.

It is not obvious how to realize Rule 3, but since a robot that can release an
allocation never ends up in a deadlock it is suitable to plan paths that only cross
one path obstacle at a time. In other words, there will be no edge in the connectivity
graph between two cells inC f ree which are separated by two path obstacles (Figure
2.17 illustrates this). A proof is presented in Appendix A.2.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

������
������
������
������
������
������
������

������
������
������
������
������
������
������ ���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

r

r

Figure 2.17. The left figure shows a planned path for a robotr that only crosses one
path obstacle at a time. On the right is a robotr which has a path planned across two
adjacent path obstacles. This leads to a potential deadlock situation.

In order for the method to work properly, correct global information must al-
ways be available. Problems arise if path planning is performed for two robots in
parallel. We might for instance end up with paths that are overlapping a lot and
difficult to handle, as depicted in Figure 2.18. In order to guarantee the global
knowledge, planning must be performed in sequence. I.e., let us say that paths are
going to be planned for some robotsr1 at timet1, r2 at timet2 andr3 at timet3, with
t1 < t2 < t3. If we start to plan forr1 at t1 and the planning has not been finished by
t2, which is the first time we can plan forr2, we can not plan forr2 before a path
has been generated forr1. In the mean time, the state of the system can be said to
bediffuse, not reliable and no planning may be performed during this time.

Note that paths’ intersections also have to be handled in sequence to prevent
two robots from allocating the same intersection at the same time.

2.5 Method Summary and Evaluation

It is natural to divide the motion planning method (MPM) into two separate parts:

1. Path planning

2. Path monitoring

42

r1

r1

r2

r2

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������������������
���������������������
���������������������
���������������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

Risky region

Figure 2.18.Path planning has been performed for robotsr1 andr2 in parallel. Their
paths overlap in the narrow passage, and if they both occupy the “risky region” at the
same time, some extra functionality has to be added to solve the problem (otherwise
they will collide or be deadlocked).

Path planning can be said to be off-line, it is performed before any motion
has been executed. The path planning is performed using a modified exact cell
decomposition method, obeying Rule 3 in Section 2.4. The main difference from
the ordinary method is that robots are considered to be obstacles in the workspace
(non-moving robots as ordinary obstacles and moving as path obstacles which may
be crossed). A side-effect is that connectivity graphs are constructed differently
(nodes corresponding to cells that are on either side of a path obstacle have an edge
between them).

Path monitoring is an on-line process. It monitors a robot as it travels along its
path and makes sure that paths’ intersections are handled correctly (implementing
Rule 1 and Rule 2 in Section 2.4).

Both parts handle their respective input in sequence to assure that sufficient
information for the motion planning is available, and they are both deliberative
since they rely heavily on the workspace representation.

MPMhas been proven to yield collision-free motion for mobile robots sharing
the same workspace. The robots can be applied to continuous problems of the
type mentioned in Section 1.2.2, since paths may be planned for robots at any
time. Furthermore, the method lacks static priorities which would assign unjust
privileges to the robots (in the sense that robots with high priority would get more
work done than robots with low priority).

Additionally, MPM, when discussing multi-robot control architectures, is inher-
ently more centralized than decentralized because of the need for global knowl-
edge. It is possible, though, to “decentralize” it in the sense that each robot may
plan for itself (independent of a supervisor) by acquiring essential global infor-
mation when needed ([Qutub et al, 1997]). This, however, does not offer all the
advantages, in terms of for instance scalability, that could be expected of a decen-
tralized control architecture ([Arai, Ota, 1992]).

Chapter 3 explains howMPMcan be implemented to bring the theory into prac-
tice.

Chapter 3

Implementing the Motion
Planning Method

In Chapter 2, a method for motion planning for a multi-robot system (MPM) was
presented. In this chapter, the implementation ofMPMon a system containing two
robots is described.

3.1 Restrictions

The implementation ofMPMwas affected by the available experiment equipment.
For the experiments, two robots could be used. This is unfortunately the least num-
ber of robots to use when experimenting with collision avoidance, but at the same
time the use of more robots would imply an added complexity that is unnecessary
to illustrate the basic principles ofMPM. Furthermore, usingMPMwould introduce
some indeed interesting, yet difficult geometrical problems which can not be con-
sidered to be within the scope of this project.

To make the mapping from workspace to configuration space less complicated
it is assumed that

� workspace, robots and forbidden areas all have polygonal shape,

� the robots are rotation invariant1, which is a realistic approximation for the
robots used.

Additionally, even thoughMPMallows robots themselves to be responsible for
the planning work, as global information is required for the planning it is easier to
implement it in a centralized architecture. Since the implementation is a demon-
stration of feasibility, a centralized architecture with a single planner (a supervisor)
was chosen.

1“Rotation invariant” is explained in Section 1.1.3.

43

44

3.2 Equipment

For the experiments two omni-directional2 robots (shown in Figure 3.1(a) and Fig-
ure 3.1(b)) of theInstrumentation Project Promotion Divisionat RIKEN were
used. They both run the VxWorks operating system3 on their on-board comput-
ers and are connected to a wire-less Ethernet LAN. More details on these robots
can be found in [Asama et al., 1995].

The supervisor agent mentioned in Section 3.1 was implemented and run on a
Toshiba Satellite 2180 CDT laptop computer with a 475 MHz AMD-K6 CPU and
64 MB RAM.

Table 3.1.Robot features

Feature Figure 3.1(a) Figure 3.1(b)
Omni-directional Yes Yes
Dims (bxdxh) 45x50x62cm3

CPU Pentium 200 MHz Pentium MMX 133 MHz
RAM 32 MB 64 MB

(a) (b)

Figure 3.1. Experiment robots

2Explained in Section 1.1.1.
3VxWorks is a real-time operating system (RTOS).

45

3.3 Software Architecture

Programming on the robots, which was performed in the C programming language,
constitutes only a small part of the entire programming work. The C program-
ming involved invocation of low-level robot motion commands, establishing and
maintaining TCP/IP network connection, parsing received messages and sending
status messages. The purpose of this part of the programming was to set up server
processes that provide interfaces to external programs for sending requests (e.g.,
“Move to location x,y”) and inquiries (e.g., “What is your speed?”) to robots.

The major part of the programming efforts was devoted to the supervisor agent,
which was implemented in the JAVA2 programming language on the laptop com-
puter (described in Section 3.2). The program architecture is depicted in Figure 3.2
as a UML deployment diagram. The supervisor agent4 maintains the state of the
robot system (i.e., data about for instance robot and obstacle positions and robot
paths); it also encompasses the path planner and path monitor explained in Chapter
2. This way, the robots are relieved of a lot of the, sometimes strenuous, computa-
tion work regarding path planning and path monitoring.

In the UML diagram (Figure 3.2), the boxes with two smaller boxes overlap-
ping the left edge are computer processes (e.g.,Move, OperatorGUI or Main-
Control). Some of the process symbols have a line ending in a circle extending
from their bottom edges (e.g.,Request). The circles denote interfaces towards
other programs. The plain boxes (EnvironmentModel andCellDecomposition-
Model) are just class instances. Dashed arrows indicate dependencies. A dashed
arrow from a process or instancec1 to anotherc2 means thatc1 is aware ofc2 and
that changes inc2 might lead to changes inc1.

The rest of this section deals just with the software running on the laptop com-
puter (if nothing else is stated).

3.3.1 Model-View-Control

The implementation on the laptop is based on theModel-View-Control(MVC) pro-
gramming architecture. MVC encourages the application developer to subdivide a
program into objects of three different types:

Model keeps the data or state of the program

View displays data

Control may access and alter data

A model acceptssubscribers(objects which claim to be interested in the data stored
in the model) which it will inform when its contained information gets updated.

4The supervisor agent is composed of theMainControl and PathMonitor processes and the
EnvironmentModel andCellDecompositionModelclasses in the diagram.

46

:MainControl :PathMonitor

:Environment
Model

:CellDecomposition
Model

:OperatorGUI :CellDecomposition
GUI

MotionPlanning

Linux x86:laptop PC

:Request :Move

<<TCP/IP>>

:VxWorks Robot

Request Move

Figure 3.2. UML Deployment Diagram

The MVC architecture is flexible and allows for instance additional Views to
easily be added. Figure 3.3 explains how MVC objects depend in this implemen-
tation.

3.3.2 Models - data containers

The supervisor has two models (data containers):

EnvironmentModel keeps information about the workspace, robots and forbid-
den areas

CellDecompositionModel keeps configuration space obstacles and cells of a de-
composition

It is reasonable to make this division; theEnvironmentModel contains informa-
tion that must be available to the entire application (i.e., supervisor and GUIs5),
while theCellDecompositionModelcontains information from the latest cell de-

5GUI is an acronym for Graphical User Interface

47

read and
modify

inform of
changes

motion
control

operator
request

Model View

Robot system

read

Control

Figure 3.3. This figure explains how the MVC objects in the supervisor agent and
GUIs depend on each other. An arrow from an objectA to another objectB in the
figure expresses thatA has a reference toB and a text string close to the arrow explains
what the reference is used for (e.g., read).

composition and its contents are only used to be displayed and to generate a robot
path.

3.3.3 Views - data displays

A few Views (or GUIs) were developed to make the testing of the method simpler.
The Operator GUI (Figure 3.4) displays the data of theEnvironmentModel

(Section 3.3.2). It also allows a (human)operatorto mark a spot in the workspace
and command a robot to go to the spot.

The cell decomposition GUI (Figure 3.5) displays data from both theEnviron-
mentModel andCellDecompositionModel. The operator can choose which data
should be displayed.

3.3.4 Controls - data manipulators

A process calledMainControl encompasses both the Path Planner and the Path
Monitor. The normal operation of theMainControl , when it receives a request for
robot movement (the request includes data about the robot and its destination) for
a robotr, is to use the Path Planner to plan a path for the robot. If a path exists, a
PathMonitor process is started that interacts with the robot when it travels along
its path and makes sure it will not collide.

48

Figure 3.4. This GUI displays data contained in theEnvironmentModel. The
workspace is in the middle of the window. Besides from the boundary of the
workspace it also displays three obstacles (polygons) and two robots (square with
a line that indicates current orientation).

Figure 3.5. This GUI displays the workspace objects and the result of the latest cell
decomposition (e.g., configuration space obstacles, cells and paths). The operator of
the GUI has the possibility to choose which information he or she wants to see.

Path Planner

The Path Planner constructs the configuration spaceC given the workspace and
the robot which it plans for. The Path Planner implements the method for cell de-
composition for multi-robot systems explained in Chapter 2. The decomposition
of space is based on a method called “Cell Decomposition of Arrangements” (pre-
sented in [Sleumer, Tschichold-Gürman, 1999]). This method differs a bit from the

49

trapezoidal decomposition. Instead of using a sweep-line, all edges (i.e., edges of
obstacles and workspace boundary) in the workspace are extended from both end-
points until they reach another workspace edge or the boundary of the workspace.
This way the free spaceC f ree is decomposed. A comparison between trapezoidal
and arrangements decomposition is shown in Figure 3.6.

������
������
������
������
������
������

������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����

�����
�����
�����
�����

Cfree

������
������
������
������
������

������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����
�����
�����
�����

�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����

����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

Trapezoidal Arrangements

Figure 3.6. There is not a single unique way to decompose free space.C f ree in the
top of the figure is here decomposed using Trapezoidal (lower left) and Arrangements
(lower right) decompositions.

Once a channel has been found through the cells ofC f ree, a path can be planned.
A greedy and heuristic algorithm which takes paths’ intersections into considera-
tion has been developed for this purpose. The resulting path is represented as a
sequence of vertices (i.e., intermediate workspace positions and the destination).
The path generation algorithm is described in Appendix B.

Path Monitor

When a pathp has been planned for a robotr, MainControl starts up aPathMon-
itor process which interacts withr as it travels alongp. The Path Planner sends a
message tor to go to the next intermediate position (vertex)poson p. r goes to
posusing its own odometry. When it has reachedposit stops and sends a message
back to itsPathMonitor which replies with the next intermediate position, unless
the destination has been reached in which case thePathMonitor terminates.

3.3.5 Software interaction

The sequence diagram in Figure 3.7 depicts the interaction between processes and
class instances when an operator uses theOperatorGUI to move a robotr.

1. MainControl invokes thePathPlanner.

50

2. When thePathPlanner returns, the result of the cell decomposition is stored
in theCellDecompositionModel.

3. If PathPlanner succeeded in planning a path, aPathMonitor process will
be started, which interacts with theMove process of the robotr.

4. PathMonitor sends a position (which is the next vertex in the path) toMove
which the robot should travel to.

5. Move replies with anarrived message when the robot has reached the posi-
tion.

6. PathMonitor removes the last vertex from the path and asks theEnviron-
mentModel to update to the new information about robotr.

Steps 4 to 6 are repeated until there are no more vertices left in the path and then
thePathMonitor terminates.

OperatorGUI

Environment
Model

MainControl

PathPlanner

Move

CellDecomposition
GUI

Model
CellDecomposition

PathMonitor

move()

move()

update()

[path planned]
monitor

update()

refresh()

move

arrived

refresh()

refresh()

*[for all vertices in path]

time

Figure 3.7. This diagram describes how the processes and class instances in Figure
3.2 interact when an operator issues a valid move-request from theOperatorGUI .
The move-arrived message passing between thePathMonitor andMove is performed
repeatedly until the path has no more vertices and the robot has reached its destination.

3.4 Summary

The implementation ofMPMin this project provides a centralized control architec-
ture where most of the computations are concentrated to a supervisor agent on a
special computer (which is not on board any robot). The supervisor agent care

51

for path planning for all robots, as well as path monitoring. The programming
structure of the supervisor is based on the MVC programming architecture which
encourages separation of data, data display and data manipulation. MVC further-
more allows future data manipulator and data display software to easily be added.

Each time a new destination for a robotr is set, the supervisor plans a path
(path planning) for it and finally starts a separate process which interacts withr
as it travels to the destination to instruct it where to go and when to halt (path
monitoring).

52

Chapter 4

Collision-Free Motion in
Simulations and Experiments

This chapter contains the results of some simulations and real robot experiments.
The purpose of the simulations and experiments is to show that the implementation
works as planned and that the motion planning method (MPM) can be integrated with
a set of real robots.

4.1 Path Planning Simulations

In Chapter 2, a few extensions to the path planning method exact cell decomposi-
tion was presented. The extensions describe how robots in a workspace are handled
during path planning.

In a multi-robot system, when planning for a robotr, treat other robots as either

� ordinary obstacles, if they are non-moving (1), or

� path obstacles, if they are moving (2).

Furthermore, allow paths to be planned across path obstacles (3).
The following simulations show that these three extensions have been imple-

mented correctly.

4.1.1 Considering Non-Moving Robots

Figure 2.10 illustrates the idea of (1). If a path is planned for a robotr1, treat a
non-moving robotr2 as an obstacle in order to avoid collision between the two
robots.

A reasonable way to show that the implementation works correctly is to com-
pare the decompositions of two workspacesW1 andW2, where the difference be-
tween the two is thatW1 has a robot which has been replaced by an obstacle with
the same shape and position inW2.

53

54

Figure 4.1(a) shows the workspaceW1, which includes three obstacles and two
robots (the robots are the rectangles that contain a small line, which indicates the
orientation of the robot, from center to border) and Figure 4.1(b) the decomposition
of the free space ofW1.

(a) (b)

Figure 4.1. (a)WorkspaceW1 including two robots. A destination for the lower
robot is marked with a cross in the workspace.(b) The rectangles are the cells of the
decomposition.

Figure 4.2(a) shows the workspaceW2 and Figure 4.2(b) the decomposition of
its free space. Compare Figure 4.1(b) with Figure 4.2(b). They are identical and
consequently a non-moving robot has the same impact on the decomposition as an
obstacle of the same size and shape. Hence, bothW1 andW2 yield the same robot
path (see Figure 4.3) if the same graph search and path generation algorithms are
used.

4.1.2 Considering Moving Robots

To handle robots that are moving during path planning, the idea of path obstacle is
used (illustrated in Figure 2.11). When planning for a robotr1, the space occupied
by a moving robotr2 on its known path, from its current position to the end of its
current path, is considered to be an obstacle. Using this idea,r1 will not be assigned
a path which leads to a conflict (i.e., a deadlock or collision situation) withr2.

The following example will show that moving robots are taken into consid-
eration as intended during path planning. Figure 4.4(a) shows a workspaceW3

that contains two robotsr1 and r2, two long vertical obstacles and a cross which
indicates the intended destination of robotr1. r1 is the robot in the lower right
corner.

55

(a) (b)

Figure 4.2. (a)WorkspaceW2 including two robots. A destination for the lower
robot is marked with a cross in the workspace.(b) The rectangles are the cells of the
decomposition.

Figure 4.3. Both workspacesW1 andW2 yield the same robot path.

In the first caser2 is non-moving when a path is planned forr1 to its destination.
The result of the path planning is illustrated in Figure 4.4(b). The free space has
been decomposed into a set of cells which are displayed with lines that surround
the robots and obstacles in the figure. The planned path ofr1 is the polyline that
extends from its center.

In the second case, which is illustrated with workspaceW4 in Figure 4.5(a),r2

has just started to move along a path that goes between the two obstacles. When
path planning forr1 is started,r2’s path makes up a path obstacle. The path obstacle

56

(a) (b)

Figure 4.4. (a)WorkspaceW3 with two robots and two long vertical obstacles. A
destination for the lower robotr1 is marked with a cross in the workspace.(b) The
cells of the decomposition are the lines that surround the robots and obstacles. The
path of robotr1 extends from its center to its destination.

is taken into consideration during path planning forr1 and the result is displayed in
Figure 4.5(b). Compare this result with the result from the previous case (displayed
in Figure 4.4(b)). Now there are no cells in the narrow passage between the two
obstacles which is blocked byr2 and hence the path obstacle has been taken into
consideration and the resulting path (forr1) differs from the previous case.

4.1.3 Planning Paths’ Intersections

Path obstacles are suitable to use during path planning, but if paths are long path
obstacles will be large and consequently the free space will be small. The impact
of this problem is reduced by allowing paths to be planned across path obstacles.

The following example shows that paths may be planned across path obstacles.
Figure 4.6(a) displays a workspace containing only two robots,r1 (on the upper
left) andr2 (on the lower right), and the path obstacle ofr2 that extends to the left
side of the workspace. Now,r1 wants to move from its current position to the right
side of the workspace and a path is planned for it. As can be seen in Figure 4.6(b),
the result of the path planning forr1 is a path that is planned to crossr2’s path. It is
not easy to see in the figure that the path ofr1 is actually crossing a path obstacle,
but the bordered area surroundingr2 in Figure 4.6(b) is actually its path obstacle
and not a cell (remember that cells are convex).

57

(a) (b)

Figure 4.5. (a)WorkspaceW4 with two robots and two long vertical obstacles. A
destination for the lower robotr1 is marked with a cross in the workspace. Robot
r2 makes up a path obstacle.(b) The cells of the decomposition are the lines that
surround the robots and obstacles. The paths of the robots are the polylines that
extend from their centers.

(a) (b)

Figure 4.6. (a)The lower robotr2 has a planned path to its destination.(b) The free
space has been decomposed and the robot on the leftr1 has a path planned across the
path obstacle of the lower robotr2.

58

4.2 Path Monitoring Simulations

MPMdoes not assign static priorities to robots, i.e., the robot that first reaches a
paths’ intersection may allocate it and pass. The following example shows that the
robot which should stop and wait for another robot at a paths’ intersection is not
predefined.

Remember the example in Section 4.1.3 with two robotsr1 andr2 with cross-
ing paths in an empty workspace. Figure 4.7(a) shows a simulation wherer2 has
reached the paths’ intersection beforer1 can allocate it. Beforer1 is allowed to
cross the intersection,r2’s allocation is detected andr1 has to wait (which is indi-
cated by the “waiting” message in the figure). Figure 4.7(b) shows thatr1 will no
longer have to wait whenr2 has released its allocation.

(a) (b)

Figure 4.7. (a) The robot on the leftr1 has to wait while the other robotr2 has
allocated the paths’ intersection.(b) The paths’ intersection is no longer allocated by
r2 andr1 may pass.

By delaying the start ofr2 or lowering its speed,r1 may reach the common
paths’ intersection beforer2. In Figure 4.8(a),r1 is the first robot to reach the inter-
section and in this caser2 will have to wait. Figure 4.8(b) shows thatr2 is allowed
to cross the intersection whenr1 has left the paths’ intersection and released the
allocation.

These two simulations show that static priorities, which may have bad side-
effects, are not used in the implementation.

59

(a) (b)

Figure 4.8. (a)The left robotr1 has allocated the paths’ intersection and robotr1 has
to wait. (b) Robotr1 has released its allocation and the other robotr2 may cross the
intersection.

4.3 Real Robot Experiments

Until this point, the chapter has only dealt with simulations. To show that the
implementation of both path planning and path monitoring works with the avail-
able robot hardware, some experiments with physical robots were performed. As
pointed out in Section 1.2.3, neither localization nor robot communication is in
the focus of this project, so the same assumptions were made for the real robot
experiments as for the simulations. This means that it was assumed that the com-
munication between robots and laptop computer, over the wireless Ethernet LAN in
the experiment environment, worked reliably and that the robot odometry worked
perfectly (no navigation system was used).

The experiments realize the simulation displayed in Figure 4.8(a) and use the
two robots presented in Section 3.2. The experiments’ workspace is of the same
shape and size as the corresponding simulated workspace, i.e., rectangular and
approximately three times five meters. This particular simulation is interesting
because it exposes the implementation ofMPMto the circumstance of both robots
being subjects to an imminent collision, and therefore tests how the software han-
dles robot-travel along path segments, synchronization of path planning, allocation
of paths’ intersection, detecting allocation, halting and releasing allocation.

Figure 4.9 shows the real world representation of Figure 4.8(a) wherer1 has
allocated the paths’ intersection. Consequently, Figure 4.10 shows the real world
representation of Figure 4.8(b).

60

Figure 4.9. The black robot has allocated the paths’ intersection and the white one
has to wait.

Figure 4.10.The black robot has released its allocation and the white one may cross
the intersection.

Chapter 5

Summary and Discussion

This chapter summarizes the work presented in this thesis and highlights the ad-
vantages of the developed motion planning method (MPM). It also suggests suitable
applications, improvements of and extensions toMPM.

5.1 Summary

The problem presented in Section 1.2 concerns the development of a motion plan-
ning method for control of robots in a multi-robot system. There are a few restric-
tions contained within the problem. The following research topics, for instance,
are not discussed:

� task allocation,

� navigation system,

� non-holonomic robots,

� unknown workspaces.

A method for motion planning (MPM) was developed by extending the path plan-
ning method exact cell decomposition and adding rules for how robots cross paths’
intersections.MPMis naturally subdivided into two parts: path planning and path
monitoring.

Path planning includes decomposition of free space into cells taking special
care of robots in the workspace, treating moving ones as path obstacles. Paths are
allowed to be planned across other paths.

Path monitoring includes monitoring robots as they travel along their planned
paths making sure that no collision will occur at paths’ intersections.

The method was implemented on a set of two robots. Some restrictions were
introduced to simplify the implementation, e.g.,

61

62

� robots are rotation invariant1,

� obstacles and robots are spatially modeled as polygons.

A few simulations have been performed on the software and experiments on
the robots. They show that the implementation works as intended and that one of
the simulations can be realized with the robots.

5.2 Conclusions

A method,MPMwas devised, implemented, and tested with satisfying results. Note
that in the path planning part ofMPM, only step 1 (in Figure 2.2) of the original
cell decomposition method is altered. Hence, the contribution of this work to path
planning is how to generate connectivity graphs (the crossing of path obstacles
is optional), and subsequently channels, for multi-robot systems. As mentioned
in Section 2.1, channels are useful both for deciding if a path exists and for path
generation.

Unfortunately,MPMhas a few drawbacks. Firstly, it requires global knowledge
about robots and workspace and, although they can be made to plan for themselves,
robots need to acquire information about all other robots occasionally to maintain
the motion planning. This has a negative effect on the scalability (the efficiency
when the number of robots increases) of a robot system usingMPM2.

Secondly, path obstacles eat up a lot of the free space (especially if paths are
long) and will possibly prevent paths from being planned. This problem, illustrated
in Figure 5.1, is yet another threat to scalability.

Thirdly, even though a deadlock will not occur for moving robots, it is still
possible that a deadlock arises when two or more robots try to plan paths and
they are blocking each other (see Figure 5.2(a) and Figure 5.2(b) for examples).
However, such a deadlock situation is easily detected (since global information is
at hand) and there are already methods available for solving it3.

MPMis particularly applicable to problems which lack an end-state (or end-
configuration, e.g., end positions of all robots) and value safety higher than effi-
ciency.

No end-configuration Some motion planning methods for multi-robot systems
presented in previous works have the drawback that they require a known

1This assumption eliminates the orientation dimension of the configuration space and makes cal-
culations simpler.

2When the number of robots increases, if the robot system is centralized, i.e., has a single agent
devoted to motion planning, this agent will have to be improved. On the other hand, if the system is
decentralized, communication resources between robots will have to be improved.

3In [Latombe, 1993] a motion planning method is described which plans collision-free motion
for robots of a multi-robot system given known start and end configurations. In this case the start
configuration is the configuration of all robots in the deadlock situation and the end configuration is
the configuration of all robots when the robots of the deadlock have been moved out of the deadlock.

63

G

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

r

Figure 5.1. In this case the use of path obstacles preventsr from planning a path to
its destinationG.

��
��
��
��

��
��
��
��

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

g

g1

2

r

r

1

2

(a) (b)

Figure 5.2. (a)This is a deadlock situation since ifr1 wants to go tog2 andr2 wants
to go to g1, then r1 and r2 are blocking each other.(b) In this simulation a line
between the two robots and the DEADLOCK message next to it indicate that a (path
planning) deadlock has been detected.

end-configuration of the system. One important property withMPMis that it
has no such requirement. This makes it applicable to continuous problems
that lack an end-configuration, e.g., those mentioned in Section 1.2.2.

Safety Robots will have to stop sometimes to let other robots pass, and planned
paths may be inefficient since robots taken into consideration during path

64

planning for a robotr may be long gone whenr eventually reaches the region
where the other robots were when its path was planned (as illustrated in
Figure 5.3(a) and Figure 5.3(b)). On the other hand,r is safe on its path and
knows that other robots are aware of its path and try to avoid it.

G

r1

r2
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

(a)

G

r1

r2

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

(b)

Figure 5.3. (a)r1 has a path planned, through a workspace also containing an obstacle
and another robotr2, to its destinationG. If it were not forr2, a shorter path, stretching
below the obstacle, could have been planned.(b) r2 is not blocking the path below
the obstacle anymore.r1 could have used the other path and reached its destination in
less time (but there would have been trouble ifr2 halted in the narrow passage).

5.3 Future Work

When discussing future work, it is useful to divide the work of this thesis into two
separate parts:methodand its implementation. While the method encompasses
the sub-methods and rules used and presented in Chapter 2, the implementation
encompasses the software and hardware used to implementMPM. It is natural to
separate them since the method is not dependent on its implementation (it can be
implemented in many different ways).

5.3.1 Implementation

As mentioned in Section 5.1, a few simplifications have been introduced to the
implementation ofMPM. What first of all would be interesting is to allow more
robots to be used in simulations and experiments for further testing of the utility
of MPMin practice. It would also be interesting to study how to handle overlapping
path obstacles and forbidden areas. This, however, requires the development of
some fairly complicated geometrical algorithms.

65

At present the robot-system used in Section 4.3 only relies on odometry for
its navigation. This makes it useful only for a short while since the robots’ po-
sition estimations will soon start to deviate from the actual positions. In order to
assure correct navigation, which is necessary forMPMto work reliably, an absolute
measurement technique (see Section 1.1.2) will have to be integrated into the robot
system.

When it comes to path generation, it would both be interesting to generate
the shortest paths from start to destination and to optimize the path to suit the
hardware of the robot system in use. To give an example of the latter wish, it may,
for instance, be useful to increase or decrease the number of stops on the path if
this is necessary for the use of a possibly employed navigation system.

The inefficient stops along planned paths are slightly annoying and should be
eliminated. This however is somewhat complicated and requires that the dynamics
of robots (e.g., its speed) and speed and reliability of communication links are
taken into consideration.

5.3.2 Method

The work in this thesis only presents a foundation for a task solving multi-robot
system. Future work may progress in many directions, but the most important
motivation is to makeMPMapplicable to more problems. Here are a few examples
of possible future fields of research:

Scalability As pointed out in Section 5.2,MPMoffers poor scalability. In order to
make it useful in applications with a fixed, large number of robots or varying
number of robots, this issue has to be addressed.

Partial models One of the assumptions in this work is that the environment is
completely known. For real problems, though, this is rarely the case. Many
problems include unknown non-moving and moving objects. It is therefore
essential to add mechanisms toMPMthat can manage such objects. One ob-
vious measure to achieve this goal is to employ sensors (for instance sonar
and IR) on board the robots.

Dynamic constraints If robots are given dynamic constraints, for instance veloc-
ity constraints (e.g., maximum or minimum speeds) this can be taken into
consideration during path planning and especially during path monitoring.

Non-holonomic robots At present only holonomic robots are considered. It would
be interesting to extendMPMto include even non-holonomic ones.

Tasks Specific tasks might impose non-geometric constraints that ought to be con-
sidered. In a transportation setup, it is of interest that robots which carry ob-
jects have precedence over robots that do not, as delivery time might be an
objective. In addition, the relation between robots might be a task constraint
to be considered.

66

Appendix A

Proofs of Motion Planning
Consistency

A.1 Collision-Free Paths’ Intersections

A proof method called natural deduction is here used to prove that it is sufficient to
obey Rule 1 and Rule 2, from Section 2.4, to avoid collisions.

Rule 1: A robot r1, which enters and travels a paths’ intersection, has reserved
the region of that intersection.r1 is said to have allocated the intersection
(Figure 2.15).

Rule 2: Furthermore, a paths’ intersection may only be allocated by one robot at
a time (Figure 2.16).

Table A.1. Definitions

Sets R (robots),I (paths’ intersections),T (continuous time)

Variables r; r1; r2 2 R, i 2 I andt 2 T

Constants a;b2 R, c2 I andd 2 T

Predicate1 Inside(r; i; t): robot r is inside paths’ intersectioni at timet

Predicate2 Alloc(r; i; t): robotr has allocated paths’ intersectioni at timet

Predicate3 Collision(r1; r2; t): robots r1 and r2 are colliding at timet.
Collision(r1; r2; t)$9i(Inside(r1; i; t)^ Inside(r2; i; t)^:(r1 = r2))

In Table A.1 some symbols that are useful for the proof are defined. A collision is
here, a bit sloppily, defined to be equivalent to two (unique) robots being inside the

67

68

same paths’ intersection at the same time. In fact, if this happens, collision might be
avoided (by pure luck), butCollision() is a condition that is required for collision
(i.e., we will not have a collision at any timet such that:Collision(r1; r2; t)).

With the definitions in Table A.1, Rule 1 and Rule 2 can be expressed as

Rule 1: R1$8r8i8t(Inside(r; i; t)! Alloc(r; i; t))

Rule 2: R2$8r18r28i8t(Alloc(r1; i; t)^Alloc(r2; i; t)! (r1 = r2))

It will be proven, given Rule 1 and Rule 2, that no robot will collide. This can
be expressed in logic using the symbols now defined as

R1;R2 j= :9r19r29tCollision(r1; r2; t) (A.1)

whereCollision(r1; r2; t) may be replaced with9i(Inside(r1;a; t)^ Inside(r2; i; t)^
:(r1 = r2)) according to its definition.

By assuming the opposite and deduce a contradiction A.1 will be proven.

1 8i8t8r(Inside(r; i;t)! Alloc(r; i;t)) premise
2 8r18r28i8t(Alloc(r1; i;t)^Alloc(r2; i;t)! (r1 = r2)) premise
3 + 9r19r29t9i(Inside(r1; i;t)^ Inside(r2; i;t)^:(r1 = r2)) assumption
4 ++ 9r29t9i(Inside(a; i;t)^ Inside(r2; i;t)^:(a= r2)) assumption(r1 = a)
5 +++ 9t9i(Inside(a; i;t)^ Inside(b; i;t)^:(a= b)) assumption(r2 = b)
6 ++++ 9i(Inside(a; i;d)^ Inside(b; i;d)^:(a= b)) assumption(t = d)
7 +++++ Inside(a;c;d)^ Inside(b;c;d)^:(a = b) assumption(i = c)
8 +++++ Inside(a;c;d) ^E(7)
9 +++++ Inside(b;c;d) ^E(7)
10 +++++ 8t8r(Inside(r;c;t)! Alloc(r;c;t)) 8E(1, i = c)
11 +++++ 8r(Inside(r;c;d)! Alloc(r;c;d)) 8E(10,t = d)
12 +++++ Inside(a;c;d)! Alloc(a;c;d) 8E(11,r = a)
13 +++++ Inside(b;c;d)! Alloc(b;c;d) 8E(11,r = b)
14 +++++ Alloc(a;c;d) !E(8,12)
15 +++++ Alloc(b;c;d) !E(9,13)
16 +++++ Alloc(a;c;d)^Alloc(b;c;d) ^I(14,15)
17 +++++ 8r28i8t(Alloc(a; i;t)^Alloc(r2; i;t)! (a= r2)) 8E(2, r1 = a)
18 +++++ 8i8t(Alloc(a; i;t)^Alloc(b; i;t)! (a= b)) 8E(17,r2 = b)
19 +++++ 8t(Alloc(a;c;t)^Alloc(b;c;t)! (a= b)) 8E(18,i = c)
20 +++++ Alloc(a;c;d)^Alloc(b;c;d)! (a= b) 8E(19,t = d)
21 +++++ a= b !E(16,20)
22 +++++ :(a= b) ^E(7)
23 +++++ ? :E(21,22)
24 ++++ ? 9E(6,7-23)
25 +++ ? 9E(5,6-24)
26 ++ ? 9E(4,5-25)
27 + ? 9E(3,4-26)
28 :9r19r29t9i(Inside(r1; i;t)^ Inside(r2; i;t)^:(r1 = r2)) C(3-27)
�

A.2 Avoid Planning Deadlocks

In Section 2.4, it is claimed thatMPMavoids planning deadlocks, if “paths being
planned are allowed to cross only one path obstacle at a time” (a consequence of

69

Rule 3 from the same section). This means, in other words, that there will be no
edge in the connectivity graph between two cells inC f ree which are separated by
two path obstacles.

It is important to notice that even though a robot will never have its path
planned (say at timet0) across two adjacent path obstacles (i.e., it will never have a
path planned that has two contiguous paths’ intersections), it may subsequently end
up with that because of paths planned later (at some timet > t0) for other robots.

Also notice that forn robots the worst case is when all robots have paths (i.e.,
all robots are moving), since a non-moving robot will not contribute with even a
single paths’ intersection.

An induction proof proves this fact. Letn be the number of robots andP(n) be
the predicateP(n): path planning withn robots is deadlock-free (see Figure 2.17).

The base case of the proof isP(3)1. Assume the worst case, i.e., that all three
robotsr1, r2 andr3 are moving (have paths). Since robots are handled in sequence
(Section 2.4), paths will be planned first forr1 and subsequently forr2. r1 and
r2 may have many intersections, but at this point in time, the system is deadlock-
free (since deadlock is not possible for just two robots). Now, even if the path for
the third robotr3 will be planned in such a way that bothr1 andr2 get paths with
contiguous intersections (i1;3 andi1;2, for instance, in Figure A.1), no deadlock will
arise. The reason for this is thatr3 can not end up in a deadlock (it path was planned
that way) and hencer1 andr2 will have no problems withi1;3 andi2;3 respectively.

r1

r3

r2

i1,2

i1,3

i2,3

����
����
����
����
����
����

����
����
����
����
����
����
���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

Figure A.1. Paths are planned forr1 and r2 first and then finally forr3. r3’s path
makesr1’s andr2’s paths have two contiguous intersections each. This however poses
no problem sincer3 can not end up in a deadlock.

The induction step, which will showP(n)! P(n+ 1), concludes the proof.
AssumeP(n), which means that paths have been planned forn robots without caus-

1P(1) is not interesting since there can be no deadlock with just one robot.P(2) can not have
deadlocks either since a robot can not have two contiguous paths’ intersections (which would require
three robot paths for two robots which, of course, is impossible).

70

ing a potential deadlock. Let us now plan for a robotrn+1. Its path may intersect
many other paths and may result in alln other robots having two or more contigu-
ous intersections, but it may not cross two adjacent path obstacles. Once again,
at least robotrn+1 is deadlock-free and may travel to its destination, and since the
othern robots also are deadlock-free (through the assumption in the induction step)
P(n+1) also holds.�

Appendix B

Path Generation

In Chapter 2 and Chapter 3, a methodMPMfor motion planning is described. How-
ever, the method only reveals how a set of channels1 is generated, it does not say
how to generate a path for a robot.

For the experiments in this project, Algorithm 1 below was used. The algorithm
assumes that a set of channelschnls, a start vertexvs, and a destination vertexvd

are available. The cells are ordered as illustrated in Figure B.1. Let us furthermore
assume thatchnlsis a data structure in which all cell edgesfei; jgi; j (i.e., edgej in
cell ci) that have acorresponding edgehave a reference to it. All edges also know
which cell it belongs to.

vdvs
2 3

4

5

1

Path obstacle

Cell
Channel

Figure B.1. The chnls variable contains a channel (or possibly many channels if
there are path obstacles intersecting). The cells ofchnlsare numbered from the the
cell containingvs to the one containingvd.

Corresponding edgeEdgee1 is said to have a corresponding edgee2 if e1 ande2

either intersect or if they are on either side of a path obstacle. It is also re-
quired thate1 ande2 belong to different consecutive cells. Furthermore,e1 is

1A channel is an ordered set of contiguous cells

71

72

also the corresponding edge ofe2. Hence, they are mutually corresponding.
Figure B.2 illustrates the concept of corresponding edges.

e1

e2
e3

e4

Figure B.2. Edgese1 ande2 are corresponding since they belong to two different and
contiguous cells and intersect. Cellse3 ande4 are also corresponding since they are
on either side of a path obstacle.

Algorithm 1 is greedy in the sense that it tries to make a path fromvs to vd by
connecting them with a straight linel . A variable path keeps the vertices of the
path that is generated. If it is not possible to generate a straight path betweenvs

andvd (i.e., if l intersects the channel boundary) the first cellcell which l exited
the channel will be noted (line (6)). The intersection between the cell boundary
betweencell and cell� 1 and l will be stored if cell > currentcell (line (12)),
wherecurrentcell keeps the cell number of the vertex last stored inpath. Also
add the midpoint on the edge between the cellscell and cell+ 1 (line (14)). If
howevercell � currentcell just add the midpoint between the cellscurrentcell
andcurrentcell+1 (line (17)). If the last vertex added is on an edge next to a path
obstacle, then the midpoint on the edge on the corresponding edge is also added
(line (24)). Now, the algorithm once again uses the greedy strategy to connect the
last vertex stored inpath current poswith vd. This is repeated untilvd has been
reached (line (4)). Figure B.3 displays an example of how the algorithm works.

Let’s analyze the time complexity of Algorithm 1.

� INCELL(chnls;v) in line (3) returns the number of the cell that containsv.
Given a cell, it can be determined inO(E), whereE is the number of edges,
if v is inside the cell. In the worst case we have to iterate through all cellsC
and so the total time complexity isO(C �E).

� INTERSECTEDCELL (chnls; line) in line (6) returns the number of the first
cell in which line intersects the channel boundary. In the worst case this
function iterates through all cells. Checking if a cell is intersected byline is
performed inO(E) and so the total time complexity isO(C �E).

� CLOSESTINTERSECTION(cell; line;v) in line (12) returns the vertex of the
intersection betweencell and line. If there is more than one intersection,

73

Algorithm 1: Heuristic path generation algorithm
Input: An ordered setchnls= fc1;c2; � � � ;cng, a start vertexvs,
and a destination vertexvd.
Output: An ordered set of path verticespath.
PATH(chnls, vs, vd)
(1) path fvsg

(2) current pos vs

(3) currentcell INCELL(chnls;vs)
(4) while current pos6= vd

(5) line (current pos;vd)
(6) cell INTERSECTEDCELL (chnls; line)
(7) if cell = NOCELL

(8) path path[fvdg

(9) current pos vd

(10) continue
(11) else ifcell> currentcell
(12) path path[CLOSESTCROSSING(cell; line;current pos)
(13) current pos MIDPOINT(cell;cell+1)
(14) path path[current pos
(15) else
(16) current pos MIDPOINT(currentcell;currentcell+1)
(17) path path[current pos
(18) if cell > currentcell
(19) currentcell cell
(20) else
(21) currentcell currentcell+1
(22) if SEPARATECHANNELS(currentcell;currentcell+1)= true
(23) current pos MIDPOINT(cell+1;cell)
(24) path path[current pos
(25) return path

the one with the least distance tov will be returned. It is sufficient to iterate
through all edges ofcell to determine the closest intersection vertex and so
the time complexity isO(E).

� MIDPOINT(c1;c2) in lines (13), (16), and (23) returns the vertex that is the
midpoint of the edge that separatesc1 and c2. If c1 and c2 are separated
by a path obstacle then the midpoint ofc1 will be returned. It is sufficient
to iterate through all edges ofc1 to find the right edge (since it is assumed
about the data structure that each edge knows its corresponding edge and
which cell it belongs to). Hence, the time complexity isO(E).

� SEPARATECHANNELS(c1;c2) in line (20) returnstrue if two cells c1 and

74

vd

vs

3

1

2

Figure B.3. In the first loop of Algorithm 1, the two vertices inside circle 1 are the
result. In the second loop, the vertex in circle 2 is added to the path. In the fourth loop,
vd is reached and the path completed. The dotted lines illustrate the greedy strategy
of the algorithm (that it wants to find a straight path to the destinationvd with each
iteration). The dashed line show the resulting robot path.

c2 are separated by a path obstacle (and only by the path obstacle). It is
sufficient to iterate through all edges to determine this, and hence the time
complexity isO(E).

To complete this time complexity analysis, it has to be determined how many
times the while-loop in lines (4)-(23) is run. It is run untilcurrent pos= vd. Since
current posis updated with each iteration so that it is at least on the border of the
next cell, no more thanC iterations are necessary.

The lines (1)-(3) are run only once and contribute withO(1+ 1+C �E) =
O(C �E). One loop in the while-loop contributes withO(1+C �E+1+1+1+
E+E+1+E) = O(C �E). Since the while loop is iteratedO(C) times the total
time complexity isO(C �E+C � (C �E)) = O(C2 �E).

It is a bit awkward to haveC in the time complexity expression since it is a
variable that is hard to determine at the time of workspace design.E, on the other
hand, directly relates to the workspace design, since it denotes the number of edges
in the workspace. According to [Sleumer, Tschichold-Gürman, 1999], the number
of cells in a decomposition of arrangements isE2. Hence,C may be replaced with
E2 in the time complexity expression resulting inO(E5). Not surprisingly it is
useful to minimize the number of edges used to represent robots and obstacles in
order to improve the running time.

The generated path can be improved further. Figure B.4 shows that the path
straight from vertexvk to vk+2 is shorter than the path that goes throughvk, vk+1

75

andvk+2. Hence, the path can be improved by removingvk+1. Special care has to
be taken at paths’ intersections.

k
v

k+1
v

k+2
v

Channel
boundary

Figure B.4. The intermediate vertexvk+1 on the robot pathfvk;vk+1;vk+2g may be
removed, since the straight path fromvk to vk+2 does not exit the channel boundary
and is shorter.

76

Appendix C

Glossary

This chapter explains some of the terms used in this thesis. Some explanations
include words withitalic format, which can also be found in this glossary.

Channel In the path planning method cell decomposition, a channel is a sequence
of contiguous cells offree space.

Complete A method is said to be complete if it always produces a solution when
one exits.

Configuration space A tool used to simplify path planning. Instead of planning
for a robot with a (possibly complex) shape in aworkspace, a path can be
planned through a space of valid configurations of the robot.

Connectivity graph In the path planning method cell decomposition, a connec-
tivity graph is a computational graph, which has cells of a decomposition as
nodes, and where an edge between two nodes indicates that the two corre-
sponding cells are consecutive.

Deadlock A situation which involves at least two robots. Each robot waits for
some other robot to release a resource (e.g., a tool or space) it needs before
it can continue. In the deadlock, none of the robots are willing to release the
resources they have, and the robots wait forever.

Forbidden area A forbidden area is a part of theworkspace, in which mobile
robots are not allowed to enter. The word “obstacle” is sometimes used in
this thesis to denote forbidden area.

Free spaceThe space of aworkspaceor aconfiguration spacewhich is not occu-
pied by some obstacle.

GUI Acronym for “Graphical User Interface”. A GUI is an interface to a program
for an operator.

77

78

Holonomic A holonomic robot has the same number of controllable degrees of
freedom as it has actual degrees of freedom. A holonomic robot is normally
more easy to control than a non-holonomic robot, for which the numbers
of degrees of freedom differs. A car-like robot is an example of a non-
holonomic robot.

Localization The process of determining a robot’s position.

Motion planning The process of generating a sequence of actions, that has to
be performed in order for a robot to move through itsworkspacewithout
collisions.Path planningmay be a part of the motion planning.

Multi-robot system A system of more than one robot.

MVC Acronym for “Model-View-Control”. A programming architecture, which
encourages programmers to separate data, display of data and manipulation
of data in their applications.

Omni-directional A robot which can move in any direction in the plane and rotate
on the spot.

Path obstacle A special type of obstacle which belongs to a robotr (with a planned
path), and which shape is equal to the space occupied byr on the rest of its
planned path. Since a path obstacle is not solid another, robot may cross it.

Path planning The process of planning a path for a robot through a knownworkspace.

Request generatorGenerates requests for robots. A robot has to go to the request
generator to handle the request.

Rotation invariant In this motion planning context, a robotr is rotation invariant
if a decomposition ofr ’s free space is independent ofr ’s orientation (rota-
tion).

Semi-free path A path which is collision-free, but a robot which travels on it may
stand the risk of touching obstacles along the way.

Sound A method is said to be sound if all its produced solutions are correct.

Supervisor agent In this context, a computational agent that is responsible for
motion planning.

Workspace Some space in which a robot may move and operate. A workspace
may, in this project, contain robots,request generatorsandforbidden areas.
In this thesis, the more general word “environment” is also used to denote
workspace.

Bibliography

Alami et al, 1997. ALAMI , R., INGRAND, F., QUTUB, S., 1997, “Planning Coordina-
tion and Execution in Multi-robots Environments”,8th International Conference on
Advanced Robotics, ICAR ’97, pp. 525-530.

Arai, Ota, 1992. ARAI, T., OTA, J., 1992, “Motion Planning of Multiple Mobile Robots”,
Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1761-1768.

Arkin, 1998. ARKIN, R.C., 1998,Behavior-Based Robotics, MIT Press, England, ISBN
0-262-01165-4.

Asama et al., 1995. ASAMA, H., SATO, M., BOGONI, L., KAETSU, H., MATSUMOTO,
A., ENDO, I, 1995, “Development of an omni-directional Mobile robot with 3 DOF
Decoupling Drive Mechanism”,IEEE International Conference on Robotics and Au-
tomation 1995, Vol. 2, pp. 1925-1930.

Borenstein. BORENSTEIN, J.,The OmniMate: A Guidewire- and Beacon-free AGV
for Highly Reconfigurable Environments,
http://www-personal.engin.umich.edu/~johannb/OmniMate.htm ,
latest visit in May 2000.

Borenstein, 1996. BORENSTEIN, J., EVERETT, H.R., FENG, L, 1996,Navigating Mobile
Robots - Systems and Techniques, A K Peters, Wessley, MA, ISBN 1-56881-058-X.

Choset, Pignon, 1998. CHOSET, H., PIGNON, P., 1998, “Coverage Path Planning: The
Boustrophedon Cellular Decomposition”,Field and Service Robotics, Springer-
Verlag, pp. 203-209.

Coffman et al, 1971. COFFMAN, E.G., ELPHICK, M.J., SHOSHANI, A., 1971, "System
Deadlocks,"ACM Computing Surveys, Vol. 3, pp. 67-78 (1971).

Everett, 1995. EVERETT, H.R., 1995,Sensors for Mobile Robots - Theory and applica-
tion, A K Peters, USA, ISBN 1-56881-048-2.

Fiorini, Shiller, 1995. FIORINI, P., SHILLER, Z., 1995. “Motion planning in Dynamic
Environments using Velocity Obstacles”,International Journal of Robotics Research,
Sage Publications, Vol. 17, No. 7, July 1998, pp. 760-772.

Fujimura, 1991. FUJIMURA, K., 1991, Motion Planning in Dynamic Environments,
Springer-Verlag, Hong Kong.

Ghosray, Yen, 1996. GHOSRAY, S., YEN, K.K., 1996, “A Comprehensive Robot Colli-
sion Avoidance Scheme by Two-Dimensional Geometric Modeling”,Proceedings of
the 1996 IEEE International Conference on Robotics and Automation, IEEE Com-
put.Soc.Press, 1996, pp. 1087-1092.

79

80

Gill, Zomaya, 1998. GILL , M., ZOMAYA , A., 1998,Obstacle Avoidance in Multi-Robot
Systems, World Scientific Publishing Co., Singapore, ISBN 9810234236.

Habib, Asama, 1991. HABIB , M., ASAMA, H., 1991, “Efficient Method to Generate Col-
lision Free Paths for Autonomous Mobile Robot Based on New Free Space Structur-
ing Approach”,IEEE/RSJ International Workshop on Intelligent Robots and Systems
1991, pp. 563-567.

Kant, Zucker, 1988. KANT, K., ZUCKER, S., 1988, “Planning Collision-Free Trajectories
in Time-Varying Envrionments: A Two-Level Hierarchy”,Proceedings of the 1988
IEEE International Conference on Robotics and Automation, IEEE Comput.Soc.Press,
1988, pp. 1644-1649.

Kleeman, 1992. KLEEMAN, L., 1992, “Optimal Estimation of Position and Heading for
Mobile Robots Using Ultrasonic Beacons and Dead-Reckoning”,Proceedings of the
1992 IEEE International Conference on Robotics and Automation, IEEE Computer
Press Society, Vol. 3, pp. 2582-2587.

Latombe, 1993. LATOMBE, J.C., 1993,Robot Motion Planning, Kluwer Academic Pub-
lishers, USA, ISBN 0-7923-9206-X.

Laugier et al, 1998. LAUGIER, C., GARNIER, PH., FRAICHARD, TH., PAROMTCHIK,
I., SCHEUER, A., “Motion Planning and Sensor-Guided Maneuvre Generation for an
Autonomous Vehicle”,Field and Service Robotics, Springer Verlag, 1998, pp. 60-67.

Lingas, 1982. LINGAS, A., 1982, “The power of non-rectilinear holes”,Proceedings of
the 9th International Colloquium on Automata, Languages and Programming, LNCS
Springer-Verlag, pages 369-383.

Liu et al, 1989. LIU, Y.H., KURODA, S., NANIWA , T., NOBORIO, H., ARIMOTO, S.,
“A Practical Algorithm for Planning Collision-Free Coordinated Motion of Multiple
Mobile Robots”,Proceedings 1989 Conference on Robotics and Automation, IEEE
Comput.Soc.Press, Vol. 3, pp. 1427-32.

Lozano-Pérez, 1983. LOZANO-PÉREZ, T., “Spatial planning: A configuration space ap-
proach”,IEEE Tr. Computers, C-32(2), 108-120.

Noborio, Yoshioka, 1994. NOBORIO, H., YOSHIOKA, T., 1994, “On a Deadlock-free
Characteristic of the On-line and Decentralized Path-planning for Multiple Au-
tomata”,Distributed Autonomous Robotic Systems, Springer-Verlag, pp. 111-122.

Norvig, Russell, 1995. NORVIG, P., RUSSELL, S., 1995,Artificial Intelligence - a modern
approach, Prentice Hall, USA, ISBN 0-13-360124-2.

Parker, 1995. PARKER, L.E., 1995, “Multi-Robot Team Design for Real-World Applica-
tions”, Distributed Autonomous Robotic Systems 2, Springer Verlag, pp. 91-102.

Qutub et al, 1997. QUTUB, S., ALAMI , R., INGRAND, F., 1997, “How to Solve Deadlock
Situations within the Plan-Merging Paradigm for Multi-robot Cooperation”,IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’97), Vol. 3, pp.
1610-1615.

Rausch, Levi, 1996. RAUSCH, W.A., LEVI, P., 1996, “Asynchronous and Synchronous
Cooperation - Demonstrated by Deadlock Resolution in a Distributed Robot System”,
Distributed Autonomous Robotic Systems 2, Springer-Verlag, pp. 245-256.

81

Sleumer, Tschichold-Gürman, 1999. SLEUMER, TSCHICHOLD-GÜRMAN, 1999, Exact
Cell Decomposition of Arrangements used for Path Planning in Robotics,
http://www.inf.ethz.ch/publications/abstract.php3?no=tech-reports/3xx/329 ,
latest visit in October 2000.

Tsoularis, Kambhampati, 1999. TSOULARIS, A., KAMBHAMPATI , C., 1999, “Avoiding
Moving Obstacles by Deviation from a Mobile Robot’s Nominal Path”,The Interna-
tional Journal of Robotics Research, Sage Publications, Vol. 18, No. 5, pp. 454-465.

Uny Cao et al., 1997. UNY CAO, Y., FUKUNAGA , A.S., KAHNG, A.B., “Cooperative
Mobile Robotics: Antecedents and Directions”,Autonomous Robots, Kluwer Aca-
demic Publishers, Vol. 4, 1997, pp. 7-27.

Yuta, Premvuti, 1992. YUTA, S., PREMVUTI, S., “Coordinating Autonomous and Cen-
tralized Decision Making to Achieve Cooperative Behaviors Between Multiple Mobile
Robots”,Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1566-1574.

