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Abstract

For every integer k ≥ 3, we prove that there is a predicate P on k Boolean variables

with 2Õ(k1/3) accepting assignments that is approximation resistant even on satisfiable
instances. That is, given a satisfiable CSP instance with constraint P , we cannot
achieve better approximation ratio than simply picking random assignments. This
improves the best previously known result by H̊astad and Khot where the predicate

has 2O(k1/2) accepting assignments.
Our construction is inspired by several recent developments. One is the idea of

using direct sums to improve soundness of PCPs, developed by Chan [5]. We also use
techniques from Wenner [32] to construct PCPs with perfect completeness without
relying on the d-to-1 Conjecture.

1 Introduction

Consider a predicate P : {−1, 1}k → {0, 1} on k Boolean variables (where for the in-
put variables we use −1 for True and 1 for False), an instance of the Max-P problem
consists of n Boolean variables, along with constraints of form P (l1, · · · , lk), where
l1, · · · , lk are literals of k distinct variables, and the goal is to find a Boolean as-
signment to the variables that satisfies as many constraints as possible. A Max-P
instance is called satisfiable if there exists an assignment that satisfies all the con-
straints simultaneously. Let P−1(1) be the set of accepting inputs of P .

One naive approximation algorithm for Max-P is to simply pick a random assign-
ment. This gives an approximation ratio of |P−1(−1)|/2k. Somewhat surprisingly, it
turns out that for some predicate P , the above naive algorithm gives the best possible
performance assuming P 6= NP. We call a predicate P approximation resistant if it is
hard to achieve better approximation ratio than simply picking random assignments.
In a celebrated result, H̊astad [13] showed that Max-kLin, sets of linear equations
in Z2 on k ≥ 3 variables, is NP-hard to approximate better than 1/2 + ε for any
ε > 0, while the random assignment algorithm achieves 1/2. There has been much
progress in understanding what kinds of predicates are approximation resistant, in-
cluding characterization for predicates of small arity [13, 33, 11], as well as a handful
of approximation resistant predicates of higher arities [13, 26, 11, 8].

The picture of approximation resistance becomes even clearer if we assume the
Unique Games Conjecture (UGC) proposed by Khot [18], which states that it is NP-
hard to distinguish whether certain Label Cover instance is almost satisfiable or far
from satisfiable. Austrin and Mossel [4] proved that assuming the UGC, P is approx-
imation resistant if the set of satisfying assignments P−1(1) contains the support of
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a pairwise independent distribution. In [27, 28], Samorodnitsky and Trevisan showed
approximation resistance for the following predicate assuming the UGC: the predi-
cate is on 2k − 1 variables, denoted as x(S) for ∅ 6= S ⊆ {1, · · · , k}, and the predicate
accepts if for all S ⊆ [k], |S| ≥ 2, we have x(S) =

∏
i∈S x

({i}). Let K = 2k − 1. We
denote the above predicate as HadamardK . Note that HadamardK has only K+1
accepting assignments over 2K possible assignments, giving a density of (K + 1)/2K .
Hast [12] proved that a predicate on K ≥ 3 variables with at most 2bK/2c + 1 ac-
cepting inputs is not approximation resistant. Thus the result of Samorodnitsky and
Trevisan is optimal in terms of the sparsity of the predicate.

In a recent breakthrough [5], Chan settled the NP-hardness of Max-HadamardK
(and, up to constant factor, Max k-CSP in general), bypassing the UGC. Chan intro-
duced the idea of direct sums of probabilistically checkable proofs (PCPs) to improve
soundness, which worked very well for predicates that are subgroups of a domain. In
particular, the accepting assignments of the HadamardK predicate is a subgroup
under element-wise product, and Chan’s result implies that it is approximation re-
sistant assuming only P 6= NP.

Let us now focus on the approximation of satisfiable instances. We call P ap-
proximation resistant on satisfiable instances if the best possible algorithm is still
the random assignment algorithm even with the promise that there is an assignment
that satisfies all constraints. In contrast to our understanding of approximation resis-
tance as demonstrated above, approximation resistance on satisfiable instances is still
largely a mystery. Most notably, if the constraints only involves linear equations, for
instance kLin and HadamardK , we can always find a satisfying assignment using
Gaussian elimination if we are given satisfiable instances, whereas both of them are
approximation resistant in general. Several other approximation algorithms for sat-
isfiable instances were introduced [30], and in particular, it is known that predicates
with fewer than (k + 1) satisfying assignments are never approximation resistant on
satisfiable instances. Note that when k is even, the same statement holds even for
non-satisfiable instances due to the aforementioned result by Hast [12].

On the hardness side, there have been only handful of results: H̊astad [13] proved
that k-SAT is approximation resistant for satisfiable instances. The sparsest such

predicate known on k variables has 2O(k1/2) accepting assignments, given by H̊astad
and Khot [15]. This situation is not particularly surprising, as there are quite a
few differences between satisfiable instances and almost satisfiable instances. Some
approximation resistant predicates, such as the kLin predicate discussed above, are
not approximation resistant on satisfiable instances. In addition to this inherent
structural difference, there are challenges in techniques as well. Many approximation
resistance results are obtained via reduction from Unique Games. This immediately
introduces problem with completeness because the Unique Games problem is not
NP-hard for satisfiable instances.

To address this, Khot additionally proposed the “d-to-1 Conjectures” [18]. The
conjecture states that it is NP-hard to distinguish whether a “d-to-1 Label Cover
Instance” is satisfiable or far from satisfiable. O’Donnell and Wu proved a strong
result in [24] that the Not-Two predicate (NTW) — predicate on three variables
that accepts input whose number of -1’s is not two — is approximation resistant on
satisfiable instances assuming the d-to-1 conjecture for some d. Their approach was
generalized by Tang [29] to Max-3CSPq where q is a prime greater than 3, and Huang
[16] to Boolean predicates of arity k ≥ 3 that accepts a strict superset of inputs of
odd parity.
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Recently, H̊astad [14] and Wenner [32] proved approximation resistance for the
above predicates without assuming the d-to-1 conjecture. Their proofs are based on
new analytic tools as well as Khot’s Smooth-Label-Cover [17]. We note that several
previous results that bypassed the UGC [17, 19, 9, 10] started from Smooth-Label-
Cover, although it is not needed in Chan’s recent result.

An interesting question is whether we could combine these recent developments to
get approximation resistance result for Max-P on satisfiable instances for predicate
P sparser than the one in H̊astad and Khot [15]. From the PCP perspective, this re-
quires PCPs that always accept correct proofs of correct statements. Not only is this
a natural property to have, given the challenge of getting proofs with perfect com-
pleteness as discussed above, understanding approximability of k-CSP on satisfiable
instances may also lead to new tools in both algorithm and hardness.

An immediate proposal to achieve tight lower-bound for Max k-CSP on satisfi-
able instances would be to construct predicates as in [16, 32], that is, adding a single
additional accepting assignment to the HadamardK predicate of arity 2k− 1. How-
ever, this simple approach does not work — the accepting inputs of HadamardK
forms a k-dimensional subspace, so if we add d new accepting inputs to it, we only
need a (k + d)-dimensional subspace to include all those accepting inputs, and if we
sample an assignment from the subspace induced by all constraints, the probability
that we satisfy one clause is at least 1/2k+d because 2k+d is the maximum size of
the subspace for each clause and there is at least one satisfiable assignment in it due
to satisfiability of the whole instance. Thus whenever d = o(2k), the performance
of the above sampling method beats simple random assignment, which only gives

(2k + d)/22k

.
The problem with adding accepting assignments to HadamardK is that the re-

sulting predicate does not have the group structure as in [5] any more. If we still
take many rounds of direct sums as in [5], then to ensure perfect completeness, we
need to accept many assignments that are products of the additional assignments we
added and end up with a predicate that has more accepting assignments than we
would want. On the other hand, as is demonstrated in [5], having more rounds of
direct sum helps us to improve soundness dramatically and so if we are looking for
sparse predicates that are approximation resistant, it would be natural to have more
rounds of proofs in the direct sum. This paper is an attempt to strike a balance. We
prove the following approximation resistance result.

Theorem 1.1. There is a predicate of arity K with 2Õ(K1/3) accepting assignments
that is approximation resistance on satisfiable instances.

This improves the best previous known result of 2O(K1/2) of H̊astad and Khot
[15].

Our result is based on many ideas developed in a number of previous works,
including [8, 32, 31, 5]. On the highest level, we use direct sum of several PCPs
to get improved soundness result. However, as argued above, we also want to limit
the number of PCPs involved. Therefore, we use long-code based PCP constructions
that are already rather efficient, for example those used by Engebretsen and Holmerin
[8]. In [31], Wenner showed how different types of noise operators behave similarly
when the reduction is based on Smooth-Label-Covers. This is helpful when analyzing
soundness of PCPs in that it allows us to move from correlated noise with perfect
completeness to independent noise that are not perfect but easier to analyze. We
also use a multivariate invariance theorem in [31], which extends methods of Mossel
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et. al. [22, 21] to projection games. Similar techniques were developed also in other
works such as [23] as well as in [5].

1.1 Organization of the Paper

The paper is organized as follows. Section 2 reviews some notation we use, including
variants of Label-Cover, PCPs and Chan’s new technique, and analysis of Boolean
functions. We describe our PCP construction in Section 3. We analyze the soundness
of our construction in Section 4.

2 Preliminaries

In this section, we introduce some notation. In Section 2.1, we discuss variants of
Label-Cover problems, and in particular the Multi-Layer Smooth-Label-Cover that
we use in the rest of the paper. We describe the general approach of proving approx-
imation resistance via Label-Cover, as well as Chan’s improvements in Section 2.2.
In Section 2.3, we review basics of harmonic analysis of Boolean functions.

2.1 Variants of Label-Cover

We first recall the definition of the Label-Cover problem.

Definition 2.1. A Label-Cover instance is defined by a tuple (U, V,E, L,R,Π). Here
U and V are two sets of vertices of a bipartite multigraph, and E is the set of edges
between them. L and R are label sets for vertices U and V , respectively. Π is a
collection of projections, one for each edge e, πe : R→ L. For a labeling σ = (σU , σV )
of the Label-Cover instance σU : U → L, σV : V → R, let its value be the fraction of
edges {u, v} ∈ E such that π{u,v}(σ(v)) = σ(u). The value of a Label-Cover instance
is the maximum value of all possible assignments.

The following theorem combines the celebrated PCP theorem [1, 2] with Raz’s
parallel repetition theorem [25] and shows hardness of Label Cover.

Theorem 2.2. For every constant η > 0, there is some constant C(η) < ∞ such
that for Label-Cover instances with |R| ≥ C(η), it is NP-hard to distinguish between
the case where it has value 1 and where it has value no more than η.

The Smooth-Label-Cover problem is a variant of Label-Cover first defined by
Khot [17] for showing inapproximability of some coloring problems. We extend the
definition of projection π : R → L to sets of labels S ⊆ R by π(S) := {l ∈ L|∃r ∈
S, π(r) = l}. We adopt the following definition of smoothness.

Definition 2.3 (Smoothness). A Label-Cover instance is (J, ξ)-smooth if for any set
of labels S ⊂ R, |S| ≤ J , we have

Pr
e∼E

[|πe(S)| < |S|] ≤ ξ. (1)

Similar to Label-Cover, we have the following hardness result for Smooth-Label-
Cover.

Theorem 2.4. For every constant η, J, ξ > 0, there is some constant D(η, J, ξ) <∞
such that for (J, ξ)-smooth Label-Cover instances with |R| ≥ D(η, J, ξ), it is NP-hard
to distinguish between the case where it has value 1 and where it has value no more
than η.
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Multi-layered Label-Cover was first devised in [6] to prove strong approximation
hardness result for hypergraph vertex cover, and used in [8] for improving query
efficiency and hardness of approximation result for Max CSP. Briefly speaking, a
normal Label-Cover instance checks consistency of labeling between a pair of vertices,
while in a k-layered Label-Cover instance, we consider tuples of k − 1 independently
sampled edges ({u1, v1}, {u2, v2}, · · · , {uk−1, vk−1}), the k hybrid tuples of vertices
(u1, · · · , ui, vi+1, · · · , vk−1) for i = 0, · · · , k − 1 and their corresponding labelings,
and we require consistency between all pairs of tuples. Formally, given a Label-
Cover instance as defined above, the constraint between pairs of labelings on tuples
is defined as follows.

Definition 2.5. Let ~e = (e1, . . . , ek−1) ∈ Ek−1 be a vector, and let 1 ≤ i < j ≤ k.
Define the mapping π~e,j→i : Lk−j ×Rj−1 → Lk−i ×Ri−1 as

(l1, . . . , lk−j , rk−j+1, . . . , rk−1)
7→ (l1, . . . , lk−j , πek−j+1

(rk−j+1), . . . ,
πek−i

(rk−i), rk−i+1, . . . , rk−1).

It is not hard to see that the above definition preserves smoothness in the Layered
Label-Cover instances.

Lemma 2.6. For any (J, ξ)-smooth k-layered Label-Cover instance (U, V,E, L,R,Π),
positive integers 1 < i ≤ k, set of labelings S ⊆ Lk−i × Ri−1 for vertex tuples with
|S| < J , we have

Pr
~e∼Ek−1

[|π~e,i→1(S)| < |S|] < ξ.

Proof. For any ~e ∈ Ek−1 and S = (S1, · · · , Sk−1) ⊆ Lk−i × Ri−1, observe that
|π~e,i→1(S)| < |S| is equivalent to ∀j ∈ {k − i + 1, · · · , k − 1}, |πej (Sj)| < |Sj |. The
result follows immediately.

Combining all we have, we get the following hardness result for k-layered Smooth-
Label-Cover problem.

Theorem 2.7. For every constant η, J, ξ, k > 0, there is some constant G(η, J, ξ, k) <
∞ such that for (J, ξ)-smooth k-layered Label-Cover instances with |R| ≥ G(η, J, ξ, k),
it is NP-hard to distinguish between the following two cases:

YES: There exist assignments σm : Uk−m × V m−1 → Lk−m × Rm−1(1 ≤ m ≤ k),
such that for all ~e = (e1, . . . , ek−1) ∈ Ek−1 and all i, j, 1 ≤ i < j ≤ k, it holds
that

π~e,j→i(σj(u1, . . . , uk−j , vk−j+1, . . . , vk−1))
= σi(u1, . . . , uk−i, vk−i+1, . . . , vk−1).

NO: There are no two integers l and h (1 ≤ l < h ≤ k) such that there exist functions
Ph : Uk−h × V h−1 → Lk−h ×Rh−1 and Pl : Uk−l × V l−1 → Lk−l ×Rl−1, such
that for more than η fraction of (e1, . . . , ek−1) ∈ Ek−1, we have

Pl(u1, . . . , uk−l, vk−l+1, . . . , vk−1)
= π~e,h→l(Ph(u1, . . . , uk−h, vk−h+1, . . . , vk−1)).
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Proof. The proof is similar to [8]. The completeness case is straightforward. For
soundness, suppose there exists 1 ≤ l < h ≤ k and functions Pl, Ph, such that for
more than η fraction of (e1, . . . , ek−1) ∼ Ek−1, we have

Pl(u1, . . . , uk−l, vk−l+1, . . . , vk−1)

= π~e,h→l(Ph(u1, . . . , uk−h, vk−h+1, . . . , vk−1)).

Then there is a way to fix e1, . . . , eh−1, eh+1, . . . , ek such that the probability that the
above holds is no less than η. We conclude the proof by noting that the restriction
of Pl and Ph on the h-th coordinate gives a labeling with value at least η for the
original Label-Cover instance.

2.2 PCP Reductions

In this section, we describe a reduction from Label-Cover which is now the stan-
dard technique in hardness of approximation. We also discuss direct sums of PCPs
introduced by Chan [5].

Consider a Boolean predicate P of arity w. The reduction typically translates
labelings for u ∈ U and v ∈ V to 2|L| and 2|R| Boolean variables, respectively. These
variables are viewed as functions fu : {−1, 1}|L| → {−1, 1} and gv : {−1, 1}|R| →
{−1, 1}. We require that these functions are folded, that is, for any x ∈ {−1, 1}|L|,
y ∈ {−1, 1}|R|, fu(−x) = −fu(x) and gv(−y) = −gv(y). For each pair of queries
(x,−x), we select one of them. If x is selected, then when f(−x) is needed we return
−f(x) instead. Hence in the actual reduction we only use 2|L|−1 Boolean variables
for each u ∈ U and 2|R|−1 variables for each v ∈ V . This is also why we need to allow
negated literals in the CSP instances. In a correct proof for a satisfiable Label-Cover
instance, the functions are long codes for the corresponding labelings of u and v, that
is, setting fu(x) = xσU (u), and gv(y) = yσV (v).

For an edge {u, v} in the Label-Cover, we sample queries

(x(1), · · · , x(m), y(m+1), · · · , y(w))

according to some carefully chosen test distribution T . The distribution T has the
property that for any l ∈ L and r ∈ R such that π(u,v)(r) = l, the predicate P accepts

(x
(1)
l , · · · , x(m)

l , y
(m+1)
r , · · · , y(w)

r ) with probability 1 (or 1−ε for some small constant
ε if we are considering non-perfect completeness).

Let the value of an edge be the following expectation

E
(x(1),··· ,x(m),y(m+1),··· ,y(w))∼T

[
P (fu(x(1)), · · · , fu(x(m)), gv(y(m+1)), · · · , gv(y(w))

]
.

(2)
Observe that in the completeness case where the Label-Cover instance has an as-
signment that satisfies all the edges, then setting fu and gv to the long code of the
labelings would give value 1 (or close to 1) for the above expectation.

In the soundness case, of course the fu’s and gv’s are not guaranteed to be long
codes. Typically, when proving approximation resistance, we start the analysis by
taking the Fourier expansion of predicate P in (2). The constant term in the expan-
sion is exactly the density of P . We then show that if for some non-constant terms
we have that |E[

∏
fu
∏
gv]| ≥ δ for some small constant δ > 0, then we can find a

good labeling for the Label-Cover instance we started with, allowing us to distinguish
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between the YES case and the NO case. In some cases we can show that all possible
non-constant terms — including those that do not appear in the expansion of P —
are small, and this implies that predicate P is useless in the sense of [3], a stronger
notion of inapproximability.

It is not hard to adapt the above reduction to k-Layered Label-Covers. Instead
of encoding the labelings of single vertices as long codes, we encode labelings for the
hybrid vertex tuples. The rest of the analysis is similar.

In [5], Chan introduced direct sum of PCPs to get improved hardness of ap-
proximation results and proved the first general criterion for approximation resistant
predicate without assuming the UGC. The main result is the following.

Theorem 2.8 ([5]). Let k ≥ 3 be an integer, G a finite abelian group, and C a
balanced pairwise independent subgroup of Gk. It is NP-hard to approximate Additive-
CSP(C) better than |C|/|G|k + ε for any constant ε > 0.

In the Boolean case, we have G = {−1, 1} with product “·” as the operation, C
consists of the accepting assignments of some predicate P , and Additive-CSP(C) is
exactly Max-P . Note that the balanced pairwise independence condition is similar
to the condition of Austrin and Mossel [4].

The main idea in Chan’s proof is that instead of sampling one edge, we sample
c edges for some c to be determined. We also have c test distributions T1, . . . , Tc
corresponding to the edges we sampled, where each distribution Ti satisfies the same
requirement as we had for T above. We sample queries {(x(1,i), · · · , x(k,i))}i∈[c]. Note

that for the same m ∈ [k], whether the query x(m,i) is from {−1, 1}|L| or {−1, 1}|R|
may vary among different i ∈ [c] and is an important design choice. Depending on
the edges we have sampled, we choose k functions to query as in the classical setting
(some of those functions might be the same one). The functions now have larger
domains, since the j-th function would take {x(j,i)}i∈[c] as input. We also require

that the functions are folded in each individual test — for any query {x(j,i)}i∈[c] and
i ∈ [c] we have

f(x(j,1), · · · ,−x(j,i), · · · , x(j,c))= − f(x(j,1), · · · , x(j,i), · · · , x(j,c)).

The intended solution now is that each function is the product of functions for the
individual PCPs, and the functions in the individual PCPs are long codes of some
legitimate labelings. Similar to the classical approach, we take the answers to the
queries and accept if predicate P accepts.

It is not hard to see that for the completeness to hold, we would need that
the set of satisfying assignments of P has some group structure — the entry-wise
product of two satisfying assignments is still a satisfying assignment. Observe that
the HadamardK predicate satisfies this property. On the soundness side, we need to
bound each term in the Fourier expansion of (2). The important observation (Lemma
5.3 in [5]) is that the absolute value of these terms are bounded by the absolute value
of these terms in each individual PCP. Hence, all we need is to show that a term in
(2) is small in at least one of the PCPs in the direct sum unless there is good labeling.

2.3 Efron-Stein Decomposition, Influence and Correlation

In this section, we recall basic notions from Fourier analysis, influence, the Bonami-
Beckner operator, and correlation of correlated probability spaces.
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Let (Ω, µ) be a finite probability space with |Ω| = q. We assume that µ(x) > 0
for every x ∈ Ω. Let χ0, · · · , χq−1 : Ω → R be an orthonormal basis for L2(Ω, µ)
w.r.t. scalar product under µ. Let this basis be such that χ0 = 1 the identical one
function. For σ ∈ Znq , define

χσ(x1, · · · , xn) =

n∏
i=1

χσi
(xi).

Then {χσ}σ∈Zn
q

forms an orthonormal basis for L2(Ωn, µ⊗n), and every function

f ∈ L2(Ωn, µ⊗n) can be written as

f(x) =
∑
σ∈Zn

q

f̂(σ)χσ(x).

We also make extensive use of the following Efron-Stein decomposition [7, 21]

Theorem 2.9. Any function f ∈ L2(Ωn, µ⊗n) can be uniquely decomposed as

f(x) =
∑
S⊆[n]

fS(x),

where

• Function fS(x) depends only on xS = {xi|i ∈ S}.
• For every S, T ⊆ [n], S \ T 6= ∅, x′ ∈ Ωn, it holds that

E[fS(x)|xT = x′T ] = 0.

For σ ∈ Znq , let Set(σ) = {i|σi > 0}, and let |σ| = |Set(σ)|. It is easily verified
that the Efron-Stein decomposition is related to the Fourier decomposition as follows

fS(x) =
∑
σ∈Zn

q

Set(σ)=S

f̂(σ)χσ(x).

A useful notion of function is the influence of a coordinate.

Definition 2.10. For f ∈ L2(Ωn, µ⊗n), i ∈ [n], the influence of i on f is defined as

Inf i(f) = E
x[n]\i

[Var
xi

[f(x)]].

Note that when we refer to influence, it is always with respect to the underlying
probability space (Ωn, µ⊗n). We have the following characterization of influence in
terms of Fourier decomposition and Efron-Stein decomposition.

Proposition 2.11. For f ∈ L2(Ωn, µ⊗n) and i ∈ [n],

Inf i(f) =
∑
σ∈Zn

q

i∈Set(σ)

f̂(σ)2 =
∑
S3i

E[f2
S ].

Let the total influence Inf(f) =
∑
i∈[n] Inf i(f) be the sum of influences of all coor-

dinates on f .
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We next recall the Bonami-Beckner operator, or noise operator.

Definition 2.12. Let 0 ≤ γ ≤ 1. The Bonami-Beckner operator Tγ is a linear
operator mapping f ∈ L2(Ωn, µ⊗n) to Tγf as follows

(Tγf)(x) = E[f(y)],

where y is sampled by setting each bit independently to yi = xi with probability 1− γ,
and otherwise sampled according to µ with probability γ.

Again we have the following Fourier/Efron-Stein characterization of Tγ .

Proposition 2.13. For any f ∈ L2(Ωn, µ⊗n) and 0 ≤ γ ≤ 1,

Tγf =
∑
σ∈Zn

q

(1− γ)|σ|f̂(σ)χσ.

We define noisy influence as Inf
(γ)
i (f) = Inf i(Tγf), and similarly Inf (γ)(f) =∑

Inf
(γ)
i (f). We have the following bound for the total noisy influence of functions

with range [−1, 1].

Proposition 2.14. For any f : Ωn → [−1, 1] and 0 < γ ≤ 1, we have

Inf (γ)(f) =
∑
i∈[n]

Inf
(γ)
i (f) ≤ γ−1.

The following concept of lifted functions is useful in the context of projection
games.

Definition 2.15. Given function f : Ωnd → R and d-to-1 mapping π : R → L,
define the lifted version of f as f

π
: (Ωd)n → R as naturally induced by π

f
π
(x) = f(x),

where x satisfies xr,t = x(r,t) for r ∈ L, t ∈ [d].

In terms of influence, we have the following relation between f and f .

Proposition 2.16. For any r, we have

Infr(f) ≤
∑

r′:π(r′)=r

Infr′(f).

Proof. The claim follows by applying Proposition 2.11 and comparing the terms.

The correlation for correlated probability spaces was introduced by Mossel [21].
Given a probability measure µ defined on Ω×Ψ, we say that Ω and Ψ are correlated
spaces, and we use (Ω × Ψ, µ) to denote correlated spaces and the corresponding
measure. We use the following definition of correlation.

Definition 2.17. Let (Ω×Ψ, µ) be a correlated probability space, µ is a distribution
on the finite product set Ω × Ψ and that the marginals of µ on Ω and Ψ have full
support. Define the correlation between Ω and Ψ to be

ρ(Ω,Ψ;µ) = max
f :Ω→R
g:Ψ→R

{
|E[fg]| | E[f ] = 0,E[f2] ≤ 1,E[g] = 0,E[g2] ≤ 1

}
,

where the expectation E[fg] is under µ, and E[f ], E[f2], E[g] and E[g2] are under
marginals of µ on corresponding spaces.
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A useful fact for bounding correlation of probability spaces from [21] is that the
correlation of a product of correlated probability space is equal to the maximum
correlation among the individual correlated spaces (excluding empty components).

Lemma 2.18. Let {(Ωi,Ψ, µi)} be a set of correlated probability spaces, then

ρ

(∏
i

Ωi,
∏
i

Ψi;
∏
i

µi

)
≤ max

i
ρ(Ωi,Ψi;µi).

We also need the following lemma when analyzing correlations. Intuitively, if we
can decompose µ into a convex combination of two distributions and we can bound
the correlation between Ω and Ψ in both of sub-distributions by some constant c,
then barring special cases it seems reasonable that the correlation ρ(Ω,Ψ;µ) should
also be bounded by some function of c. More formally, we have the following lemma
from [31].

Lemma 2.19. Let (Ω,Ψ, δν+ (1− δ)ν′) be a correlated space such that the marginal
distribution of at least one of Ω and Ψ is identical on both ν and ν′. Then

ρ(Ω,Ψ; δν + (1− δ)ν′) ≤
√
δρ(Ω,Ψ; ν)2 + (1− δ)ρ(Ω,Ψ; ν′)2.

Next we recall the definition of the conditional expectation operator.

Definition 2.20. Let (Ω×Ψ, µ) be two correlated spaces. The conditional expectation
operator U associated with (Ω,Ψ) is the operator mapping f ∈ L2(Ψ, µ) to Uf ∈
L2(Ω, µ) by (Uf)(x) = E[f(Y )|X = x] for x ∈ Ω and (X,Y ) ∈ Ω × Ψ is distributed
according to µ.

An important property we need in the analysis is that the Efron-Stein decompo-
sition commutes with the conditional expectation operator.

Proposition 2.21 ([20]). Let (Ω×Ψ, µ) := (
∏

Ωi ×
∏

Ψi,⊗µi) be correlated space
and let U := ⊗Ui be the conditional expectation operator associated with Ω and Ψ.
Suppose f ∈ L2(Ψ) has Efron-Stein decomposition f(x) =

∑
S⊆[n] fS(xS). Then the

Efron-Stein decomposition of Uf satisfies (Uf)S = U(fS) for S ⊆ [n].

The following result shows that in the above setting, if the correlations between
all Ω and Ψ are less than 1, then the L2 norms of the high-degree terms of Uf are
small.

Proposition 2.22 ([20]). Assume the setting of Proposition 2.21 and that for all i,
we have ρ(Ωi,Ψi;µi) ≤ ρi. Then for all f , we have ‖U(fS)‖2 ≤

(∏
i∈S ρi

)
‖fS‖2.

3 The Predicate, the PCP and Outline of Proof

Given the soundness parameter ε, the starting point of our reduction is a k-layer
(J, ξ)-Smooth-Label-Cover, where J and ξ are constants solely dependent on ε that
we will specify later.

The predicate. Fix some k, and let [k] := {1, 2, . . . , k}. Let S3 := {S ⊆
[k]||S| = 3}, S1 := {S ⊆ [k]||S| = 1}. The predicate is on variables {x(S)}S∈S1∪S3

taking values from {−1, 1}. We call the variables x({i}) singleton variables and the
remaining ones parity check variables. The predicate accepts if there exists ~w ∈
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{−1, 1}S1∪S3 such that the number of −1’s in ~w is no more than k, and wSx
(S) ·∏

i∈S w{i}x
({i}) = 1 for all S ∈ S3.

We can view ~w as an error vector, and the predicate accepts inputs that are no
more than Hamming distance k away from an assignment that satisfies all parity
checks.

The predicate is on k +
(
k
3

)
variables, and it has O(2k ·

((k
3)+k

k

)
) = 2O(k log k) ac-

cepting inputs, thus the density (assuming the predicate has arity K) is 2Õ(K1/3)/2K ,
where the Õ hides logarithmic factors.

Outline of proof. Before going into details about the construction of our PCPs,
we first give an overview of our proof and explain the intuition behind the construc-
tion.

Our PCP design is based on Chan’s idea of direct sums of PCPs [5] as described
in Section 2.2. We prove that all non-constant terms in the Fourier expansion of (2)
are small.

One crucial difference between Chan’s proof and ours is that we require perfect
completeness. This means that sometimes there would be perfect correlation between
certain queries which makes it possible for provers to find good cheating strategies.
In Chan’s proof as well as in many related results where perfect completeness is
not required, one can usually break this correlation by applying some independent
noise to each query bit. However, in the case of perfect completeness, we cannot
afford perturbing each bit independently, and thus we need to take extra care when
designing test distributions. That is the main reason our predicate accepts inputs
that almost satisfy all

(
k
3

)
linear constraints. In some sense, these extra accepting

inputs serve as noise that breaks up perfect correlations.
Another important property that Chan uses is the “group” structure of the pred-

icate. This makes it relatively easy to take direct sums of a large number of PCPs,
each handling a small number of non-constant terms from (2), without worrying too
much about the completeness of the resulting PCP. Our predicate, however, does not
satisfy this property due to the extra noise we added. It is certainly possible that if
we take the sum of two assignments that are of distance k away from assignments
that satisfies all linear equations, we end up with something that is distance 2k away
from an assignment that satisfies all linear constraints, and that would break perfect
completeness. To avoid this situation, we limit both the number of PCPs in the
direct sum and in each PCP the distance from an assignment that satisfies all linear
constraints. More specifically, in our construction the queries to each PCP are gen-
erated such that if the provers (of each individual PCP) answer according to some
consistent long code, then the answers is at most distance 1 away from an assignment
that satisfies all linear equations. When taking direct sum of the k PCPs, an answer
that is the direct sum of k long codes would give us an answer that would be accepted
by our predicate.

It remains to find a number of suitable PCPs. If we try to generalize previous
approaches, for example those in [26, 8], to larger predicates such as HadamardK ,
one of the main adversarial strategies that we need to consider is that of inconsistent
long codes. For example, consider a predicate P on variable (x1, · · · , xk) and a
simple PCP reduction where we sample an edge {u, v} and query functions fu and
gv according to some test distribution T as described in Section 2.2. For simplicity,
assume that the query to fu corresponds to input variable x1, and the remaining
queries are on gv. Suppose further that for a 1

2 + δ fraction of the accepting inputs
of P , we have x2x3x4 = 1 (both HadamardK and the predicate we are studying in

11



this work have properties similar to this.) Let gv be long code for some arbitrary
label r ∈ R. Observe that the non-constant term gv(x2)gv(x3)gv(x4) will always have
expectation roughly order of δ simply due to the requirements on T . In this case, we
get a large non-constant term but it does not help us find a consistent labeling for
Label-Cover. A similar argument can be made for Multi-layered Label-Cover. Chan’s
construction in [5] solves this problem by making sure that for each term, in at least
one of the many PCPs in the direct sum the queries are on different functions. As
discussed before, since we are aiming for fewer PCPs in the direct sum, it would be
good if each PCP can carry out as many consistency checks as possible, and Multi-
layered Label-Cover becomes a very natural choice. We also need to decide which
query should be in which layer for each PCP so that we do not miss any sets of
variables that has linear relations. This is mostly done in Section 4.1.

Now we describe the PCPs in more details.
The PCPs. Let C = {σ0, . . . , σk−1} be the set of cyclic permutations on [k]. The

permutation σi maps i to k, i+ 1 to 1, and so on. We identify 0 with k, and thus σ0

is the identity permutation. Each permutation corresponds to a PCP for a k-Layer
Label-Cover instance, and the permutation decides which query should be in which
layer in the Multi-Layered Label-Cover. As stated above, the final proof is the direct
sum of these k PCPs.

We now describe the i-th PCP. It is based on a k-layered Label-Cover instance,
and there are k+

(
k
3

)
queries, one corresponding to an input variable. We denote the

queries as x(S). For S ∈ S1 ∪S3, define mi(S) := maxσi(S) to be the maximum
element of S under permutation σi. The query x(S) is in layer mi(S). Let Vi(S) :=
Uk−mi(S) × V mi(S)−1 be the set of vertex tuples in layer mi(S). The proof has a
function for each vertex tuple in Vi(S), and the input to the functions are {−1, 1}
strings indexed by the possible labelings Lk−mi(S) × Rmi(S)−1 in layer mi(S). We

denote the domain of the functions as X
(S)
i . In a correct proof of a correct labeling,

the function would be a long code encoding a proper labeling for all vertices in the
tuple. As described in Section 2.2, we require that all functions are folded.

The test distributions. We first define the test distributions for each individual
PCP.

Fix i ∈ [k] and consider the i-th PCP. For notational simplicity we omit i in the
subscript for now. We first independently sample k−1 edges ~e = {e1, . . . , ek−1}. For
S ∈ S1, sample x(S) ∈ X(S) uniformly at random. For S = {s1, s2, s3} ∈ S3, let
m = m(S) be the layer in which query x(S) is located, mj = m(sj) for j = 1, 2, 3 be

the layer query x({sj}) is in, and set x
(S)
r =

∏3
j=1 x

({sj})
π~e,m→mj

(r) for all possible labelings

r ∈ Lk−m ×Rm−1.
We then make use of the extra inputs allowed by the predicate to add some

“noise” to the distributions. As discussed above, the resulting distribution must
have the property that the output obtained by applying some consistent long codes
is at most distance 1 away from an assignment that satisfies all

(
k
3

)
equations. The

idea is to perturb one of the x(S)’s. For each r ∈ Lk−1, pick a uniformly random set

Nr ∈ S1 ∪S3, and for each t ∈ π−1
~e,m(Nr)→1(r), set x

(Nr)
t to a uniform random bit

independently with probability 1/2.
We denote the test distribution by T . For each r ∈ Lk−1, let Tr be the marginal

distribution of the bits that map to r under π~e,l→1 for all l ∈ [k]. Observe that we
have T = ⊗r∈Lk−1Tr.

Let us start by analyzing the standard completeness case.
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Lemma 3.1. For any sampling of edges, let f (S) be the functions we are querying,
and let x(S) be the corresponding queries. If the k-layered Label-Cover instance has
a labeling that satisfies all the edges, then we can find f (S)’s such that the answers
{f (S)(x(S))}S∈S1∪S3

is at most Hamming distance 1 away from an assignment that
satisfies all linear constraints on 3 singleton variables and 1 parity check variable.

Proof. The argument is similar to a standard completeness argument.
Fix a labeling that satisfies all the edges. The proof in the PCP consists of long

codes encoding the labeling of all hybrid vertex tuples.
Let r ∈ Lk−1 be the labeling for the vertex tuple in layer 1. The answers we

get from the long codes is the same as returning one bit from each query generated
according to Tr. The claim follows by observing that for each tuple of bits produced
as above, either it already satisfies all linear constraints, or it would satisfy all linear
constraints after we flip the Nr-th bit.

Denote the test distribution of the i-th PCP defined above as Ti. The distribution
of the final composed PCP is simply the product of the individual test distributions
⊗ki=1Ti. The verifier samples the edges and the inputs to the functions, queries
the functions (those that correspond to the chosen vertex tuples) and accepts if the
answers returned by the functions are accepted by the predicate.

It is not hard to see from above discussions that the above PCP has perfect
completeness.

Lemma 3.2. If the k-layered Label-Cover instance has a labeling that satisfies all
edges, then there exists a set of functions {f (S)} such that after querying {f (S)} the
verifier accepts with probability 1.

Proof. We let our final proof be the product of proofs of the k individual PCPs given
by Lemma 3.1. Since the answer for each proof is at most distance 1 away from an
assignment that satisfies all linear constraints, their product is at most distance k
away, which is exactly what the verifier (and our predicate) accepts.

4 Soundness

In this section, we analyze the soundness of our PCP. We set ε1 = ε/(7k3 +1), ξ = ε2
1,

ρ0 = 1− 1/4
(
k
3

)
, J = 2dlogρ0 ε1e, and γ such that 1− (1− γ)J/2 < ε1. Note that this

gives ρ
J/2
0 ≤ ε1, and that all parameters depend only on k and ε. Also γ < ε.

As discussed in Section 3, we would like to prove that for all S 6= ∅, the expec-
tation

E

[ ∏
S∈S

f (S)(x(S))

]
, (3)

is small unless there is good labeling.
Remark. The functions f (S) actually depend on the underlying edges we sampled.

For notational convenience we suppress this dependency and save another layer of
subscripts (of subscripts of subscripts).

As discussed in previous sections, we need to show that for each non-constant
term, there is at least one PCP among those in the direct sum, such that if the
expectation of the term under the PCP is large, we can find a good labeling for the
underlying label cover instance by looking at the functions f restricted to that PCP.
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Formally, we have the following lemma which is a reformulation of Lemma 5.3 in
Chan [5].

Lemma 4.1. Let T = ⊗ki=1Ti, where Ti is the test distribution for the i-th PCP.
Suppose for some S 6= ∅, we have∣∣∣∣∣ET

[ ∏
S∈S

f (S)(x(S))

]∣∣∣∣∣ = δ,

then for any i ∈ [k], there exists functions g(S) whose inputs are query bits to the i-th
PCP, such that ∣∣∣∣∣ETi

[ ∏
S∈S

g(S)(x(S))

]∣∣∣∣∣ ≥ δ.
Given f (S), we find g(S) by fixing query bits that are not in the i-th PCP in a

way that does not lower the expectation.
Thus to bound each term, we need to carefully find an i, such that the test

restricted to the i-th PCP has small expectation. We show how to choose such i
in Section 4.1. We would be back to the traditional setting with Label-Covers and
dictatorship testing from then on. In Section 4.2, we show that we can instead look
at the distribution where each individual bit is further perturbed independently by
some random noise. Then we show in Section 4.3 how to apply an invariance-type
theorem from [32] in this new setting to get our soundness result.

4.1 Permutation Covering

Our k PCPs use cyclic permutations C ∈ C to decide the layer of each query and the
inputs to the corresponding function. We first give a general definition of the crucial
property we need from such sets of permutations.

Definition 4.2. Let P be a set of permutations on [k]. We say that P covers S1∪S3

if for all S ⊆ S1 ∪S3, there exists a permutation σ ∈ P, some j, l0 ∈ [k], such that∣∣∣ {S ∈ S |j ∈ S,maxσ(S) = l0}
∣∣∣ is odd.

We now reformulate the above definition and prove a necessary and sufficient
condition for general sets of permutations P to cover S1 ∪S3.

For each set S ∈ S1∪S3, we construct a Boolean vector vPS as the following: the
elements in the vector are indexed by a tuple (i, l, j) ∈ [|P|]×[k]×[k], and vPS,(i,l,j) = 1

if maxσi(S) = l and j ∈ S, and vS,(i,l,j) = 0 otherwise.

Proposition 4.3. The set of permutations P covers S1∪S3 iff the vectors {vPS }S∈S1∪S3

are linearly independent in F2.

Proof. If the set P does not cover S1 ∪S3, then there exists a set S ⊆ S1 ∪S3,
such that for any permutation σi ∈ P and j, l0 ∈ [k], we have that∣∣∣ {S ∈ P|S 3 j,maxσi(S) = l0}

∣∣∣ is even.

Observe that for any S ∈ S1 ∪S3, the segment of vPS indexed by (i, l) for some fixed
i and l is all zero if maxσi(S) 6= l, and otherwise it is exactly the character vector of
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the set S. Therefore the above is equivalent to saying that for any i ∈ [|P|] and l0,
we have ∑

S∈S

vPS,(i,l0) = 0,

where the summation is modulo 2. Since the above holds for all i and l0, we have∑
S∈S

vPS = 0,

or the vectors {vPS }S∈S are linearly dependent.
Note that all the above steps are equivalent statements. Thus the other direction

also holds.

As a side note, we can see from the above argument that it is necessary to have
Ω(k) permutations in order to cover S1∪S3, because otherwise we would have Θ(k3)
vectors of dimension o(k3) and thus they could not be linearly independent.

We now prove that the set of all cyclic permutations C = {σ0, . . . , σk−1} covers
S1 ∪S3.

Lemma 4.4. The set of all cyclic permutations C = {σ0, . . . , σk−1} covers S1 ∪S3.

Proof. For any given set S ⊆ S1 ∪S3, we show how to find the cyclic permutation
σ and indices j, l0 ∈ [k] required in Definition 4.2.

For a set S ∈ S1 ∪S3, let

span(S) = min
σi∈C

maxσi(S)−minσi(S),

that is, the minimum distance between the largest and the smallest element under
cyclic permutations. Note that for singleton sets S ∈ S1, we have span(S) = 0.

For a given set S , let S ∈ S be a set with minimum span in S where we
break ties arbitrarily. Pick i0 such that σi0(S) contains 1 and span(S) + 1 as its
minimum and maximum element. Let σ := σi0 be the permutation we want, and let
l0 = span(S) + 1.

Now we select j. If span(S) = 0, then let j = σ−1(1) and we are done. This
is because for any non-singleton set S′, maxσ(S) > 1, and for any singleton set
S′′ 6= S, clearly σ(S′′) 6= σ(S). Thus S would be the only set containing j with
maxσ(S) = 1 = l0.

If span(S) 6= 0, then S has three elements, and there is no singleton set in S .
If there is any other non-singleton set S′′ ∈ S with maxσ(S′′) = span(S) + 1, then
σ(S′′) and σ(S) have the same maximum and minimum element, namely span(S)+1
and 1. That leaves us with the middle element. But since S 6= S′′, the middle
element must be different, so each of them appear only in one set, and setting j to
the inverse of any of the middle elements under σ would work. Otherwise we take
j = maxS.

For S ⊆ S1 ∪S3, we consider the PCP corresponding to the cyclic permutation
σi ∈ C covering S given by Lemma 4.4. We denote the PCP as PCPi. As discussed
before, we only need to show that if (3) is large even when restricted to PCPi, we
can find a good labeling for the Label-Cover instance we started with.

For notational simplicity, we only prove the case where i = 0, that is, for the
identity permutation σ0. Arguments for general cyclic permutations are entirely
symmetric.
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4.2 Introducing Independent Noise

In this section, we show that perturbing the queries does change the expectation of
the terms by too much.

Formally, let T ′r be the distribution where we first sample according to Tr, and
then resample each bit independently with probability γ according to its marginal
distribution in Tr — which in our case is uniform. Also define T ′ = ⊗r∈Lk−1T ′r . We
prove the following lemma which bounds the difference of expectation of (3) under
T and T ′.

Lemma 4.5. For any S ⊆ S1 ∪S3, we have∣∣∣∣∣ET
[ ∏
S∈S

f (S)(x(S))

]
− E
T ′

[ ∏
S∈S

f (S)(x(S))

]∣∣∣∣∣ < 7k3ε1, (4)

where ε1 = ε/(7k3 + 1) is as defined at the beginning of Section 4.

Fix some S0 ∈ S1 ∪S3. Let T (S0) be the distribution where under T , we inde-
pendently resample the bits in x(S0) from the uniform distribution with probability
γ. We first show in Lemma 4.6 below that the expectation under T is close to that
under T (S0). Lemma 4.5 follows by applying similar arguments to all x(S)’s one after
another.

For S ∈ S1 ∪S3, let m(S) = maxS be the maximum element in S. Recall that
query x(S) is located in layer m(S), and for r ∈ Lk−1, Tr is the distribution containing

all bits in {x(S)
t |S ∈ S1 ∪S3, πm(S)→1(t) = r}, that is, the query bits that map to

the same r. We use T (S0)
r to denote the marginal distribution of T (S0) on bits in

{x(S0)
t |πm(S0)→1(t) = r}. Let m = m(S0).

Consider the difference of expectation between T and T (S0). If f (S0)(x(S0)) does
not appear in the product, then there would be no difference. We now assume
otherwise. The following lemma shows that introducing independent noise on one
query does not change the expectation by too much.

Lemma 4.6. For any S ⊆ S1 ∪S3, we have∣∣∣∣∣ET
[ ∏
S∈S

f (S)(x(S))

]
− E
T (S0)

[ ∏
S∈S

f (S)(x(S))

]∣∣∣∣∣ < 7ε1. (5)

The proof follows the approach from [31], especially Lemma 3.15 through Lemma
3.17.

For notational simplicity let F ′ be the product of all terms but f (S0)(x(S0)) and we

abbreviate f (S0) as f . We use X
(S0)

to abbreviate
∏
S∈S1∪S3,S 6=S0

X(S). Similarly

we define X
(S0)

r for r ∈ Lk−1. The first step is to use Lemma 2.19 to bound the

correlation ρ(X(S0), X
(S0)

; T ) and ρ(X(S0), X
(S0)

; T (S0)). Since T is simply a product

of Tr with different r’s, by Lemma 2.18, we only need to bound ρ(X
(S0)
r , X

(S0)

r ; Tr)
and ρ(X

(S0)
r , X

(S0)

r ; T (S0)
r ).

Claim 4.7. For any S0 ∈ S3, the correlation ρ(X
(S0)
r , X

(S0)

r ; Tr) is upper-bounded

by 1− 1

4(k
3)

, ρ0. The same bound holds for ρ(X
(S0)
r , X

(S0)

r ; T (S0)
r ).
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Proof. We divide Tr into two parts: (i) the set S0 is chosen as Nr; or (ii) some set

other than S0 is chosen. It is not hard to verify that the marginal of X
(S0)
r after con-

ditioning on either of them remains uniform and thus we can apply Lemma 2.19. Let
µ be the conditional distribution assuming (i) happens, and ν be the one assuming

(ii) happens. We have that ρ(X
(S0)
r , X

(S0)

r ; ν) = 1. For the correlation of the other

part, we have ρ(X
(S0)
r , X

(S0)

r ;µ) = 1/2, achieved by dictatorship functions. There-

fore, the overall correlation is upper-bounded by
√

(1− 1/
(
k
3

)
) + 1/

(
k
3

)
· (1/2)2 ≤√

1− 1/2
(
k
3

)
< 1− 1/4

(
k
3

)
.

Intuitively, the correlation under T (S0)
r could not exceed that under Tr since

the noise we added are all independent. In particular, the part corresponding to

ρ(X
(S0)
r , X

(S0)

r ; ν) becomes less than 1 due to lack of perfect correlation, and the part

corresponding to ρ(X
(S0)
r , X

(S0)

r ;µ) remains the same. Thus the result follows by
similar calculations as in Tr.

Take the Efron-Stein decomposition f =
∑
T⊆Lk−1 fT . More specifically, for

T ⊆ Lk−1, we have that

fT =
∑

U⊆Lk−m×Rm−1

πm→1(U)=T

f̂UχU .

Again for notational simplicity, we temporarily drop the subscript and write πm→1

as π. We decompose the terms in the expectation in (5) as following

fF ′ = F ′
∑

T⊆Lk−1

fT (6)

=F ′
∑

T⊆Lk−1

|T |≤J/2

fT + F ′
∑

T⊆Lk−1

|T |>J/2

fT . (7)

We first bound the expectation of the high degree parts under both T and T (S0).
This is a standard correlation argument. We first consider the expectation under

T . Let UT be the conditional expectation operator mapping a function in L2(X(S0))

to a function in L2(X
(S0)

) with respect to distribution T . We have∣∣∣∣∣∣∣∣ET
F ′ ∑

T⊆Lk−1

|T |>J/2

fT


∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣ET
F ′ ∑

T⊆Lk−1

|T |>J/2

UT fT


∣∣∣∣∣∣∣∣ . (8)

Note that the expectation on the right hand side is in fact taken under the marginals
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of T on X
(S0)

. Applying Cauchy-Schwarz, we have∣∣∣∣∣∣∣∣ET
F ′ ∑

T⊆Lk−1

|T |>J/2

f
(S0)
T


∣∣∣∣∣∣∣∣≤
√√√√√√√E
T

 ∑
T⊆Lk−1

|T |>J/2

UT (f
(S0)
T )2

√E
T

[F ′2] (9)

≤
√√√√√ ∑
T⊆Lk−1

|T |>J/2

∥∥∥UT f (S0)
T

∥∥∥2

(10)

≤
√√√√√ ∑
T⊆Lk−1

|T |>J/2

ρ
|T |
0

∥∥∥f (S0)
T

∥∥∥2

≤ ρJ/20 ≤ ε1, (11)

where the inequality in (11) follows from Proposition 2.22 and that the norm in (11)
is with respect to the marginal of T on X(S0), which is uniform. The analysis for
expectation under T (S0) is identical as it only involves correlation. Therefore

∣∣∣∣ET [fF ′]− E
T (S0)

[fF ′]

∣∣∣∣≤
∣∣∣∣∣∣∣∣ET
F ′ ∑

T⊆Lk−1

|T |≤J/2

fT

− E
T (S0)

F ′ ∑
T⊆Lk−1

|T |≤J/2

fT


∣∣∣∣∣∣∣∣+ 2ε1. (12)

Now we turn to the low degree parts. Further unraveling the Efron-Stein decompo-
sition, we have

F ′
∑

T⊆Lk−1

|T |≤J/2

fT=F ′
∑

U⊆Lk−m×Rm−1

|π(U)|≤J/2

f̂UχU (13)

=F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

f̂UχU + F ′
∑

U⊆Lk−m×Rm−1

|U |>|π(U)|
|π(U)|≤J/2

f̂UχU . (14)

Following terminology in [14, 32, 31], we refer to the first term as shattered term, and
the second as non-shattered term. We would like to study these two terms separately.
From (12), we have∣∣∣∣ET [fF ′]− E

T (S0)

[fF ′]

∣∣∣∣ (15)

≤2ε1 +

∣∣∣∣∣∣∣∣∣∣∣
E
T

F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

f̂UχU

− E
T (S0)

F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

f̂UχU



∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣
E
T

F ′
∑

U⊆Lk−m×Rm−1

|U |>|π(U)|
|π(U)|≤J/2

f̂UχU

− E
T (S0)

F ′
∑

U⊆Lk−m×Rm−1

|U |>|π(U)|
|π(U)|≤J/2

f̂UχU



∣∣∣∣∣∣∣∣∣∣∣
. (16)

18



We first use smoothness to bound the non-shattered terms. The process is very
similar to that in [31], and we get∣∣∣∣∣∣∣∣∣∣∣

E
T

F ′
∑

U⊆Lk−m×Rm−1

|U |>|π(U)|
|π(U)|≤J/2

f̂UχU



∣∣∣∣∣∣∣∣∣∣∣
≤ 2ε1. (17)

The same argument holds under distribution T (S0). For the difference involving the
shattered terms, we have∣∣∣∣∣∣∣∣∣∣∣

E
T

F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

f̂UχU

− E
T (S0)

F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

f̂UχU



∣∣∣∣∣∣∣∣∣∣∣
(18)

=

∣∣∣∣∣∣∣∣∣∣∣
E
T

F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

f̂UχU

−E
T

F ′
∑

U⊆Lk−m×Rm−1

|U |=|π(U)|
|π(U)|≤J/2

(1− γ)|U |f̂UχU



∣∣∣∣∣∣∣∣∣∣∣
(19)

=

∣∣∣∣∣∣∣∣ET
F ′ ∑

U⊆Lk−m×Rm−1

|U |=|π(U)|≤J/2

(1− (1− γ)|U |)f̂UχU


∣∣∣∣∣∣∣∣ (20)

≤(1− (1− γ)J/2) ≤ ε1. (21)

The key step is (19) where we switch the distribution of the second term from T (S0) to
T . We rely crucially on the fact that |U | = |π(U)|. To see why this holds, denote the
query to f as x (just for the current argument). Observe that xt’s are independent
for t ∈ U with different π(t), so we first focus on the t’s that map to the same r ∈ U .
Looking at each r ∈ π(U), |π(U)| = |U | implies that there is a unique t ∈ U such
that π(t) = r, and thus perturbing xt’s where π(t) = r with probability γ would give
exactly a multiplicative factor of (1 − γ) to the expectation. Since each r ∈ π(U)
contributes a factor of (1−γ), the final factor thus becomes (1−γ)|π(U)| = (1−γ)|U |.

Summing up the above, we have∣∣∣∣ET [fF ′]− E
T (S0)

[fF ′]

∣∣∣∣ ≤ 7ε1. (22)

This completes the proof.

4.3 Influence Based Decoding

Suppose we have that for some S ⊆ S1 ∪S3, the following term is large∣∣∣∣∣ET ′
[ ∏
S∈S

f (S)(x(S))

]∣∣∣∣∣ > ε1, (23)
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then for at least an ε1/2 fraction of all possible edge samplings, we have∣∣∣∣∣ET ′
[ ∏
S∈S

f (S)(x(S))

]∣∣∣∣∣ > ε1/2. (24)

In the rest of the proof, we focus on samplings of edges where (24) holds. We show
how to extract a labeling for these edges.

Observe that after we fixed the edges, which function we query only depends on
the layer of the query, so for the rest of this section, let fl be the function on layer
l. Also recall that m(S) = maxS is the layer query x(S) is in, and thus in the PCP
query x(S) goes to function fm(S). Let lm = maxS∈S m(S) be the maximum layer
among queries that appears in S .

For l ∈ [k], denote the queries that appear on layer l as Ll := {S ∈ S1 ∪
S3|maxS = l}, and let L≤l := ∪l′≤lLl′ , and similarly define L<l. We need the
following observation on independence between queries.

Claim 4.8. For any l ∈ [k] and S0 ∈ Ll, X(S0) and
∏
S∈L<l

X(S) are independent

under both T and T ′.

Proof. We first consider T . We can write x(S0) = xe · x({l}), where xe depends on
S0, {x(S)}S∈Ll

as well as choice of Nr’s for r ∈ Lk−1, and the decision whether the
bits in query x(Nr) are resampled, x({l}) is a uniform random string, and · denotes
the element-wise product. Observe that x({l}) is independent of {x(S)}S∈Ll

, the Nr’s
and whether the bits are resampled, thus its marginal is still uniform no matter how
we fix everything else, and so is the marginal of x(S0). This implies that X(S0) is
independent of everything else and in particular

∏
S∈L<l

X(S).

For T ′, note that the additional noise is applied independently to each bit, and
we can use a similar argument as above to show that the marginal of X(S0) is always
uniform however we fix the other parameters.

We rewrite the left hand side of (24) as

E
T ′

[ ∏
S∈S

fm(S)(x
(S))

]
= E
T ′

∏
l∈[k]

∏
S∈Ll∩S

fl(x
(S))

 .
By our choice of permutation and Lemma 4.4, there exists l0 and j0 such that

|{S ∈ Ll0 ∩S | S 3 j0}| is odd.

Then flipping x({j0}) while leaving all other x({j′}) unchanged changes the sign of the
following ∏

S∈Ll0
∩S

fl0(x(S)),

and since the marginal of x({j0}) is uniform, we have

E
T ′

 ∏
S∈Ll0

∩S

fl0(x(S))

 = 0.
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To complete the proof of soundness, we show that if∣∣∣∣∣ET ′
[ ∏
S∈S

fm(S)(x
(S))

]∣∣∣∣∣ =

∣∣∣∣∣∣ET ′
∏
l∈[k]

∏
S∈Ll∩S

fl(x
(S))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ET ′
∏
l∈[k]

∏
S∈Ll∩S

fl(x
(S))

− ∏
l∈[k]

E
T ′

[ ∏
S∈Ll∩S

fl(x
(S))

]∣∣∣∣∣∣ > ε1/2, (25)

then there exists two layers 1 ≤ l < lm ≤ k such that∑
rl∈Lk−l×Rl−1

rm∈Lk−lm×Rlm−1

πlm→l(rm)=rl

Inf (γ)
rl

(fl)Inf (γ)
rm (flm) >

ε2
1

4Z
, (26)

where Z = Z(k, γ) := 24k3k6γ−2. This enables us to define a good labeling as

the following: choose rl with probability Inf (γ)
rl

(fl)/Inf (γ)(fl), and similarly choose

rm with probability Inf (γ)
rm (flm)/Inf (γ)(flm), then the probability that the labeling

satisfies the edge is ∑
rl∈Lk−l×Rl−1

rm∈Lk−lm×Rlm−1

πlm→l(rm)=rl

Inf (γ)
rl

(fl)

Inf (γ)(fl)

Inf (γ)
rm (flm)

Inf (γ)(flm)

> γ2
∑

rl∈Lk−l×Rl−1

rm∈Lk−lm×Rlm−1

πlm→l(rm)=rl

Inf (γ)
rl

(fl)Inf (γ)
rm (flm)

≥ γ2ε2
1

4Z
.

This holds for at least ε1/2 fraction of choices of edges, thus the expected value
achieved by the above random labeling procedure is at least γ2ε3

1/8Z, a value de-
pending only on k and ε.

The key step to proving (25) is to bound the following difference∣∣∣∣∣∣ET ′
[ ∏
S∈S

fm(S)(x
(S))

]
− E
T ′

[∏
l<lm

∏
S∈Ll∩S

fl(x
(S))

]
E
T ′

 ∏
S∈Llm∩S

flm(x(S))

∣∣∣∣∣∣ , (27)

where we recall that lm is the highest layer of queries involved in S . We can iter-
atively apply the bound on (27) to get (25). In order to establish (27), we use an
invariance-type result from [31].

Theorem 4.9 ([31]). Consider functions {f (t) ∈ L∞(Ωnt )}t∈[m] on a probability
space P = (

∏m
t=1 Ωt, P )⊗n and a set M ( [m]. Furthermore, let C be the collection

of minimal sets C ⊆ [m], C 6⊆M , such that the spaces {Ωt}t∈C are dependent. Then∣∣∣∣∣E [∏ f (t)
]
−
∏
t/∈M

E[f (t)] E

[∏
t∈M

f (t)

]∣∣∣∣∣
≤ 22m max

C∈C

√
min
r∈C

Inf(f (r))
∑
i

∏
t∈C\{r}

Inf i(f (t))
∏
t/∈C

∥∥∥f (t)
∥∥∥
∞
.
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To apply the above theorem, we first combine all functions that are not in the
highest layer. Let Q =

∏
S∈S∩L<lm

X(S), and q ∈ Q simply be concatenation of

{x(S)}S∈S∩L<lm
. Define the combined function F =

∏
S∈S∩L<lm

fm(S). We still

have by Claim 4.8 that Q and X(S0) are independent for all S0 ∈ Llm . Then the first
term in (27) becomes

E
T ′

[ ∏
S∈S

fm(S)(x
(S))

]
= E
T

TγF (q)
∏

S∈S∩Llm

Tγflm(x(S))

 .
Let us set M = S ∩ Llm . Consider the sets C in Theorem 4.9. Since Theorem
4.9 requires that C 6⊆ M , we have that C must include variable q. Due to the
independence in Claim 4.8, C must also include at least two variables from S ∩Llm .
Applying Theorem 4.9, we have∣∣∣∣∣∣ET

TγF (q)
∏

S∈S∩Llm

Tγflm(x(S))

−E
T

[TγF (q)] E
T

 ∏
S∈S∩Llm

Tγflm(x(S))

∣∣∣∣∣∣
≤ 22k3

√
Inf (γ)(f lm)

∑
r∈Lk−1

Inf (γ)
r (F )Inf (γ)

r (f lm),

where F and f lm are lifted versions of F and flm as defined in Definition 2.15.

We have that Inf (γ)(f lm) ≤ Inf (γ)(flm) ≤ γ−1. Now we need to relate Inf (γ)
r (F )

with Inf (γ)
r (fm(S)).

We use the following generalization of Lemma 6.5 from [21].

Lemma 4.10. Let (
∏m
i=1 Ωni , µ) be correlated probability space, and fi : Ωni → [−1, 1]

for i = 1, · · · ,m. Then for all r:

Infr(

m∏
i=1

fi) ≤ m
m∑
i=1

Infr(fi).

The argument goes exactly the same so we omit the proof here.
Applying Lemma 4.10, we get Inf (γ)

r (F ) ≤ k3
∑
S∈S∩L<lm

Inf (γ)
r (fm(S)).

Summing up and using Proposition 2.16, we get∣∣∣∣∣∣ET
TγF (q)

∏
S∈S∩Llm

Tγflm(x(S))

−E
T

[TγF (q)] E
T

 ∏
S∈S∩Llm

Tγflm(x(S))

∣∣∣∣∣∣
(28)

≤ 22k3
√√√√k3γ−1

∑
r∈Lk−1

S∈S∩L<lm

Inf (γ)
r (fm(S))Inf (γ)

r (f lm) (29)

≤ 22k3
√√√√√√√
k3γ−1

∑
1≤l<lm

rl∈Lk−l×Rl−1

rm∈Lk−lm×Rlm−1

πlm→l(rm)=rl

Inf (γ)
rl

(fl)Inf (γ)
rm (flm). (30)

22



Let Z ′ = 22k3
√
k3γ−1, applying (30) to all layers, we get∣∣∣∣∣ET ′
[ ∏
S∈S

f (S)(x(S))

]∣∣∣∣∣
< Z ′

∑
2≤lm<k

√√√√√√√
∑

1≤l<lm
rl∈Lk−l×Rl−1

rm∈Lk−lm×Rlm−1

πlm→l(rm)=rl

Inf (γ)
rl

(fl)Inf (γ)
rm (flm).

Thus if the left hand side of the above is larger than ε1/2, then there exists 1 ≤ l <
lm ≤ k such that

∑
rl∈Lk−l×Rl−1

rm∈Lk−lm×Rlm−1

πlm→l(rm)=rl

Inf (γ)
rl

(fl)Inf (γ)
rm (flm) >

(
ε1/2

kZ ′

)2

· 1

k
=

ε2
1

4Z
.
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