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Abstract. This paper describes ProMoVer, a tool for fully automated
procedure–modular verification of Java programs equipped with method–
local and global assertions that specify safety properties of sequences of
method invocations. Modularity at the procedure–level is a natural in-
stantiation of the modular verification paradigm, where correctness of
global properties is relativized on the local properties of the methods
rather than on their implementations, and is based here on the construc-
tion of maximal models for a program model that abstracts away from
program data. This approach allows global properties to be verified in the
presence of code evolution, multiple method implementations (as arising
from software product lines), or even unknown method implementations
(as in mobile code for open platforms). ProMoVer automates a typical
verification scenario for a previously developed tool set for compositional
verification of control flow safety properties, and provides appropriate
pre– and post–processing. Modularity is exploited by a mechanism for
proof reuse that detects and minimizes the verification tasks resulting
from changes in the code and the specifications. The verification task is
relatively light–weight due to support for abstraction from private meth-
ods and automatic extraction of candidate specifications from method
implementations. We evaluate the tool on a number of applications from
the smart card domain.

1 Introduction

In modern computing systems, code changes frequently. Modules (or compo-
nents) evolve rapidly or exist in multiple versions customized for various users,
and in mobile contexts, a system may even automatically reconfigure itself. As a
result, systems are no longer developed as monolithic applications; instead they
are composed of ready–made off–the–shelf components, and each component
may be dynamically replaced by a new one that provides improved or additional
functionality. This static and dynamic variability makes it more important to
provide formal correctness guarantees for the behaviour of such systems, but at
the same time also more difficult. Modularity of verification is a key to providing
such guarantees in the presence of variability.
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In modular verification, correctness of the software components is specified
and verified independently (locally) for each module, while correctness of the
whole system is specified through a global property, the correctness of which is
verified relative to the local specifications rather than relative to the actual im-
plementations of the modules. It is this relativization that enables verification of
global properties in the presence of static and dynamic variability. In particular,
it allows an independent evolution of the implementations of individual modules,
only requiring the re–establishment of their local correctness.

Hoare logic provides a popular framework for modular specification and ver-
ification of software, where it is natural to take the individual procedures as
modules, in order to achieve scalability, see e.g., [18]. While Hoare logic allows
the local effect of invoking a given procedure to be specified, temporal logic is bet-
ter suited for capturing its interaction with the environment, such as the allowed
sequences of procedure invocations. This paper shows that procedure–modular
verification is also appropriate for safety temporal logic: for each procedure the
local property specifies its legal call sequences, while the system’s global prop-
erty specifies the allowed interactions of the system as a whole. Thus, temporal
specifications provide a meaningful abstraction for procedures.

To support our approach, we have developed a fully automated verification
tool, ProMoVer, which can be tried via a web–based interface [20]. It takes as
input a Java program annotated with global and method–local correctness as-
sertions written in temporal logic and it automatically invokes a number of tools
from cvpp, a previously developed tool set for compositional verification [13],
to perform the individual local and global correctness checks. Essentially, Pro-
MoVer is a wrapper that performs a standard verification scenario in the gen-
eral tool set, to demonstrate that procedure–modular verification of temporal
safety properties can be applied automatically. Importantly, ProMoVer only
requires the public procedures to be annotated; the private ones are being con-
sidered merely as an implementation means. In addition, ProMoVer provides
a facility to extract a method’s legal call sequences by means of static analysis,
given a concrete procedure implementation. A user thus does not have to write
annotations explicitly; it suffices to inspect the extracted specifications and re-
move superfluous constraints that might hinder possible evolution of the code.
Finally, ProMoVer also practically supports modularity by providing proof
storage and reuse: only the properties that are affected by a change (either in
implementation or in specification) are reverified, all other results are reused.

We show validity of the approach on some typical Java Card e-commerce ap-
plications. Such security–relevant applications are an important target for for-
mal verification techniques. Here, we verify the absence of calls to non–atomic
methods within transactions. Such properties, specifying legal call sequences for
security–related methods, are an important class of platform–specific security
properties. The ProMoVer web interface allows the user to verify such prop-
erties, for which a ready–made formalization is provided.

To allow efficient algorithmic modular verification, the tool set currently ab-
stracts away from all data, thus considering safety properties of the control flow;
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in particular, method calls in Java programs are over–approximated by non–
deterministic choice on possible method implementations that the virtual call
resolution might resolve to. This rather severe restriction on the program model
is imposed by the maximal model construction that is the core of our modu-
lar verification technique (see [9] for a proof of soundness and completeness for
this program model). Still, many useful properties can be expressed at this level
of abstraction. These include platform–specific security properties as discussed
above, and application–specific properties such as: (i) a method that changes
sensitive data is only called from within a dedicated authentication method,
i.e., unauthorized access is not possible; or (ii) in a voting system, candidate
selection has to be finished, before the vote can be confirmed. Extending the
technique with data, either over finite domains or over pointer structures, will
allow for a wider range of properties and possible applications, but requires a
non–trivial generalisation of the maximal model construction, and needs to be
combined with abstraction techniques to control the complexity of verification
and of model extraction from a program. We are currently investigating this.

Control flow safety properties can be expressed in various formalisms, e.g.,
automata–based or process–algebraic notations, as well as in temporal logics
such as LTL [22] and the safety fragment of the modal μ-calculus [15]. Internally,
cvpp uses the latter, but ProMoVer allows the user to write the specifications
in LTL, which is usually considered more intuitive. It is future work to extend
ProMoVer also with other notations, in particular graphical ones.

ProMoVer currently handles procedure–modular verification of control–flow
properties for sequential programs. The restriction to modularity at procedure
level is not fundamental, and will be relaxed in future versions. As mentioned
above, we are working on extending the method with data. The underlying the-
ory for modelling multi–threaded programs has been developed earlier (see [12]),
but the model checking problem is not decidable in general and has to be ap-
proximated suitably.

From a more practical point of view, the two main limitations are performance
and the effort needed to write specifications. With respect to the first one, known
theoretical bottlenecks are the maximal model construction and model checking
of global properties (both are exponential in the size of the formula), as well
as the efficient extraction of precise program models (in particular concerning
virtual call resolution and exception propagation). The support for proof reuse is
our main means of addressing these bottlenecks. As to the second limitation, to
reduce the effort needed to write specifications, ProMoVer provides a library
of common platform-specific global properties, and can extract specifications
from a given implementation, as explained above.

The work in this paper is closely related to the development of cvpp [13].
As already pointed out, ProMoVer is essentially a wrapper that automates
a typical verification scenario for cvpp, where modularity is applied at the
procedure–level. In addition, ProMoVer provides support for proof reuse, and
specification extraction, a collection of ready–formalised properties, and trans-
lates between the different intermediate formats and formalisms. Preliminary
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results on an earlier version of ProMoVer were reported at a workshop [21].
The present paper extends and completes this work. In particular, we have added
several facilities to improve the usability of the tool, in the form of automated
support for proof reuse, specification extraction, and private method abstrac-
tion (see Section 4). Furthermore, we have adapted and extended significantly
the experimental evaluation of the tool (see Section 5).

Related Work. A non–compositional verification method based on a program
model closely related to ours is presented by Alur et al. [3]. It proposes a tem-
poral logic CaRet for nested calls and returns (generalized to a logic for nested
words in [1]) that can be used to specify regular properties of local paths within
a procedure that skips over calls to other procedures. esp is another exam-
ple of a successful system for non–compositional verification of temporal safety
properties, applied to C programs [5]. It combines a number of scalable pro-
gram analyses to achieve precise tracking (simulation) of a given property on
multiple stateful values (such as file handles), identified through user–defined
source code patterns. Maven is a modular verification tool addressing tempo-
ral properties of procedural languages, but in the context of aspects [7]. Recent
work by Alur and Chauhuri proposes a unification of Hoare–style and Manna–
Pnueli–style temporal reasoning for procedural programs, presenting proof rules
for procedure–modular temporal reasoning [2].

Overview. The rest of this paper is organized as follows. Section 2 presents
the use of ProMoVer from a user’s point–of–view. Section 3 recapitulates the
verification framework, describing the underlying program model and logic, and
the compositional verification method based on constructing maximal models.
Then, Section 4 describes the ProMoVer tool, while Section 5 describes three
small but realistic case studies using the tool. Finally, the last section draws
conclusions and suggests directions for future research.

2 ProMoVer: A User’s View

We start by illustrating how ProMoVer is used on a small example. Both local
method and global program properties are provided as assertions in the form
of program annotations. We use a JML–like syntax for annotations (cf. [17]).
ProMoVer is procedure–modular in the sense that correctness of the global
program property is relativized on the local properties of the individual methods.
Thus, the overall verification task divides into two independent subtasks:

(i) a check that each method implementation satisfies its local property, and
(ii) a check that the composition of local properties entails the global property.

Notice that the second subtask only relies on the local properties and does not
require the implementations of the individual methods. Thus, changing a method
implementation does not require the global property to be reverified, only the lo-
cal property. If the second subtask fails, ProMoVer provides a counter example
in the form of a program behaviour that violates the respective property.
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// @global_ltl_prop: even -> X ((even && !entry) W odd)
publ i c c l a s s EvenOdd {

/** @local_interface: required odd
* @local_ltl_prop: G (X (! even || !entry) && (odd -> X G even)) */

publ i c boolean even ( i n t n) {
i f (n == 0) return true ; e l s e return odd (n−1) ; }

/** @local_interface: required even
* @local_ltl_prop: G (X (!odd || !entry) && (even -> X G odd)) */

publ i c boolean odd ( i n t n) {
i f (n == 0) return f a l s e ; e l s e return even (n−1) ; }

}

Fig. 1. A simple annotated Java program

In addition to the properties, the technique also requires global and local
interfaces. A global interface consists of a list of the methods provided (i.e.,
implemented) and required (i.e., used) by the program. The local interface of
method m contains a list of the methods required by the method (as the provided
method is obvious). ProMoVer can extract both global and local interfaces
from method implementations.

Example 1. Consider the annotated Java program in Figure 1. It consists of two
methods, even and odd. The program is annotated with a global control flow
safety property, and every method is annotated with a local property and an
interface specifying the required methods. As mentioned above, the interfaces can
be extracted from the method implementations. The local method specifications
also can be extracted by ProMoVer, see Section 4.

Here we give an intuitive description of the properties specified in the example;
a formal definition of the temporal logic LTL is given below in Definition 4. The
global property expresses that “in every program execution starting in method
even, the first call is not to method even itself”. The local property of method
even expresses that “method even can only call method odd, and after returning
from the call, no other method can be called”. The local property of method odd
is symmetric.

As explained above, the annotated program is correct if (i) methods even
and odd meet their respective local properties, and (ii) the composition of local
properties entails the global one. In fact, the annotated program is correct and
our tool therefore returns an affirmative result.

Example 2. If we change the global property of the previous example to “in every
program execution starting in method even, no call to method odd is made”,
the tool detects this and rechecks the global property for the already computed
composition of local properties. The local properties do not have to be reverified.
The verification of the global property fails. As a counter example, ProMoVer
returns the following program execution that is allowed by the local properties,
but violates the global one:

(even, ε) even call odd−−−−−−−→(odd, even) odd ret even−−−−−−−→(even, ε)
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adapted for user understandability by replacing program points with the names
of the methods they belong to (cf. Definition 3).

3 Framework for Modular Specification and Verification

Next, we briefly present the formal framework underlying the ProMoVer tool
that supports this style of procedure–modular verification. It is heavily based on
our earlier work on compositional verification [9,8].

3.1 Program Model and Logic

First, we formally define the program model and property specification logic.

Definition 1 (Model). A model is a (Kripke) structure M = (S,L,→, A, λ)
where S is a set of states, L a set of labels, →⊆ S × L × S a labeled transition
relation, A a set of atomic propositions, and λ : S → P(A) a valuation, assigning
to each state s the set of atomic propositions that hold in s. An initialized model
is a pair (M, E) with M a model and E ⊆ S a set of initial states.

Our program model is based on the notion of flow graph, abstracting away from
all data in the original program. It is essentially a collection of method graphs, one
for each method of the program. Let Meth be a countably infinite set of methods
names. A method graph is an instance of the general notion of initialized model.

Definition 2 (Method graph). A method graph for method m ∈ Meth over
a set M ⊆ Meth of method names is an initialized model (Mm, Em) where
Mm = (Vm, Lm,→m, Am, λm) is a finite model and Em ⊆ Vm is a non-empty
set of entry nodes of m. Vm is the set of control nodes of m, Lm = M ∪ {ε},
Am = {m, r}, and λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm (i.e.,
each node is tagged with its method name). The nodes v ∈ Vm with r ∈ λm(v)
are return points.

Notice that methods can have multiple entry points. Flow graphs that are ex-
tracted from program source have single entry points, but the maximal models
that we generate for compositional verification may have several.

Every flow graph G is equipped with an interface I = (I+, I−), denoted G : I,
where I+, I− ⊆ Meth are the provided and externally required methods, respec-
tively. These are needed to construct maximal flow graphs (see Section 3.2).

A flow graph is closed if its interface does not require any methods, and it
is open otherwise. Flow graph composition is defined as the disjoint union � of
their method graphs.

Example 3. Figure 2 shows the flow graph of the program from Figure 1. Its
interface is ({even, odd}, ∅), thus the flow graph is closed. It consists of two
method graphs, for method even and method odd, respectively. Entry nodes are
depicted as usual by incoming edges without source.
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Flow graph behavior is also defined as an instance
of an initialized model, induced through the flow
graph structure. We use transition label τ for in-
ternal transfer of control, m1 callm2 for the invoca-
tion of method m2 by method m1 when method m2

is provided by the program and m1 call! m2 when
method m2 is external, and m2 retm1 respectively
m2 ret? m1 for the corresponding return from the
call.

Definition 3 (Behavior). Let G = (M, E) : (I+, I−) be a flow graph such that
M = (V, L,→, A, λ). The behaviour of G is defined as initialized model b(G) =
(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = (V ∪ I−) × V ∗, i.e.,
states are pairs of control points v or required method names m, and stacks σ,
Lb = {m1 k m2 | k ∈ {call, ret},m1,m2 ∈ I+} ∪ {m1 call! m2 | m1 ∈ I+,m2 ∈
I−} ∪ {m2 ret? m1 | m1 ∈ I+,m2 ∈ I−} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v) and
λb((m,σ)) = m, and →b⊆ Sb × Lb × Sb is defined by the following rules:

[transfer] (v, σ) τ−→(v′, σ) if m ∈ I+, v
ε−→mv

′, v |= ¬r
[call] (v1, σ) m1 call m2−−−−−−→(v2, v′1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1v
′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[ret] (v2, v1 · σ) m2 ret m1−−−−−−→(v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

[call!] (v1, σ) m1 call! m2−−−−−−−→(m2, v
′
1 · σ) if m1 ∈ I+,m2 ∈ I−, v1

m2−−→m1v
′
1, v1 |= ¬r

[ret?] (m2, v1 · σ) m2 ret? m1−−−−−−−→(v1, σ) if m1 ∈ I+,m2 ∈ I−, v1 |= m1

The set of initial states is defined by Eb = E×{ε}, where ε denotes the empty
sequence over V ∪ I−.

Notice that return transitions always hand back control to the caller of the
method. Calls to external methods are modeled with intermediate state, from
which only an immediate return is possible. In this way possible callbacks from
external methods are not captured in the behaviour. This simplification is jus-
tified, since we abstract away from data in the model and the behaviour is thus
context–free, but has to be kept in mind when writing specifications; in partic-
ular one cannot specify that callbacks are not allowed.

Example 4. Consider the flow graph from Example 3. An example run through
its (branching, infinite–state) behaviour, from an initial to a final state, is:

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call odd−−−−−−−→(v5, v3)

τ−→(v6, v3)
τ−→(v8, v3)

odd ret even−−−−−−−→(v3, ε)

Now, consider just the method graph of method even as an open flow graph,
having interface ({even}, {odd}). The local contribution of method even to the
above global behaviour is the following run:

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call! odd−−−−−−−→(odd, v3)

odd ret? even−−−−−−−→(v3, ε)
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Pushdown systems. (PDS) are an alternative way to express flow graph be-
haviour. We exploit this by using PDS model checking, concretely the tool
Moped [14], for verifying program behaviour against temporal formulas.

As mentioned above, safety properties can be expressed in many different for-
malisms. In this paper, we use safety LTL which consists of the safety–fragment
of Linear Temporal Logic (LTL), using the weak until–operator. Internally, how-
ever, the whole machinery is based on the safety fragment of the modal μ-
calculus. Safety LTL is somewhat less expressive than the latter and can be uni-
formly encoded in it. This translation is implemented as part of ProMoVer.
In our LTL formulas, we use an additional atomic proposition entry that holds
for entry nodes. It is removed by the translation into the modal μ-calculus.

Definition 4 (Safety LTL). Let p ∈ Ab ∪ {entry} and m ∈M . The formulae
of Safety LTL are inductively defined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

Satisfaction on states (Mb, s) |= φ for LTL is defined in the standard fashion [22]:
formula X φ holds of state s in model Mb if φ holds in the next state of every
run starting in s; G φ holds if for every run starting in s, φ holds in all states of
the run; and φ W ψ holds in s if for every run starting in s, either φ holds in all
states of the run, or ψ holds in some state and φ holds in all previous states.

Example 5. Consider the global property of class EvenOdd in Figure 1 (where
&& is ASCII notation for ∧) and its intuitive meaning in Example 1. Flow graph
extraction and construction ensures that entry nodes are only accessible via calls;
hence, if control starts and remains in method even, execution can be at an entry
node only as the result of a self–call. The formula thus states that “if program
execution starts in method even, method even is not called until method odd is
reached”, which coincides with the interpretation given in Example 1.

3.2 Compositional Verification

Our method for algorithmic compositional verification is based on the construc-
tion of maximal flow graphs from component properties. For a given property ψ
and interface I, consider the set of all flow graphs with interface I satisfying ψ.
A maximal flow graph for ψ and I, denoted Max(ψ, I), satisfies exactly those
properties that hold for all members of the set. Thus, the maximal flow graph
can be used as a representative of the set for the purpose of property verification.
For details the reader is referred to [9].

For a system with k components, our principle of compositional verification
based on maximal flow graphs can be presented as a proof rule with k + 1
premises, that states that the composition of components G1 : I1, ...,Gk : Ik
satisfies a global property φ if there are local properties ψi such that (i) each
component Gi satisfies its local property ψi, and (ii) the composition of the k
maximal flow graphs Max(ψI , Ii) satisfies φ.
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⊎

i=1,...,k

Gi |= φ

G1 |= ψ1 · · · Gk |= ψk

⊎

i=1,...,k

Max(ψi, Ii) |= φ

As mentioned above, in the context of ProMoVer, we consider individual pro-
gram methods as components. If we instantiate the above compositional veri-
fication principle to procedure–modular verification, we obtain the verification
tasks stated informally in Section 2 (where M is the set of program methods,
with k = |M |, and ψi and Ci are the specification and the implementation of
method mi, respectively):

(i) Checking Ci |= ψi for i = 1, ..., k: For each method mi ∈ M , (a) extract
the method flow graph Gi from Ci, and (b) model check Gi against ψi. For
the latter, we exploit the fact that flow graphs are Kripke structures, and
apply standard finite–state model checking.

(ii) Checking
⊎

i=1,...,k Max(ψi, Ii) |= φ: (a) Construct maximal flow graphs
Max(ψi, Ii) for all method specifications ψi and interfaces Ii, then (b) com-
pose the graphs, resulting in flow graph GMax, and finally (c) model check
GMax against global property φ. For the latter, represent the behaviour of
GMax as a PDS and use a standard PDS model checker.

Example 6. Consider again the annotated Java program from Example 1. Pro-
MoVer first extracts the method flow graphs of methods even and odd, de-
noted Geven and Godd, respectively. Next, ProMoVer checks Geven |= ψeven and
Godd |= ψodd by standard finite state model checking. Independently, it constructs
the maximal flow graphs of methods even and odd, denoted Max(ψeven, Ieven)
and Max(ψodd, Iodd), respectively, and composes the graphs to obtain GMax =
Max(ψeven, Ieven) �Max(ψodd, Iodd). Finally, ProMoVer translates GMax to
a PDS and model checks the latter against the global property.

4 The ProMoVer Tool

Next we describe the internals of ProMoVer. As mentioned above, Pro-
MoVer essentially is a wrapper for cvpp [13], with extra features such as
specification extraction, private method abstraction, a property specification
library and support for proof reuse. All features are implemented in Python.
ProMoVer can be tested via a web interface [20].

CVPP Wrapper. Figure 3 shows schematically how ProMoVer combines the
individual cvpp tools. An annotated Java program, as exemplified in Section 2, is
given as input. The pre–processor parses the annotations, using the Java Doclet
API [6], and then passes properties and interfaces on to the different cvpp tools.

Task (i) first invokes the Analyzer to extract the method graphs of the pro-
gram. This builds on Sawja [11] to extract flow graphs from Java bytecode. Then
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the Graph Tool is used. This implements several algorithms on flow graphs, in-
cluding flow graph composition � and translations of flow graphs into different
formats. Here the Graph Tool is used to translate the flow graph of each method
into a CCS model. These are then model checked against the respective local
method specifications using the Concurrency Workbench (cwb) [4].

Task (ii) first constructs a maximal flow graph for every method using the
Maximal Model Tool. Then the Graph Tool composes the generated flow
graphs and converts the result into a PDS. Finally Moped [14] is used to model
check the PDS against the global property.

The post–processor collects all model checking results and converts these into
a user–understandable format. It only returns a positive result if all collected
model checking tasks succeed. If one of the local model checking tasks fails, the
name of the method that violates its specification is returned. If the global model
checking task fails, the counter example provided by Moped, transformed into
a program execution, is returned.

Specification Extraction. To reduce the effort needed to write specifications,
ProMoVer provides support to extract a specification from a given method
implementation, resulting in the (over–approximated) order of method invoca-
tions for this method. The user might then want to remove some superfluous
dependencies, in order not to be overly restrictive on possible evolution of the
code. ProMoVer extracts specifications in the form of modal equation systems
(as defined by Larsen [16]). These are equivalent to formulae in modal μ-calculus
with boxes and greatest fixed points only, and have the advantage that in cvpp
they can serve directly as input for the construction of maximal flow graphs. It
is future work to also extract to other specification languages, such as LTL.

Consider again Figure 1. Specification extraction for method even results in
(where eps is ASCII notation for ε, and ff denotes false):

@local_eq_prop: (X0){ X0 = [odd](X1) /\ [even]ff /\ [eps]X0;
X1 = [odd] ff /\ [even]ff /\ [eps]X1;}
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This specifies that method odd may be called at most once: initially X0 holds,
and method odd may be called or an internal step (labelled eps) may be made.
After calling odd, X1 should hold and only internal steps are allowed.

As a more involved example, consider method m and its extracted specification:

@local_eq_prop:

(X0){ X0 = [m4]ff /\ [m1](X1) /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X0;

X1 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2](X2) /\ [m]ff /\ [eps]X1;

X2 = [m4](X3) /\ [m1]ff /\ [m3](X4) /\ [m2]ff /\ [m]ff /\ [eps]X2;

X3 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X3;

X4 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X4; }

public void m() { int i = m1(); int j = m2();

if (i < j) {m3(); } else { m4(); } }

The formula captures that first only m1 can be called, then only m2, and then
either m3 or m4, and no further calls can be made. Actually, the order of invoking
m1 and m2 is immaterial for this program, so a designer may choose to change
the equations defining X0 and X1 to allow the two methods to be called in any
order (whereas the defining equations for X2 to X4 remain unchanged):

X0 = [m4]ff /\ [m1](X10) /\ [m3]ff /\ [m2](X11) /\ [m]ff /\ [eps]X0;

X10 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2](X2) /\ [m]ff /\ [eps]X10;

X11 = [m4]ff /\ [m1](X2) /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X11;

Private Method Abstraction. Since private methods are used as means of im-
plementation for public methods, at the flow graph level, all calls to private
methods can be inlined into the flow graph of the public methods. The resulting
method flow graphs thus only describe the public behaviour, and users only have
to specify the public methods. For details the reader is referred to [9].

Property Specification Library. ProMoVer’s web interface provides a collec-
tion of pre–formalised global properties. These describe platform–specific secu-
rity properties, restricting calls to API methods. Currently, the library contains
several Java Card and voting system properties.

Proof Storage and Reuse. All extracted method flow graphs and constructed
maximal flow graphs are stored when a program is verified by ProMoVer. If
later the implementation of method m changes, a new method flow graph is ex-
tracted and checked against m’s local specification. If m’s local specification φm

changes, the existing flow graph of method m is model checked against φm. In
addition a new maximal flow graph for m is constructed from φm. This is com-
posed with the other maximal flow graphs (recovered from storage), and the
composed flow graph is model checked against the global property.

5 Experimental Results with ProMoVer

We use ProMoVer to verify a standard control flow safety property on a num-
ber of Java Card applications. Java Card is one of the leading interoperable
platforms for smart cards. Many smart card applications are security–critical.
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Table 1. Applications details

Application #LoC #Methods (Public) #Calls (Relevant)

AccountAccessor 190 9 (7) 38 (4)
TransitApplet 918 18 (5) 106 (5)

JavaPurse 884 19 (9) 190 (25)

As mentioned above, for platforms such as Java Card, collections of control
flow safety properties exist that programs should adhere to in order to provide
minimal security requirements. We focus on such a property of the Java Card
transaction mechanism. This mechanism ensures that data remains consistent
upon power loss. Safe use of it demands that certain methods are not called
within a transaction. We show how this global safety property can be expressed in
our setting, and be verified with ProMoVer for several applications, where we
apply specification extraction to annotate the public methods of the applications.

The Java Card Transaction Mechanism. Smart cards have two types of writable
memory, persistent memory (EEPROM or Flash) and transient memory (RAM).
Transient memory needs constant power supply to store information, while per-
sistent memory can store data without power. Smart cards do not have their
own power supply; they depend on the external source that comes from the card
reader device. Therefore, a problem known as card tear may occur: a power loss
when the card is suddenly disconnected from the card reader. If a card tear
occurs in the middle of updating data from transient to persistent memory, the
data stored in transient memory is lost and may cause the smart card to be in
an inconsistent state.

To prevent this, the transaction mechanism is provided. It can be used to en-
sure that several updates are executed as a single atomic operation, i.e., either
all updates are performed or none. The mechanism is provided through methods
beginTransaction for beginning a transaction, commitTransaction for end-
ing a transaction with performed updates, and abortTransaction for ending a
transaction with discarded updates [10] – all declared in class JCSystem of the
Java Card API.

However, the Java Card API also contains some non–atomic methods that are
better not used when a transaction is in progress. Notably, the class javacard.
framework.Util that provides functionality to store and update byte arrays,
contains methods arrayCopyNonAtomic and arrayFillNonAtomic. Typical Java
Card programming standards, such as the Global Platform specification, state
that these methods may not be used within a transaction. We use ProMoVer
to verify that applications comply with this Safe Transaction Policy.

The Applications. For this experiment we use several public examples of Java
Card applications. All are realistic e-commerce applications developed by Sun
Microsystems to demonstrate the use of the Java Card environment for develop-
ing e-commerce applications. AccountAccessor is an application to keep track
of account information. It is to be used by a wireless device connected via a
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Table 2. Verification Results

Application PPT GE #NEF LMC MFC #NMF GMC TT

AccountAccessor 1.4 3.8 435 0.5 0.7 20 0.9 8.7
TransitApplet 1.4 4.7 897 0.5 0.9 30 0.9 13.2
JavaPurse 1.5 6.5 1543 0.5 13.0 48 1.1 22.5

network service. It contains methods to look up and to modify the account bal-
ance. TransitApplet implements the on-card part of a system that connects to
an authenticated terminal and provides account information and operations to
modify the account balance. JavaPurse is a smart card electronic purse appli-
cation providing secure money transfers. It contains a balance record denoting
the user’s current and maximum credits, and methods to initialize, perform and
complete a secure transaction. Further, it also contains methods to update in-
formation related to a loyalty program, and to validate and update the values
of transactions, balance and PIN code.

Table 1 shows information about the size, number of methods (total and
public), and number of method invocations (total and relevant for the global
property) of these applications.

Specification of Safe Transaction Policy. As discussed above, we want to ensure
formally that the non-atomic methods arrayCopyNonAtomic and arrayFill-
NonAtomic are not invoked within a transaction. Hence, applications have to
adhere to the following global control flow safety property:

In every program execution, after a transaction begins, methods array-
CopyNonAtomic and arrayFillNonAtomic are not called until the trans-
action ends.

This safety property can be expressed formally with the following LTL formula:

G (beginTransaction →
((¬arrayCopyNonAtomic ∧ ¬arrayFillNonAtomic) W commitTransaction))

Extracting Local Method Specifications. The specification extractor is used to
obtain local specifications for every public method. Basically, these describe the
order of method invocations. We inspected those for immaterial orderings, and
translated the adjusted representations into safety LTL. The intention is that
local method specifications capture the allowed sequences of method calls made
from within the specified method, but in an abstract way, allowing for possible
evolution of the method implementations.

Verification Results. After annotating the applications, they are passed to Pro-
MoVer. The tool extracts the flow graph of the applications, and partitions
them into the individual method graphs to verify adherence to the local proper-
ties. Further, for each local property a maximal flow graph is constructed, and
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Table 3. Proof Reuse Results

Code Change Local Specification Change

Application New TT % TT MFC New TT % TT

AccountAccessor 6.0 68 0.1 4.6 52
TransitApplet 7.2 54 0.1 5.0 37
JavaPurse 9.0 40 0.1 5.4 24

their composition is verified w.r.t. the global property above. The statistics for
these verifications are given summarized in Table 2. The table shows: the time
spent by the pre–processor (PPT) and the graph extractor (GE), the number
of nodes in the extracted flow graphs (#NEF), the time spent for local model
checking (LMC) and for constructing maximal flow graphs (MFC), the number
of nodes in the maximal flow graph composition (#NMF), the time spent for
global model checking (GMC), and the total time spent for the whole verifica-
tion task including conversions between formats and post–processing (TT). All
times are in seconds, and were obtained on a SUN SPARC machine.

We also experimentally evaluated the advantages of exploiting the proof stor-
age and reuse mechanism. After the first verification, when method and maximal
flow graphs are stored, for each application, we once changed the source code
and once the local specification of a public method, and used ProMoVer to
reverify the application. The result of proof reuse are shown in Table 3. The
numbers show that proof reuse can reduce significantly the verification time for
larger applications.

6 Conclusion

This paper describes ProMoVer, a tool that supports automatic procedure–
modular verification of control flow safety properties of sequences of method
invocations. ProMoVer takes as input a Java program annotated with tem-
poral correctness assertions. It essentially implements a particular verification
scenario for the cvpp tool set that supports compositional verification of pro-
grams with procedures [9].

Modularity is understood here as the relativization of global program correct-
ness properties on the correctness of its components, and is seen as the key to
program verification in the presence of static and or dynamic variability due to
code evolution, code customization for many users, or as yet unknown or unavail-
able code such as mobile code. We illustrate two important points: (i ) temporal
safety properties provide a meaningful abstraction for individual methods; and
(ii ) procedure–modular verification of temporal safety properties can be per-
formed automatically. Moreover, ProMoVer implements a mechanism for proof
storage and reuse, so that only relevant parts have to be reverified after a system
change. This makes the verification method advocated by ProMoVer suitable
to be used in a context where systems evolve frequently, as is the case e.g., for
software product lines or mobile code. The modularity of the verification allows
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an independent evolution of the implementations of the individual methods, only
requiring the re–establishment of their local correctness.

We believe that writing properties at the procedure–level is intuitive for a
programmer. Still, to decrease the effort of annotating programs, we provide
support for specification extraction in the case of post–hoc specification of al-
ready implemented methods, an inlining–based private method abstraction that
requires only public methods to be specified, and a library of standard global
safety properties.

Experiments with realistic Java Card applications show that useful safety
properties of such programs can be conveniently expressed in a light–weight
notation and verified automatically with ProMoVer.

Still, some issues remain to be resolved in order to increase the utility of
ProMoVer. Both for pre– and post–hoc method specification, notations based
on automata or process algebra may prove more convenient than LTL, and may
also allow more efficient maximal flow graph construction. Ultimately, our goal is
that all specifications (local and global) can be written in various temporal logics
and notations, or to use patterns to abbreviate common specification idioms.
The tool set will provide translations into the underlying uniform logic, which
is currently the safety fragment of the modal μ-calculus. However, because of
limitations on the currently available PDS model checkers, global properties have
at present to be written in LTL.

Many important safety properties require program data to be taken into ac-
count. As a first step towards handling data, work has begun on extending our
verification framework and tool set to Boolean programs. We are also currently
investigating how to generalize our method for the program model of Rot et al.
that models object references in the presence of unbounded object creation [19].

Finally, to investigate the scalability of the approach, we plan to perform a
significantly larger case study.
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Carvalho Gomes for helping with the implementation of cvpp and ProMoVer,
and to Stefan Schwoon for adapting the input language of Moped to our needs.

References

1. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. In: Logic in Computer Science (LICS
2007), pp. 151–160. IEEE Computer Society, Washington, DC, USA (2007)

2. Alur, R., Chaudhuri, S.: Temporal reasoning for procedural programs. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 45–60. Springer,
Heidelberg (2010)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)



ProMoVer: Modular Verification of Temporal Safety Properties 381

4. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for finite
state systems. In: International Symposium on Protocol Specification, Testing and
Verification, pp. 287–302. North-Holland Publishing Co., Amsterdam (1990)

5. Das, M., Lerner, S., Seigle, M.: ESP: Path–sensitive program verification in poly-
nomial time. In: Programming Language Design and Implementation (PLDI 2002),
pp. 57–68. ACM, New York (2002)

6. Doclet overview,
http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/overview.html

7. Goldman, M., Katz, S.: MAVEN: Modular aspect verification. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 308–322. Springer, Heidelberg
(2007)

8. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 136–150. Springer, Heidelberg (2009)

9. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

10. Hubbers, E., Poll, E.: Transactions and non-atomic API methods in Java Card:
specification ambiguity and strange implementation behaviours. Technical Report
NIII-R0438, Radboud University Nijmegen (2004)
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