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Abstract. The resolution complexity of the perfect matching principle was studied by Razborov
[14], who developed a technique for proving its lower bounds for dense graphs. We construct a con-
stant degree bipartite graph Gn such that the resolution complexity of the perfect matching principle
for Gn is 2Ω(n) where n is the number of vertices in Gn. This lower bound is tight up to some
polynomial. Our result implies the 2Ω(n) lower bounds for the complete graph K2n+1 and the com-
plete bipartite graph Kn,O(n) that improves the lower bounds following from [14]. We show that
for every graph G with n vertices that has no perfect matching there exists a resolution refutation of
perfect matching principle for G of size O(n22n). Thus our lower bounds match upper bounds up
to an application of polynomial. Our results also imply the well-known exponential lower bounds
on the resolution complexity of the pigeonhole principle, the functional pigeonhole principle and the
pigeonhole principle over a graph.

We also prove the following corollary. For every natural number d, for every n large enough, for
every function h : {1, 2, . . . , n} → {1, 2, . . . , d}, we construct a graph with n vertices that has the
following properties. There exists a constant D such that the degree of the i-th vertex is at least
h(i) and at most D, and it is impossible to make all degrees equal to h(i) by removing the graph’s
edges. Moreover, any proof of this statement in the resolution proof system has size 2Ω(n). This
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result implies well-known exponential lower bounds on the Tseitin formulas as well as new results:
for example, the same property of a complete graph.

Preliminary version of this paper appeared in proceedings of CSR-2015 [8].

Keywords: proof complexity, expander, perfect matching, resolution, width

1. Introduction

Sometimes it is possible to represent combinatorial statements as unsatisfiable CNF formulas. For ex-
ample, CNF formulas PHPmn encode the pigeonhole principle; PHPmn states that it is possible to put m
pigeons into n holes such that every pigeon is contained in at least one hole and every hole contains at
most one pigeon. PHPmn depends on variables pi,j for i ∈ [m] and j ∈ [n], and pi,j = 1 iff the i-th
pigeon is in the j-th hole. For every i ∈ [m], PHPmn contains a clause (pi,1 ∨ pi,2 ∨ · · · ∨ pi,n). For
every j ∈ [n] and every k 6= l ∈ [n], PHPmn contains a clause (¬pk,j ∨¬pl,j). PHPmn is unsatisfiable iff
m > n.

For an undirected graph G(V,E) we define a CNF formula PMPG that encodes the fact that G has
a perfect matching. We assign a binary variable xe for all e ∈ E. PMPG is the conjunction of the
following conditions: for all v ∈ V , exactly one edge that is incident to v has value 1. Such conditions
can be written as the conjunction of the statement that at least one edge takes value 1:

∨
(v,u)∈E

x(v,u)

and the statement that for any pair of edges e1, e2 incident to v, at most one of them takes value 1:
¬xe1 ∨ ¬xe2 . If G has no perfect matchings then PMPG is an unsatisfiable formula.

For an unsatisfiable CNF formula ϕ, a resolution refutation, a proof of its unsatisfiability, in the
resolution proof system is a sequence of clauses with the following properties: the last clause is an
empty clause (we denote it by �); every clause is either a clause of the initial formula ϕ, or can be
obtained from previous ones by the resolution rule. The resolution rule allows to infer a clause (B ∨ C)
from clauses (x ∨ B) and (¬x ∨ C). The size of a resolution refutation is the number of clauses in
it. It is well known that the resolution proof system is sound and complete. Soundness means that if a
formula has a resolution refutation then it is unsatisfiable. Completeness means that every unsatisfiable
CNF formula has a resolution refutation.

Let Km,n denote the complete bipartite graph with m and n vertices in its parts. Note that the
formulas PMPKm,n are easier to refute in the resolution proof system then PHPmn , since PMPKm,n
contain more clauses. Therefore any lower bound on the size of a resolution refutation of PMPKm,n
implies the same lower bound on the size of a resolution refutation of PHPmn and, conversely, every
upper bound on the resolution refutation of PHPmn implies the same upper bound on the size of resolution
refutation of PMPKm,n .

We say that a family of unsatisfiable CNF formulas Fn is weaker than a family of unsatisfiable
formulasHn if every clause ofHn is an implication of a clause of Fn. In these terms PMPKm,n is weaker
than PHPmn . The size of any resolution refutation of Hn is at least the size of the minimal resolution
refutation of Fn. Thus it is interesting to prove lower bounds for formulas as weak as possible.
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1.1. Known results

Haken [6] proved the lower bound 2Ω(n) on the resolution complexity of PHPn+1
n . Raz [11] proved the

lower bound 2n
ε

on the resolution complexity of PHPmn for some positive constant ε and an arbitrary
m > n. The latter lower bound was simplified and improved to 2Ω(n1/3) by Razborov [12].

Urquhart [16] and Ben-Sasson, and Wigderson [3] consider formulas G- PHPnm that are defined by
a bipartite graph G; the first part of G corresponds to pigeons and consists of m vertices, and the second
part corresponds to holes and consists of n vertices. Every pigeon must be contained in one of the
adjacent holes. Formulas G- PHPmn can be obtained from PHPmn by substituting variables which do not
have corresponding edges in G with zeroes. The paper [3] presents the lower bound 2Ω(n) for formulas
G- PHPmn where m = O(n) and G is a bipartite constant degree expander.

Razborov [13] considers a functional pigeonhole principle FPHPmn that is a weakening of PHPmn ;
the formula FPHPmn is the conjunction of PHPmn and additional conditions stating that every pigeon is

contained in at most one hole. Razborov proved the lower bound 2
Ω
(

n
(logm)2

)
for FPHPmn which implies

a lower bound 2Ω(n1/3) depending only on n.
Razborov [14] proved that if G has no perfect matchings then the resolution complexity of PMPG is

at least 2
δ(G)

log2 n where δ(G) is the minimal degree of the graph and n is the number of vertices.
Alekhnovich [1], and Dantchev and Riis [5] consider the graphs of the chessboard 2n× 2n without

two opposite corners. The perfect matching principle for such graphs is equivalent to the possibility to
tile such chessboards with domino. The strongest lower bound 2Ω(n) was proved in [5] and this lower
bound is polynomially connected with the upper bound 2O(n). We note that the number of variables in
such formulas is Θ(n2).

1.2. Our results

For all constant C, all n and all m ∈ [n+ 1, Cn] we give an example of a bipartite graph Gm,n with m
and n vertices in its parts such that all degrees are bounded by a constant and the resolution complexity
of PMPGm,n is 2Ω(n). The number of variables in such formulas is O(n), therefore the lower bound
matches (up to an application of a polynomial) the trivial upper bound 2O(n) that holds for every formula
with O(n) variables. This is the first lower bound for the perfect matching principle, that is exponential
in the number of variables. In particular, our results imply that the resolution complexity of PMPKm,n
is 2Ω(n). This lower bound improves the lower bound 2Ω(n/ log2 n) that follows from [14]. Due to the
upper bound O(n32n) that follows from the upper bound for PHPn+1

n [4], this result is tight up to an
application of a polynomial. Our result implies the lower bound 2Ω(n) on the resolution complexity of
PMPK2n+1 where K2n+1 is a complete graph on n vertices, and it is also better than the lower bound
2Ω(n/ log2 n) following from [14]. We show that for every graph G with n vertices that does not have
a perfect matching there exists a resolution refutation of PMPG of size O(n22n). Thus the lower and
upper bounds for PMPK2n+1 differ polynomially. We note that PMPGm,n is weaker than Gm,n- PHPmn ,
PHPmn and FPHPmn , therefore our lower bound implies the same lower bound forGm,n- PHPmn , PHPmn
and FPHPmn .

Our proof can be divided into two parts. Firstly, we prove lower bound on the resolution width for
perfect matching principles based on bipartite graphs with certain expansion properties. To do this we
modify the method introduced by Ben-Sasson and Wigderson, namely, we define a nonstandard measure
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on the clauses of a resolution refutation. Secondly, we give a construction of constant degree bipartite
graphs that have an appropriate expansion property. We use lossless expanders and similarly to [9] we
remove vertices with high degrees from them. For example, we can use the explicit construction of
lossless expanders from [10] or the randomized construction from [7]. Finally, we apply the theorem of
Ben-Sasson and Wigderson stating that if a formula φ in O(1)-CNF has the resolution width at least w,
then any resolution refutation of φ has the size at least 2Ω(w2/n) where n is the number of variables in φ.

We also prove a more general result. For a graph G(V,E) and a function h : V → {1, 2, . . . , d} we
define a formula Ψ

(h)
G encoding thatG(V,E) has a subgraphH(V,E′) such that for all v inH the degree

of v equals h(v). Note that if h ≡ 1 then Ψ
(h)
G is precisely PMPG. For any d ∈ N, we show that there

exists D ∈ N that for all n large enough and every function h : V → {1, 2, . . . , d}, where |V | = n, it is
possible to construct a graph G(V,E) in polynomial time with degrees of vertices at most D, such that
the formula Ψ

(h)
G is unsatisfiable, and the size of any resolution refutation of Ψ

(h)
G is at least 2Ω(n).

If h maps V to {1, 2} then Ψ
(h)
G is weaker than Tseitin formulas based on the graph G. Thus our

result implies the lower bound 2Ω(n) on the resolution complexity of Tseitin formulas that was proved in
[15].

2. Preliminaries

We consider simple graphs without loops and multiple edges. The graph G is called bipartite if its
vertices can be divided into two disjoint parts X and Y in such a way that any edge is incident to one
vertex from X and one vertex from Y . By G(X,Y,E) we denote a bipartite graph with parts X and Y
and set of edges E. A matching in a graph G(V,E) is a set of edges E′ ⊆ E such that any vertex v ∈ V
has at most one incident edge from E′. A matching E′ covers a vertex v if there exists e ∈ E′ incident to
v. A perfect matching is a matching that covers all vertices of G. For a bipartite graph G(X,Y,E) and
a set A ⊆ X by Γ(A) we denote a set of all neighbors of vertices from A.

Theorem 2.1. (Hall)
Consider such a bipartite graphG(X,Y,E) that for someA ⊆ X , for allB ⊆ A, the following inequality
holds: |Γ(B)| ≥ |B|. Then there exists a matching that covers all vertices from A.

In [3] E. Ben-Sasson and A. Wigderson introduced a notion of a formula width. A width of a clause
is a number of literals contained in it. For a k-CNF formula ϕ, the width of ϕ is the maximum width of
its clauses. A width of a resolution refutation is a width of the largest used clause.

Theorem 2.2. ([3])
For any k-CNF unsatisfiable formula ϕ, the size of a resolution refutation is at least 2

Ω

(
(w−k)2

n

)
, where

w is a minimal width of a resolution refutation of ϕ and n is a number of variables used in ϕ.

A partial substitution is a set that consists of assignments x := a, there x is a propositional variable
and a ∈ {0, 1} such that all variables are distinct. The result of the application of a partial substitution
ρ to a CNF formula ϕ may be obtained from φ by the following procedure: delete all clauses from φ
that are satisfied by ρ and delete all literals from other clauses that have common variable with some
assignment from ρ.
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Lemma 2.3. Let ϕ be a CNF formula that is obtained from an unsatisfiable CNF formula ψ by the appli-
cation of a partial substitution. Then ϕ is unsatisfiable and the size of the minimal resolution refutation
of ψ is at least the size of the minimal resolution refutation of ϕ.

3. Upper bound

In this section we prove that for every graph G(V,E) that has no perfect matching the resolution com-
plexity of PMPG is at most 2|V |poly(|V |).

We will use the classical Tutte’s criterion of the existence of perfect matching:

Theorem 3.1. (Tutte, 1947)
Graph G has a perfect matching iff for any set S ⊆ V :

o(G− S) ≤ |S|

where G− S denotes the graph G without vertices from the set S and o(G− S) denotes the number of
connected components with odd cardinality in the obtained graph.

Theorem 3.2. If graph G on n vertices does not have a perfect matching, then the formula PMPG has a
resolution refutation of size O(n22n).

The plan of the proof of Theorem 3.2 is the following:

1. Observe that if M is odd set of vertices in the graph that has a perfect matching, then every perfect
matching contains at least one edge that connects M with V \M . We give a resolution derivations
of this observation for all odd sets M simultaneously of total size O(n22n).

2. Tuttes theorem states that if G has no perfect matching, then there exists a set S ⊆ V such that
|o(G− S)| > |S|. We call odd components from G− S pigeons and elements of S holes. We say
that a pigeon M is in a hole s if there is an edge of the perfect matching that connects some vertex
from M with s. On the first step we have already derived clause stating that every pigeon is in at
least one hole. Every hole contains at most one pigeon by the property of perfect matchings.

3. We use the monotone refutation of the pigeonhole principle by Buss and Pitassi [4] to get a con-
tradiction.

A monotone resolution refutation of the pigeonhole principle PHPmn is a sequence of clauses
C1, C2, . . . , Ck such that for every j, Ct has only positive occurrences of variables pi,j for i ∈ [m], j ∈
[n], Ck is the empty clause, and for every t ∈ [k] the clause Ct is either a clause of PHPmn or may be
obtained from previous clauses by the monotone resolution rule:

A ∨
∨
i∈I1

pi,j B ∨
∨
i∈I2

pi,j

A ∨B ∨
∨

i∈I1∩I2
pi,j

.

Every monotone resolution rule corresponds to one particular hole j. The monotone resolution rule
implicitly uses that every hole contains at most one pigeon. Buss and Pitassi [4] showed that for the
pigeonhole principle PHPmn monotone resolution refutations and general resolution refutations are poly-
nomially equivalent.
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Theorem 3.3. ([4])
For all m > n the formula PHPmn has a monotone resolution refutation of size O(n2n).

Let A and B be two disjoint subsets of V . Let E(A,B) be the set of edges connecting vertices from
A with vertices from B. For every F ⊆ E we denote a clause WF =

∨
e∈F

xe.

Lemma 3.4. All clauses WE(M,V \M) for all M ⊆ V with odd size can be inferred simultaneously from
PMPG with a resolution derivation of size n22n.

Proof:
We prove by the induction on 0 ≤ k ≤ n−1

2 that all clauses WE(M,V \M) for all M ⊆ V with |M | =

2k + 1 can be inferred with a resolution derivation of size 2n2
k∑
l=0

(
n

2l+1

)
. The base case k = 0 is trivial

since the required clauses are in PMPG.
Induction step. Let |M | = 2(k+1)+1, if there are no edges between vertices ofM thenWE(M,V \M)

may be obtained by the weakening rule from the clause WE({v},V \{v}) for any vertex v ∈ M ; the latter
clause is in PMPG.

We show that if u, v ∈ M are connected by an edge then using already derived clauses we may
derive WE(M,V \M) ∨ ¬x(u,v) with at most 2n− 2 applications of rules. By the induction hypothesis we
already have a clauseWE(M\{u,v},{u,v}∪V \M . By the weakening rule applied toWE(M\{u,v},{u,v}∪V \M)

we get a clause D = WE(M,V \M) ∨WE({u,v},V \{u,v}). For every edge e ∈ E({u, v},M \ {u, v}) the
original formula contains a clause ¬xe ∨ ¬x(u,v). We consequentially apply the resolution rule with D
and all such clauses to get WE(M,V \M) ∨ ¬x(u,v).

Let u be some vertex from M . Consider the clause WE({u},V \{u}) and consequentially apply the
resolution rules with clauses WE(M,V \M) ∨ ¬x(u,w) for w ∈ V \ {u} such that (u,w) ∈ E. Finally we
get a clause WE(M,V \M). For every M ⊆ V with |M | = 2k+ 3 we use at most n clauses WE(M,V \M)∨
¬x(u,w). Each of them requires a derivation of size at most 2n− 2 and on the last step we apply at most
n rules. Thus in order to derive WE(M,V \M) we add at most (2n− 2)n+ n < 2n2 new clauses. ut

Proof:
[Proof of Theorem 3.2] Graph G does not have a perfect matching. Tutte’s criterion implies that there
exists S = {s1, . . . , sl} ⊆ V such that o(G− S) > |S|. Let C1, C2, . . . , Cm be connected components
of odd cardinality in graph G− S; we know that m > l.

By Lemma 3.4 we infer clauses WE(Ci,V \Ci) for all i ∈ {1, 2, . . . ,m}. Note that E(Ci, V \ Ci) =
E(Ci, S).

Let us denote

ψ =

m∧
i=1

WE(Ci,S)

φ =
∧
s∈S

∧
e1,e2∈E({s},V \S)

e1 6=e2

(¬xe1 ∨ ¬xe2).

We will present a refutation of size O(n2l2l) for the formula ψ ∧ φ. Since l < n/2, l2l < 2n when n is
large enough and there exists a refutation of PMPG of size O(n22n).
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By Theorem 3.3 PHPml has a monotone resolution refutation D1, D2, . . . , Dr where r ≤ l2l. Let
Hk be obtained from Dk by substitutions of pi,j by WE(Ci,{sj}) for all i ∈ [m], j ∈ [l]. We will show
that H1, H2, . . . ,Hr may be extended to a resolution refutation of ψ ∧ φ of size 2n2l2l.

If Dk is a clause of PHPml (it contains only positive occurrences of variables), then Hk is a clause
of ψ. If Dk is the result of monotone resolution rule applied to Dk1 and Dk2 , then Dk1 = A ∨

∨
i∈I1

pi,j ,

Dk2 = B ∨
∨
i∈I2

pi,j and Dk = A ∨B ∨
∨

i∈I1∩I2
pi,j .

We show that there is a resolution derivation of Hk from Hk1 and Hk2 of size 2n2. Let Hk1 =
A′ ∨

∨
i∈I1

WE(Ci,{sj}), where A′ is obtained from A by the substitutions. If for every i ∈ I2, pi,j has

occurrence in Dk1 , then Hk is the weakening of Hk1 . For every i ∈ I2 such that pi,j has no occurrences
in Dk1 and for all v ∈ Ci such that (v, sj) ∈ E we derive Fv = A′ ∨

∨
i∈I1∩I2

WE(Ci,{sj}) ∨ ¬xv,sj .

To derive Fv we apply the resolution rule at most n times to Hk1 with clauses ¬xv,sj ∨ ¬xu,sj for all
u ∈

⋃
i∈I1\I2

Ci such that (u, sl) ∈ E. Finally, we consequentially resolve all derived Fv with Hk2 and get

Hk. ut

4. Lower bounds for perfect matching principle

Our goal is to prove the following theorem:

Theorem 4.1. There exists a constant D such that for all C > 1 there exists a > 0 such that for all n
large enough and for all m ∈ [n + 1, Cn] it is possible to construct in polynomial in n time a bipartite
graph G(V,E) with parts of size m and n such that all degrees are at most D, the formula PMPG is
unsatisfiable, and the size of any resolution refutation of PMPG is at least 2an.

We note that the lower bound from Theorem 4.1 is tight up to an application of a polynomial since
these formulas contain O(n) variables and thus there is a trivial upper bound 2O(n).

Corollary 4.2. For every C > 1, there exists a > 0 such that for every n and m ∈ [n + 1, Cn] the
resolution complexity of PMPKm,n is at least 2an where Km,n is the complete bipartite graph with m
and n vertices in parts.

Proof:
By Theorem 4.1 there exists a bipartite graph G with n and m vertices in parts such that the resolution
complexity of PMPG is at least 2an. The formula PMPG may be obtained from PMPKm,n by substi-
tuting zeros for the edges that do not belong to G. Therefore by Lemma 2.3, the resolution complexity
of PMPKm,n is at least the resolution complexity of PMPG. ut

The lower bound from Corollary 4.2 improves the lower bound 2n/ log2 n that follows from [14].

Corollary 4.3. The resolution complexity of PHPK2n+1 is 2Ω(n) where K2n+1 is the complete graph on
2n+ 1 vertices.
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Proof:
By Theorem 4.1 there exists a bipartite graph G with n and n + 1 vertices in parts such that the res-
olution complexity of PMPG is at least 2an. Formula PMPG may be obtained from PMPK2n+1 by
substituting zeros for edges that do not belong to G. Therefore by Lemma 2.3 the resolution complexity
of PMPK2n+1 is at least the resolution complexity of PMPG. ut

The lower bound from Corollary 4.3 improves the lower bound 2n/ log2 n for the resolution complex-
ity of PMPK2n+1 that follows from [14].

By Theorem 3.2 the lower bounds from Corollary 4.2 and Corollary 4.3 are tight up to an application
of a polynomial.

The plan of the proof of Theorem 4.1 is the following. In Section 4.1 we prove the lower bound
on the resolution width of PMPG if G is a bipartite graph which has some expansion property. In
Section 4.2 we show how to construct a constant degree bipartite graphs with the appropriate expansion
property. Note that if degrees of all vertices of G are at most D then PMPG is D-CNF formula. Finally,
in Section 4.3 we conclude the proof by using Theorem 2.2.

4.1. Perfect matching principle for expanders

Definition 4.4. A bipartite graph G(X,Y,E) is (r, c)-boundary expander if for any set A ⊆ X such
that |A| ≤ r the following inequality holds: |δ(A)| ≥ c|A| where δ(A) denotes the set of vertices in Y
connected with the set A by exactly one edge.

Theorem 4.5. Let G(X,Y,E) be a bipartite (r, c)-boundary expander with c ≥ 1 and |X| > |Y |. Let
G have a matching that covers all vertices from the part Y . Then the formula PMPG is unsatisfiable and
the width of its resolution refutation is at least cr/2.

Proof:
Parts X and Y have different number of vertices, hence there are no perfect matchings in G, and PMPG
is unsatisfiable.

We call an assignment to variables of PMPG proper if for every vertex v ∈ X at most one edge
incident to v has value 1 and for every u ∈ Y exactly one edge incident to u has value 1. In other words,
proper assignments correspond to matchings that cover all vertices from Y . For some subset S ⊆ X and
for a clause C we say that S properly implies C if any proper assignment that satisfies all constraints in
vertices from S, also satisfies C. We denote this as S ` C.

Now we define a measure on clauses from a resolution refutation of PMPG: µ(C) = min{|S| | S ⊆
X,S ` C}.

The measure µ is very similar to the measure from [3], where the measure of a clause is the number
of local conditions that imply the clause. We consider the implication only on the set of matchings that
cover all vertices from Y (proper assignments). In our case conditions in vertices from Y are satisfied
by every proper assignment, therefore we consider only conditions in vertices from X .

The measure µ has the following properties:

1. The measure of any clause from PMPG equals 0 or 1.
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2. Semiadditivity: µ(C) ≤ µ(C1) + µ(C2), if C is obtained by applying the resolution rule to C1

and C2. Let S1 ` C1, |S1| = µ(C1) and S2 ` C2 , |S2| = µ(C2). Hence S1 ∪ S2 ` C1 and
S1 ∪ S2 ` C2, so S1 ∪ S2 ` C, therefore µ(C) ≤ |S1|+ |S2| = µ(C1) + µ(C2).

3. The measure of the empty clause � is greater than r. To prove this property we need the following
lemma.

Lemma 4.6. Let a bipartite graph G(X,Y,E) have two matchings, the first one covers all vertices from
A ⊆ X , and the second one covers all vertices from B ⊆ Y . Then there exists a matching in G that
covers A and B simultaneously.

Proof:
1 Let MA and MB be matchings that cover A and B respectively. It is sufficient to prove the statement
for the subgraph G′(X,Y,E′), where E′ is the union MA ∪MB . We call all edges from MA black and
all edges from MB white. Some edges can have both colours.

Every vertex from G′ has at most one outgoing black edge and at most one white incident edge.
Hence every connected component of G′ is either an isolated vertex or a simple path or a simple cycle.
We prove separately for every connected component of G′ that there exists a matching in this component
that covers all vertices in this component from A ∪ B. Note that every vertex from A has at least one
black incident edge and every vertex from B has at least one white incident edge. Consider all cases of
connected components.

• An isolated vertex: it cannot be from A ∪B, hence the required matching is empty.

• A simple cycle: cycle in a bipartite graph must have even length. The required matching is a set of
all black (or white) edges from the cycle.

• An odd-length simple path: the required matching contains all edges from this path with odd
numbers.

• An even-length simple path: the first and the last vertices from this path are from the same part of
the graph and also the first and the last edges have different colours, hence either the first or the
last vertex from the path is not from A ∪ B, all other vertices can be covered by a matching as it
was done in the previous case.

ut

Let µ(�) ≤ r, then there is S ⊆ X such that S ` � and |S| ≤ r. For all A ⊆ S the following holds:
|Γ(A)| ≥ |δ(A)| ≥ c|A| ≥ |A|, and the Hall’s Theorem (Theorem 2.1) implies that there is a matching
in G that covers S. G also has a matching covering all vertices of Y , therefore Lemma 4.6 implies that
there exists a matching that covers S and Y , hence it corresponds to a proper assignment that satisfies all
constraints for vertices from S, but it is impossible to satisfy the empty clause, and we get a contradiction
with the fact that µ(�) ≤ r.

Lemma 4.7. Let S ⊆ X be a minimal set that properly implies some clause C. Let v ∈ Y have exactly
one neighbour from S. Then C contains at least one edge incident to v.
1This proof was suggested by an anonymous reviewer.
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Proof:
Let u ∈ S be connected with v; denote edge (u, v) by f . Since |S \ {u}| < |S|, clause C is not properly
implied from the set S \ {u}, i. e. there exists a proper assignment σ that satisfies all restrictions in the
vertices S \ {u}, but refutes the clause C. Such assignment σ can not satisfy the constraint in the vertex
u, since otherwise σ would satisfy S and therefore satisfy C. Since σ is a proper assignment, σ assigns
value 0 to all edges that are incident with u, and σ satisfies v. There is an edge e incident to v such that
σ(e) = 1. The vertex v is a boundary vertex for S, therefore the other endpoint of e does not belong to
S. Consider an assignment σ′ that is obtained from σ by changing the values of f and e, σ′ is proper and
it satisfies all constraints from S, and hence it satisfies C. Thus C contains either e or f . ut

The semiadditivity of the measure implies that any resolution refutation of the formula PMPG con-
tains a clause C with the measure in the interval r2 ≤ µ(C) ≤ r. We claim that the width of C is at least
rc/2.

Let S ` C and |S| = µ(C). Since G is a (r, c)-boundary expander, δ(S) ≥ c|S|. By Lemma 4.7 for
every v ∈ δ(S) the clause C contains at least one edge incident to v and all such edges are distinct since
δ(S) ⊆ Y . Therefore the size of the clause C is at least |δ(S)| ≥ c|S| ≥ cr/2. ut

Remark 4.8. The condition in Theorem 4.5 that G has a matching covering all vertices from Y cannot
be removed for free since for every (r, c)-boundary expander it is possible to add one vertex toX and dce
vertices to Y such that the new vertex in X is connected with all new vertices in Y . The resulting graph
is also an (r, c)-boundary expander, but the resulting formula will contain an unsatisfiable subformula
that depends on dce+ 1 variables, hence it can be refuted with width dce+ 1. We do not know whether
it is possible to replace the second condition in the theorem by a weaker condition.

4.2. Expanders

In this section we show how to construct a constant degree graph that satisfies the conditions of Theo-
rem 4.5.

Definition 4.9. The bipartite graph G with parts X and Y is an (r, d, c)-expander, if degrees of all
vertices from X do not exceed d, and for every set I ⊆ X, |I| ≤ r the inequality |Γ(I)| ≥ c|I| holds.
Here Γ(I) denotes the set of all vertices that are adjacent with at least one vertex from I .

Lemma 4.10. ([2])
Every (r, d, c)-expander is a (r, 2c− d)-boundary expander.

Proof:
Let A ⊆ Y , |A| ≤ r, then |Γ(A)| ≥ c|A|. The number of edges between A and Γ(A) may be estimated:
d|A| ≥ E(A,Γ(A)) ≥ |δ(A)|+ 2|Γ(A) \ δ(A)| = 2|Γ(A)| − |δ(A)| ≥ 2c|A| − |δ(A)|. Finally we get
|δ(A)| ≥ (2c− d)|A|. ut

We say that a family of graphs Gn is explicit if it is possible to construct Gn in polynomial in n time.

Theorem 4.11. ([10])
For every ε > 0 and every time-constructible function m(n) there exist k ≥ 1, b > 0 and there exists an
explicit construction of a family of d-regular ( nkd , d, (1− ε)d)-expanders with sizes of parts |X| = m(n)

and |Y | = n, where d ≤ logb(mn )).
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The existence of expanders from Theorem 4.11 can also be proved by the probabilistic method. But
Theorem 4.11 gives an explicit construction of such graphs.

Note that we can not use expanders from Theorem 4.11 directly since the vertices in Y may have
unbounded degrees. Similarly to [9] we delete vertices with high degrees and some other vertices in such
a way that the resulting graph would be a good enough expander.

Theorem 4.12. For every C ≥ 1 and every ε > 0, there exists k ≥ 1, integer d ≥ 3 and an explicit
construction of a family of ( nkd , d, (1 − ε)d)-expanders with |X| = Cn, |Y | = n and degrees of all
vertices from Y do not exceed 5Cd2k 1

ε .

Proof:
Let us fix C ≥ 1 and ε > 0, we consider d ≥ 3 and k such that by Theorem 4.11 there exists a family
of ( nkd , d, (1−

ε
4)d)-expanders G(X,Y,E) with |X| = 2Cn, |Y | = n. Let us denote K = 5Cd2k 1

ε ; we
modify this graph in such a way that a resulting graph will be an expander with degrees at most K.

We denote Y ′ = {v ∈ Y | deg(v) ≥ K} and X ′ = {v ∈ X | |Γ(v)∩Y ′| ≥ ε
2d}. We will prove that

the induced subgraph G′(X \ X ′, Y \ Y ′, E′) is ( nkd , d, (1 − ε)d)-expander. Let ΓH(Z) denote the set
of neighbours of the set of vertices Z in graph H . Consider some set Z ⊆ X \X ′ such that |Z| ≤ n

kd .
We know that (1− ε

4)d|Z| ≤ |ΓG(Z)| and also |ΓG(Z)| = |ΓG′(Z)|+ |ΓG(Z) ∩ Y ′|. By the definition
of X ′ we get that |ΓG(Z) ∩ Y ′| < ε

2d|Z|. Therefore (1 − ε
4)d|Z| ≤ |ΓG′(Z)| + ε

2d|Z|, and we get
|ΓG′(Z)| ≥ (1− 3

4ε)d|Z| > (1− ε)d|Z|.
Let us estimate the sizes of X ′ and Y ′. Since G is bipartite,

∑
v∈X

deg(v) =
∑
v∈Y

deg(v) ≤ Cnd,

hence |Y ′| ≤ Cnd
K = εn

5kd .
Assume that |X ′| > n

kd and consider some subset X0 ⊆ X ′ such that |X0| = b nkdc. |ΓG(X0)| ≤
|ΓG(X0)\Y ′|+|Y ′| ≤ (1− ε

2)d|X0|+|Y ′|. By the property ofGwe know that |ΓG(X0)| ≥ (1− ε
4)d|X0|,

hence ε
4 |X0| ≤ |Y ′| and |Y ′| ≥ εb n

4kdc; the latter contradicts our bound on Y ′ for n large enough.
Finally, we add to G′ several vertices without edges to part Y \ Y ′ in order to make its size precisely

n, and delete several vertices from part X \ X ′ to make its size Cn. Note that this operation does not
affect the expander property of the graph. ut

4.3. Proof of Theorem 4.1

Proof:
[Proof of Theorem 4.1] We consider ε = 1

10 and constants k and d ≥ 3 that exist by Theorem 4.12 for
given C and ε = 1

10 . By Theorem 4.12 it is possible to construct in polynomial in n time a bipartite
graph H1 such that H1 is an ( nkd , d,

9
10d)-expander with |X| = Cn, |Y | = n, and degrees of all vertices

from Y do not exceed D = 50Cd2k. We delete from the part X arbitrary Cn −m vertices and denote
the resulting graph by H2. We add a matching to the graph H2 in such a way that the resulting graph G
will have a matching that covers Y ; this procedure increases degrees in at most one. By Lemma 4.10,
graph H2 is an ( nkd ,

8
10d)-boundary expander, and hence G is an ( nkd ,

8
10d− 1)-boundary expander with

degrees at most D + 1. The formula PMPG is unsatisfiable since m > n. By Theorem 4.5 the width of
any resolution refutation of PMPG is at least 2n

5k . By Theorem 2.2 the size of any resolution refutation

of PMPG is at least 2Ω(((8d/10−1)n/2kd−D−1)2/n). ut
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5. Existence of subgraphs with a given degree sequence

Let G(V,E) be an undirected graph and h be a function V → N such that for every vertex v ∈ V , h(v)

is at most the degree of v. We consider a formula Ψ
(h)
G constructed as follows: its variables correspond

to edges of G. Ψ
(h)
G is a conjunction of the following statements: for every v ∈ V , exactly h(v) edges

that are incident to v have value 1. The formula PMPG is a particular case of Ψ
(h)
G for h ≡ 1.

Theorem 5.1. For all d ∈ N there exists D ∈ N such that for all n large enough and for any function
h : V → {1, 2, . . . , d} where V is a set of cardinality n, there exists an explicit graph G(V,E) with
maximum degree at most D, such that the formula Ψ

(h)
G is unsatisfiable, and the size of any resolution

refutation for Ψ
(h)
G is 2Ω(n).

To prove the Theorem 5.1 we need the following Lemma:

Lemma 5.2. For all d ∈ N, for all n large enough, for any set V of cardinality n and for any function
h : V → {1, 2, . . . , d} there exists an explicit construction of a graph G(V,E) with the following
properties:

1. V consists of two disjoint sets U and T such that there are no edges between vertices from U .

2. The degree of every vertex u ∈ U equals h(u) − 1 and the degree of every vertex v ∈ T equals
h(v).

3. |U | ≥ n
2 − 2d2.

Proof:
Let n ≥ 4d2 and let the vertices v1, v2, . . . , vn be arranged in a non-decreasing order of h(vi). Let k

be the largest number that satisfies the inequality
k∑
i=1

(h(vi) − 1) <
n∑

i=k+1

h(vi) − d(d − 1). We denote

U = {v1, v2, . . . , vk} and T = V \ U . Obviously, |U | = k ≥ n/2 − d(d − 1). Now we construct a
graph G based on the set of vertices V . We start with an empty graph and add edges one by one. For
every vertex v ∈ T by the co-degree of v we call the difference between h(v) and the current degree of
v. From every u ∈ U we add h(u) − 1 edges to G that lead to distinct vertices of V \ U . Doing so, we
maintain degrees of all v ∈ T below the value of h(v). This always can be done since by the construction
of U the total co-degree of all vertices from T is greater than d(d− 1), hence for all big enough n there
exists at least d vertices with co-degrees at least 1.

While the number of vertices in T with positive co-degrees is greater than d, we will choose one
of those vertices w ∈ T and add to the graph exactly co-degree of w edges that connect w with other
vertices from T . Finally, we will have that T contains at most d vertices with co-degrees at most d. Now
we connect them with distinct vertices from the set U , remove that vertices from U , and add them to T .
It is possible that in the last step some vertex v ∈ T is already connected with several vertices from U , in
that case we should connect v with new vertices. By this operation we deleted at most d2 vertices from
U , and therefore |U | ≥ n/2− 2d2. ut
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Proof:
[Proof of Theorem 5.1] By Lemma 5.2 we construct a graph G1(V,E1) and a set U ⊆ V of size at least
n
2 − 2d2 such that for all v ∈ U , the degree of v is equal to h(v)− 1 and for all v ∈ V \ U the degree of
v is equal to h(v). Consider graph G(U,E2) from Theorem 4.1 with U as the set of its vertices. Define a
new graph G(V,E), where the set of edges E equals E1 ∪E2. Recall that edges from the set E2 connect
vertices of the set U and edges from E1 do not connect pairs of vertices from U (that follows from the
construction of the graph in Lemma 5.2).

For every vertex v ∈ V \ U its degree equals h(v). Therefore, if Ψ
(h)
G is satisfiable then in any

satisfying assignment of Ψ
(h)
G all edges that are incident to vertices V \ U must have the value 1. Af-

ter substituting the value 1 for all these variables, Ψ
(h)
G becomes equal to the formula PMPG2 that is

unsatisfiable because of Theorem 4.1.
Formula PMPG2 is obtained from Ψ

(h)
G by a substitution of several variables, thus Lemma 2.3 implies

that the size of any resolution refutation of Ψ
(h)
G is at least the size of the minimal refutation for PMPG,

that is at least 2Ω(n) by Theorem 4.1. ut

5.1. Corollaries

Tseitin formulas. A Tseitin formula T (f)
G can be constructed from an arbitrary graph G(V,E) and a

function f : V → {0, 1}; variables of T (f)
G correspond to edges of G. The formula T (f)

G is a conjunction
of the following conditions: for every vertex v we write down a CNF condition that encodes that the
parity of the number of edges incident to v that have value 1 is the same as the parity of f(v).

Based on the function f : V → {0, 1} we define a function h : V → {1, 2} in the following way:
h(v) = 2 − f(v). In other words, if f(v) = 1, then h(v) = 1, and if f(v) = 0, then h(v) = 2. By
Theorem 5.1 there exists such a number D, that for all n large enough it is possible to construct a graph
G with n vertices of degree at most D such that the size of any resolution refutation of the formula Ψh

G

is at least 2Ω(n).
Note that every condition corresponding to a vertex of the formula T (h)

G is implied from the condition
corresponding to the formula Ψh

G. Since the resolution proof system is implication complete, every
condition of T (h)

G may be derived from a condition of Ψh
G by derivation of size at most 2D. Hence all

clauses of the Tseitin formula may be obtained from clauses of formula Ψh
G by the derivation of size

O(n). Thus the size of any resolution refutation of T (f)
G is at least 2Ω(n). This lower bound was proved

in the paper [15].

Complete graph. Let Kn be a complete graph with n vertices and h : V → {1, . . . , d}, where d is
some constant. Let formula Ψ

(h)
Kn

be unsatisfiable. By Theorem 5.1 there exists D such that for all n
large enough there exists an explicit graph G with n vertices of degree at most D that the size of any
resolution refutation of Ψh

G is at least 2Ω(n). The graph G can be obtained from Kn by removing several
edges, hence the formula Ψ

(h)
G can be obtained from Ψ

(h)
Kn

by substituting zeroes for edges that do not

present in G. Therefore, by Lemma 2.3 the size of the resolution refutation of Ψ
(h)
Kn

is at least 2Ω(n).
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