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Abstract

We present a fully automatic procedure for reconstructing the pose of a person in 3D
from images taken from multiple views. We demonstrate a novel approach for learning
more complex models using SVM-Rank, to reorder a set of high scoring configurations.
The new model in many cases can resolve the problem of double counting of limbs
which happens often in the pictorial structure based models. We address the problem
of flipping ambiguity to find the correct correspondences of 2D predictions across all
views. We obtain improvements for 2D prediction over the state of art methods on our
dataset. We show that the results in many cases are good enough for a fully automatic
3D reconstruction with uncalibrated cameras.

1 Introduction
This work tackles the problem of automatically reconstructing the 3D pose of a person, in
particular a football player, from multiple images taken from uncalibrated affine cameras.
We adopt a bottom up approach, summarized as, localize the skeletal 2D joints in each
image independently and then perform factorization with limb length constraints to estimate
the 3D pose. The joint localization task is the more challenging part and is the paper’s main
focus.

Localization of a person’s limbs in an image is very difficult for a myriad of reasons,
most notably the range of articulations of the person (especially true in sports footage), self-
occlusion, foreshortening of limbs and motion blur. However, in recent years significant
progress has been made with the introduction of pictorial structure type models using dis-
criminatively learned parts [3, 6, 15]. These models compromise between accurate modeling
of the underlying flexibility in the appearance and spatial configuration of the person’s limbs
and computational concerns to make the parameter learning and the inference tractable.

Despite this progress, though, the results are far from perfect in real world scenarios.
Figure 1(a) shows the results from the state-of-the-art Flexible Mixture of Parts (FMP) model
[15] on images from KTH multiview football dataset. The right of figure 1(a) shows an
example of a common failure. The problem is partly due to the simplifications made in
the modeling. However, the main observation exploited in this paper is that while the true
configuration might not always correspond to the global optimum of the FMP’s cost function,
it frequently gets a high score. One can observe this by examining figure 1(b). It shows that
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Figure 1: (a) Shown is the top scoring configuration returned by the FMP model and its PCP score
for two images. The PCP score is the proportion of correctly localized limbs. (b) This is a cumulative
histogram of the rank of the first correctly predicted pose by the FMP model. In 36% of the test cases
the top scoring configuration has PCP=1. While 88% of the time there exists a configuration with
PCP=1 in the top scoring 1000 configurations. These percentages change to 68% and 98% when the
definition of a correct configuration is lowered to having PCP ≥ 0.9.

on our football dataset a correct configuration - all the parts are localized correctly - is in the
top 1000 scoring configurations w.r.t. the FMP cost function 88% of the time, while the top
scoring configuration is a correct configuration only 36% of the time.

As a correct configuration is frequently in the set of the top n scoring configurations w.r.t.
the simplified (FMP) scoring function and it is straightforward to obtain these configurations
[9], we only need to evaluate a more accurate and arbitrarily complex scoring/re-ranking
function on this small set. This is the general strategy we adopt. In this paper we learn this
re-ranking function and describe the components it includes. While the latter part of the
paper presents a road map of how to put the arms and legs in correspondence (solving the
left/right ambiguity) across the multiple images in order to allow a 3D reconstruction.

Our main contributions are: 1) We introduce a new model which is an extension to [15].
It utilizes a global segmentation score, extra pairwise terms, and an exclusion principle to
avoid double counting the score of overlapping parts. The overhead of our model over the
FMP model is very small as our search space is a relatively small constant number. 2) We
present an effective parameter learning procedure based on the SVM-Rank formulation [7]
to calibrate the factors included in our re-ranking function. 3) We present a first attempt
to automatically and accurately solve the 3D reconstruction from multiple view images in a
non-studio environment. 4) We present a new dataset of 771 images of football players taken
from 3 views at 257 time instances, which will be publicly available on the author’s website.

1.1 Related Work
By imposing a few assumptions on the pictorial structure model - independent appearance
scores, quadratic deformation function - [3] developed an algorithm that finds the global
optimum of the pictorial structure energy function in linear time complexity to the number
of locations on the image. Using discriminatively trained parameters [1, 4] within this model
produces very good results. There has been a few attempts on extending the model to handle
inaccurate annotations using latent parameters [4, 8]. [10] tries to improve the pose priors by
using a local kernel regression model. [11] proposes a cascade model for enabling the use

Citation
Citation
{Park and Ramanan} 2011

Citation
Citation
{Yang and Ramanan} 2011

Citation
Citation
{Joachims} 2002

Citation
Citation
{Felzenszwalb and Huttenlocher} 2005

Citation
Citation
{Andriluka, Roth, and Schiele} 2009

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Felzenszwalb, McAllester, and Ramanan} 2008

Citation
Citation
{Johnson and Everingham} 2011

Citation
Citation
{Sapp, Jordan, and Taskar} 2010{}

Citation
Citation
{Sapp, Toshev, and Taskar} 2010{}



KAZEMI, SULLIVAN: USING RICHER MODELS FOR ARTICULATED POSE ESTIMATION 3

of more sophisticated appearance models. [12] uses a more complicated graphical model
to model extra dependencies between parts, and utilizes an approximate belief propagation
algorithm to do the inference. Flexible Mixture of Parts (FMP) model [15] uses multiple
linear models to represent the appearance of the object. We use the FMP model as the base
of our work which has outperformed all the previous work by a significant margin. The
paper [9] describes an efficient algorithm to approximately compute a set of high scoring
configurations with almost no extra cost. Commonly automatic 3D pose reconstruction is
performed by tracking with a 3D model [2] or applying a learnt regression function which
maps an extracted image feature to a 3D pose [13]. However, due to the developments in 2D
pose estimation it has allowed us to explore in this paper the automatization of previously
semi-manual based algorithms using 2D joints [14].

2 Components of a more accurate scoring function
Given the n-best configurations returned by the FMP model, the challenge is to re-score them
in order to identify the ones which are closest to a correct configuration. The re-ranking
function we learn is a linear combination of different features which indicate - weakly or
strongly - the plausibility of a hypothesized configuration. In this section we describe the
features and measurements which are extracted. These include a global segmentation score
measuring how compatible a hypothesized configuration is with a segmentation of the im-
age into foreground and background based on colour and a re-weighting of part appearance
scores to impose an exclusion principle to avoid double counting the score of overlapping
parts. First, though, we review the scoring function of the FMP model [15]. Many of its indi-
vidual components are included in our re-ranking function but computed on a graph defining
the dependency structure which includes loops.

2.1 Review of the flexible mixture of parts model
In the flexible mixture of parts (FMP) model [15] the object is divided into multiple parts,
and each part is modelled by a set of templates. A graph structure, G = (V,E), represents
the dependencies used when fitting this model. V is the set of parts and E is the set of edges
indicating which parts are linked. The coordinates of the centre of the ith part is denoted
by pi and p = (p1, . . . , pK) is the vector of all the part centres. Each part is also assigned a
template ti where each ti ∈ {1, . . . ,T} and let t = (t1, . . . , tK). The FMP model then scores a
configuration p and its associated part types t with

Sfmp(p, t) = Sa(p, t)+Sd(p, t)+Sc(t). (1)

which has three distinct components. Sa(p, t) is a weighted sum of appearance scores for
each part

Sa(p, t) = ∑
i∈V

sa(pi, ti) = ∑
i∈V

wti
i ·φ(I, pi), (2)

where φ(I, pi) is a HOG descriptor of the image patch centred at pi and wti
i is the template

for ith part of type ti. Sd(p, t) is the deformation score

Sd(p, t) = ∑
e∈E

sd(pe, te) = ∑
e=(i, j)∈E

w
ti,t j
i j ·ψ(pi− p j), (3)
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and is a sum of quadratic functions (ψ(dx,dy) = [dx dx2 dy dy2]) modeling the deformation
between connected parts. While Sc(t) is the score which consists of a prior for each part type
and a compatibility score between the types of connected parts

Sc(t) = ∑
i∈V

sc(ti) = btroot
root + ∑

i∈V\root

(
bti

i +b
ti,parent(i)
i,parent(i)

)
. (4)

Using the generalized distance transform and assuming G is a tree one can efficiently find the
configuration, (pfmp, tfmp) which maximizes Sfmp(p, t) and the configurations corresponding
to the n-best scores of Sfmp(p, t). The top scoring configuration frequently has a high PCP
score and in general the head, torso and one leg are reliably detected. The problem of double
counting, though, is prevalent. To help combat this issue, we include in our re-ranking
function the same individual deformation scores, defined in equation (3), but augment these
with deformation scores between pairs of left and right parts, see figure 4.

2.2 Modelling the correlation between parts

As we only focus on the n-best configurations returned by the FMP model we are at liberty
to exploit more complicated and computationally expensive scoring of a configuration. Here
we describe the scores we compute that are not facsimile of those in the FMP model. The
first is a re-weighting of the individual appearance scores in equation (2) to prevent the
double counting of evidence. The second is one based on performing crude segmentation.
The crucial factor in both is that we allow ourselves to consider the global configuration p
simultaneously as opposed to only considering pairs of parts at a time.

2.2.1 Enforcing an exclusion principle

Double counting occurs frequently in the football data, for instance when one of the legs is
in motion and appears blurry while the other is stationary. In this situation the FMP or any
pictorial structure model commonly double counts the strong evidence (usually the stationary
limb) due to the independence assumptions they make. It is necessary to take the visibility
of each part into account to allow for a more accurate modeling of the underlying situation
and to implicitly enforce an exclusion principle. We employ probabilistic reasoning to do
this modeling. Let sets Sp,1, . . . ,Sp,L partition the set of K parts. Each Sp,l either contains
the left and right versions of a part or just one single part for the parts associated with the
head and torso. Let pSp,l

denote the positions of the parts in Sp,l , similarly for tSp,l
and ISp,l

is
the region of the image I which corresponds to where the parts in Sp,l occur. If the parts in
Sp,l do not overlap then the likelihood of ISp,l

is

p(ISp,l
| pSp,l

, tSp,l
) = ∏

k∈Sl

p(Ipk | pk, tk) (5)

However, if the parts in Sp,l overlap then the likelihood is calculated differently. As we do
not know which part is the closest to the camera, we cycle through the different possibilities
to get

p(ISp,l
| pSp,l

, tSp,l
) = ∑

k∈Sl

p(Ipk | pk, tk)P(part pk is the most visible part in Sp,l) (6)
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where for simplicity it is assumed that only one of the parts in Sp,l is visible at a time. If it is
assumed that each p(Ipk | pk, tk) ∝ exp(sa(pk, tk)) and each part in Sp,l is equally likely to be
the one visible, then we can define scores which mimic p(ISp,l

| pSp,l
, tSp,l

):

sl,joint(p, t) =

{
log
(

1
|Sl | ∑k∈Sl

exp(sa(pk, tk))
)

if parts in Sl overlap

∑k∈Sl
sa(pk, tk) otherwise

(7)

2.2.2 Segmentation score

A configuration p produces a segmentation of the image into background and foreground
pixels. One can then measure the plausibility of configuration p by comparing this segmen-
tation to one produced by another independent process. In our case this independent process
segments based on comparing the colour of each pixel to learnt distributions of the colour
for background and foreground pixels. We learn these foreground and background distri-
butions for each test image with the following procedure. The high scoring configurations
returned by the FMP model are used to create an initial estimate of the segmentation into
foreground and background, see figure 2. This is done simply by averaging the foreground
masks created from the boxes representing the parts in each configuration. The result is a
rough estimate of the probability of a pixel belonging to the foreground. Thresholding these
probabilities with separate criteria gives an under and over-segmentation. The foreground
pixels from the under-segmentation are used to fit a GMM distribution for foreground pixels

p(cx | lx = f ) =
M f

∑
i=1

α
f

i N (cx |µ f
i ,Σ

f
i ) (8)

where cx is the RGB colour of a pixel at location x and lx is the pixel’s label as foreground
or background. Similarly the background pixels from the over-segmentation are then used
to fit a GMM distribution representing p(cx | lx = b). Assuming a uniform prior probability,
the posterior probability of pixel being foreground given its colour is

P(lx = f |cx) =
p(cx | lx = f )

p(cx | lx = f )+ p(cx | lx = b)
(9)

We aggregate these individual posterior probabilities into a plausibility score of p based on
its agreement with the segmentation

sseg(p) =
1
N

(
∑

x∈Fp

P(lx = f |cx)+ ∑
x∈Bp

P(lx = b |cx)

)
(10)

where N is the total number of pixels, Fp is the set of pixels labeled as foreground according
to p and similarly Bp is the background set.

3 Learning the parameters of the re-ranking function
In the previous section we introduced scores which indicate the plausibility of the person’s
hypothesized 2D pose. The next task is to combine these within one single function which
can be used to re-rank the n-best configurations output by the FMP model. To this end
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(a) input (b) initial mask (c) under seg. (d) over seg. (e) p(lx = f |cx)

Figure 2: To estimate the initial segmentation of an image (a) we use the top scoring configurations
from the FMP model to get an initial estimate of the probability of a pixel belonging to the foreground
(b). The results are then used to create under (c) and over (d) segmentation masks. A GMM is fit to
both the colours of the foreground pixels and the background pixels. These distributions are then used
to compute the posterior probability of each pixel being foreground (e).

we construct a feature vector xp,t for each (p, t) by concatenating the different components
already described:

xp,t = (sseg(p),s1,joint(p, t), . . . ,sL,joint(p, t),sd(pe1 , te1), . . . ,sd(pel , tel ),sc(t1), . . . ,sc(tK)) (11)

where the edges ei ∈ E are now taken from a graphical model of the pairwise dependencies
between parts with loops, see figure 4. We let the final scoring function take the form of a
weighted sum of the individual components of xp,t :

score(p, t) = w · xp,t (12)

Our objective is to learn the linear weights w such that configurations closer to the ground
truth are scored more highly. Closeness to the ground truth can be measured by the PCP
score [5]. This measure returns 1 if each part of the hypothesized configuration overlaps
significantly with its corresponding part in the ground truth configuration. Our training data
consists of N training images. For each training image Ik we calculate the n-best configura-
tions returned by the FMP model. Each of these configurations generates a feature vector xki
and let yki denote its PCP score. Let rk be a subset of the pairwise constraints imposed by
the ranking of xki’s based on yik:

rk = {(xki,xk j) : yki > .9 and yk j ≤ .9} (13)

Then we find the optimal w by minimizing the SVM-Rank[7] objective function:

arg min
w,ξi jk

1
2
‖w‖2 +C ∑

i, j,k
ξi jk (14)

subject to for k = 1, . . . ,N

w · xki ≥ w · xk j +1−ξi jk ∀(xki,xk j) ∈ rk and ξi jk ≥ 0 ∀(i, j,k) (15)

Note the formulation is similar to that of the SVM, but the set of constraints has been ex-
tended to enforce the correct ordering between all pairs of configurations within each rk.
The main reason for using the SVM-rank model instead of a regular SVM is that the abso-
lute value of our target function is not an accurate quantitative measure, but we assume the
measure is accurate enough for comparing two configurations from the same image. To do
the optimization we used the publicly available cutting-plane solver from [7].
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4 3D Reconstruction
To estimate a player’s 3D pose we must put his arms and legs in correspondence across the
three views. This is because the current 2D pose model cannot distinguish between the real
left and right limbs. There are 32 possible correspondences, ignoring mirrored configura-
tions. We reconstruct the position of the skeletal joints in 3D for each of these combinations
and the 2D joint locations highlighted by our re-ranking function. The correspondence which
results in a plausible 3D pose - estimated 3D skeleton has limb lengths similar to those esti-
mated during training - and gives the smallest re-projection error is then chosen. To do the
reconstruction, first we compute an initial estimate of the 3D pose, X̃ , and camera matrices,
M̃, using the affine factorization algorithm. These quantities must then be rectified and there-
fore we seek an affine transformation, A, which transforms X̃ and M̃ to the true 3D locations
and camera matrices. A is estimated by minimizing a cost function which softly enforces
that each limb of the rectified 3D skeleton has the same length as observed in the training
data. We use MATLAB’s standard nonlinear optimization toolbox to perform this.

5 Results
We have annotated a total of 771 images of football players, which includes images taken
from 3 views at 257 time instances. We used 180 of the images for training our model and
the rest for testing. Figure 3 shows three annotated examples from our football dataset.

Figure 3: Three annotated examples from our
football dataset which are taken at the same time
instance.

Figure 4: The pairwise dependencies in the
FMP model (left), compared to the one used
in the re-ranking function (right).

Table 1 summarizes the results on our dataset with and without using the re-ranking func-
tion, as well as the results of picking the closest configuration to the ground truth between
top 1000 configurations. In addition to the standard PCP score, we have provided the PCP
scores ignoring the left/right limb assignments. This criteria is more accurate for our dataset
since the limbs annotated as left/right on 2D images do not represent the real left/right limbs
of the person. The results are improved by 3.3% with the PCP score criteria and 4.1% if we
ignore the flipping. Figure 5(a) shows the cumulative probability distribution of rank of the
true configuration across the top 1000 configurations given by the FMP model, in compari-
son with the results with our model. Figure 5(b) shows the same results on a finer scale. We
can observe that the probability of the true configuration getting the top score based on FMP
model is 36%, while this probability is increased to 51% using our model (an oracle ranking
function in this case could improve the results up to 88%).

Figure 6 shows some qualitative results from our experiments on our football dataset. We
observed that in many cases the double counting problem is fixed using our model (1-2nd
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Ranking function left/right flips not ignored left/right flips ignored

Flexible Mixture of Parts 0.884 0.895
Re-ranking SVM-Rank 0.917 0.936
Oracle re-ranking 0.982 0.982

Table 1: Summary of the results on our football dataset with and without the re-ranking function. The
first column of numbers displays the average PCP score of the top scoring configuration returned by
the FMP model, our learnt re-ranking function and an oracle re-ranking function. The second column
is the average PCP score when the left and right labels for the arms and legs are ignored.
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(b) Histogram on finer scale

Figure 5: (a) The cumulative histogram of the rank of the first correctly predicted pose by the flexible
mixture of parts model before (blue) and after reranking (red). (b) The same histogram on a finer scale.

rows). While in some cases the predicted flip is not compatible with the ground truth (2nd
row) and this is the reason for the additional improvements if we ignore the flipping. The
measurements in some cases are too noisy for our model, and we do not observe much of
an improvement in these cases (3rd row). Finally, we have used the 2D estimates from our
model to reconstruct the configuration of the player in 3D. With no assumptions about the
pose of the player this is an extremely difficult task. However, when we have fairly good 2D
estimates across all views we are able to get reasonable results. Figure 7 shows a stick figure
of the 3D reconstruction of the top scoring 2D configurations, along with the back projected
2D estimates.

5.1 Conclusions
We described a simple and efficient way of improving the performance of part based models
by evaluating a more complicated scoring function to reorder a set of high scoring config-
urations. With good enough predictions of the location of a set of body joints across three
images, we can obtain fairly accurate estimation of camera parameters and 3D joint posi-
tions. We believe by enforcing the temporal continuity constraints over sequences of images
we can expect a boost in robustness and accuracy of our 3D predictions, which will be the
subject for a future work. We would also like to exploit a multi-modal ranking function as
opposed to a linear model which we have utilized in this work.

Acknowledgement: This work has been funded by the European Commission within
the project FINE (Free Viewpoint Immersive Networked Experience).
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(a) FMP (b) Reranking (c) Closest to G.T.
Figure 6: This figure shows (a) the result of FMP compared to (b) our reranking function, in addition to
(c) the results of picking the closest configuration to the ground truth from a set top 1000 configurations.
In many cases (row 1-2) we can solve the double counting problem, but sometimes (row 2) we have
problem with the flipping ambiguity. In the last case the measurement is too noisy for our model and
we are not able to improve the results.

Figure 7: The result of the 3D reconstruction of the body joints computed from the top scoring 2D
configurations, along with the back projected 2D estimates.
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