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or, equivalently,
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Since QP-CUT(x) is a relaxation of /[QP-CUT(x), we have that

1o
Elmrwe(0] = 583 > will=yi-¥))
j=li=1

= Bm*QP—CUT(x) > Bm;QP—CUT(x) = pm*(x),

where mgwc(x) is the measure of the solution returned by Program 5.3.
Since it is possible to show that p > 0.8785 (see Exercise 5.10), the
Lemma is thus proved.

Regarding the time complexity of Program 3.3, it is clear that the al-
gorithm runs in polynomial time if and only if it is possible to solve QP-
CUT(x) in polynomial time. Unfortunately, it is not known whether this is
possible. However, the definition of QP-CUT(x) can be slightly modified
in order to make it efficiently solvable: the modification simply consists
in considering variables y; as vectors in the n-dimensional space instead
that in the 2-dimensional one. In particular, the n-dimensional version of
QP-CUT (x) is defined as

|
maximize > E Wij(l - Y ‘Yj)
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subject to y; €S, I<i<n,

where S, denotes the n-dimensional unit sphere. Observe that, clearly, the
above analysis of the expected performance ratio of Program 5.3 can still
be carried out if we refer to this new version of OP-CUT (x).

In order to justify this modification, we need some definitions and results
from linear algebra. First of all, we say that a # X n matrix M is positive
semidefinite if, for every vector x € R", x Mx > 0. It is known that a n x n
symmetric matrix M is positive semidefinite if and only if there exists a
matrix P such that M = PP, where P is an m X n matrix for some m < n.
Moreover, if M is positive semidefinite, then matrix P can be computed in
polynomial time (see Bibliographical notes).

Observe now that, given 1 vectors yy,...,¥, € Sy, the matrix M defined
as M; ; = y;-y;is positive semidefinite. On the other hand, from the above
properties of positive semidefinite matrices, it follows that, given a n X
n positive semidefinite matrix A such that M;; = 1 fori=1,...,n, itis



