Appendix A

On the other side it is also possible to see that (A.2) is equivalent to

LINEAR PROGRAMMING

where we assume that all variables are sign-constrained.

In fact:

- 1. Any inequality constraint $ax \ge b_i$ can be transformed in an equality constraint by adding a new *surplus* variable s_i (also called *slack variable*). The constraint is then replaced by the pair $ax s_i = b_i$, $s_i \ge 0$.
- 2. For any unconstrained variable x_j , two variables x_j^+, x_j^- are introduced that are sign constrained ($x_j^+ \ge 0$ and $x_j^- \ge 0$); any occurrence of x_j is replaced by $x_j^+ x_j^-$.

A linear program can also be used to formulate maximization problems such as,

$$\begin{array}{ll} \text{maximize} & c^Tx \\ \text{subject to} & Ax \leq b \\ & x \geq 0. \end{array}$$

A correspondence between maximization and minimization problems can be easily established. In fact:

- 1. Any maximization problem can be transformed into a minimization one by considering the objective function $-c^Tx$.
- 2. Any inequality constraint $ax \le b_i$ can be transformed into an equality constraint by adding a new slack variable s_i . The constraint is then replaced by the pair $ax + s_i = b_i$, $s_i \ge 0$.

Given a minimization linear program, called *primal*, it is possible to define a maximization linear program, called *dual*, as follows: for each constraint in the primal program, there is a variable in the dual; for each variable in the primal program there is a constraint in the dual. Namely, we have: