Section 2.1

THE GREEDY METHOD

cities in I_k , either c_r and c_s were adjacent also in I^* or, by the triangle inequality, there exists a path in I^* starting from c_r and ending at c_s of length at least D(r,s). As a consequence, $m^*(x) \ge m_k^*$, for each k.

Since $D(i, j) \ge \min(l(c_i), l(c_j))$ for all pairs of cities c_i and c_j , by summing over all edges (c_i, c_j) that belong to I_k we obtain

$$m_k^* \ge \sum_{(c_i, c_j) \in I_k} \min(l(c_i), l(c_j)) = \sum_{c_i \in C_k} \alpha_i l(c_i),$$

where α_i is the number of cities $c_j \in C_k$ adjacent to c_i in I_k and such that i > j (hence, $l(c_i) \le l(c_j)$). Clearly, $\alpha_i \le 2$ and $\sum_{c_i \in C_k} \alpha_i$ equals the number of cities in I_k . Since the number of cities in I_k is at most 2k, we may derive a lower bound on the quantity $\sum_{c_i \in C_k} \alpha_i l(c_i)$ by assuming that $\alpha_i = 0$ for the k cities c_1, \ldots, c_k with largest values $l(c_i)$ and that $\alpha_i = 2$ for all the other $|C_k| - k$ cities. Hence, we obtain Eq. (2.5) since

$$m^*(x) \ge m_k^* \ge \sum_{c_i \in C_k} \alpha_i l(c_i) \ge 2 \sum_{i=k+1}^{\min(2k,n)} l(c_i).$$

Summing all Eqs. (2.5) with $k = 2^j$, for $j = 0, 1, ..., \lceil \log n \rceil - 1$, we obtain that

$$\sum_{j=0}^{\lceil \log n \rceil - 1} m^*(x) \ge \sum_{j=0}^{\lceil \log n \rceil - 1} 2 \sum_{i=2^{j}+1}^{\min(2^{j+1}, n)} l(c_i),$$

which results in

$$\lceil \log n \rceil m^*(x) \ge 2 \sum_{i=2}^n l(c_i).$$

Since, by hypothesis, $m^*(x) \ge 2l(c_1)$, the lemma is then proved.

QED

◆ Theorem 2.5

For any instance x of MINIMUM METRIC TRAVELING SALESPERSON with n cities, let $m_{NN}(x)$ be the length of the tour returned by Nearest Neighbor with input x. Then $m_{NN}(x)$ satisfies the following inequality:

$$m_{NN}(x)/m^*(x) \leq \frac{1}{2}(\lceil \log n \rceil + 1).$$

Let $c_{k_1}, c_{k_2}, \ldots, c_{k_n}$ be a tour resulting from the application of *Nearest Neighbor* to x. The proof consists in showing that, if we associate to each city c_{k_r} $(r=1,\ldots,n)$ the value $l(c_{k_r})$ corresponding to the length of edge $(c_{k_r}, c_{k_{r+1}})$ (if r < n) or of edge (c_{k_n}, c_{k_1}) (if r = n), then we obtain a mapping l that satisfies the hypothesis of Lemma 2.4. Since $\sum_{i=1}^n l(c_{k_i}) = m_{NN}(x)$, the theorem follows immediately by applying the lemma.

PROOF