cities in I, either ¢, and ¢y were adjacent also in [* or, by the triangle
inequality, there exists a path in [* starting from ¢, and ending at ¢y of
length at least D(r,s). As a consequence, m*(x) > my, for each k.

Since D(i, j) > min(I(c;),{(c;)) for all pairs of cities ¢; and ¢;, by sum-
ming over all edges (c;, c;) that belong to I we obtain

my > min(l(c;), l(c;)) = Y aul(ci),
(Ci,(,‘j el c;€Cy

where a; is the number of cities ¢; € Cy adjacent to ¢; in [ and such that
i> j(hence, I(c;) < I(c;)). Clearly, o; < 2and 3., &; equals the number
of cities in I. Since the number of cities in /i is at most 2k, we may derive
a lower bound on the quantity ¥.cc, o:l(c;) by assuming that o; = O for
the k cities cy,...,cx with largest values /(c;) and that o; = 2 for all the
other |Cy| — k cities. Hence, we obtain Eq. (2.5) since

min(2k,n)
mr(x) zmp 2 Yy ad(c) 22y ().
i=k+1

Summing all Egs. (2.5) with k =2/, for j =0, 1,..., [logn] — 1, we obtain
that

[logn]—1 [logn]—1 min(2/*! n)
¥y omt(x) =z 2 I(ci),
j=0 j=0 i=274+1

which results in .
flognlm* () > 23 1(cy).
i=2
Since, by hypothesis, m*(x) > 2I(cy), the lemma is then proved.

For any instance x of MINIMUM METRIC TRAVELING SALESPERSON
with n cities, let myy(x) be the length of the tour returned by Nearest
Neighbor with input x. Then myy(x) satisfies the following inequality:

()" () < 5 (logn] +1).

Let ¢k, ,Ck,,...,Ck, be a tour resulting from the application of Nearest
Neighbor to x. The proof consists in showing that, if we associate to
each city ¢, (r = 1,...,n) the value I(c,) corresponding to the length

of edge (cx,,cx,,,) (if r < n) or of edge (cy,,cx, ) (if ¥ = n), then we
obtain a mapping / that satisfies the hypothesis of Lemma 2.4. Since
S l(cr,) = man(x), the theorem follows immediately by applying the
lemma.
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