Section 2.2

when applied to an input graph G whose vertices are considered in the

order (vi,va,...,vy). Then, the following inequality holds: SEQUENTIAL
ALGORITHMS FOR
ko < 1+ max min(dy(v),i—1). PARTITIONING
1<i<n PROBLEMS

If the algorithm does not introduce a new color to color vertex v;, then PROOF
k; = k;—,. Otherwise, k; = k;_1 4+ 1 and the degree of v; in (7; must satisfy
the inequality

di(vi) > ki—1.

By induction on i, it thus follows that

kn <14 lnslf_"gn(di(vi))- (2.6)
Since d;(v;) is clearly bounded both by d,(v;) and by i — 1 (that is, the
number of other nodes in (), the theorem follows. QED

An immediate consequence of the above theorem is the following result.

For any ordering of the vertices, the sequential coloring algorithm uses at 4 Corollary 2.11
most A+ 1 colors to color a graph G, where A denotes the highest degree
of the vertices of G.

Observe that a non-increasing ordering of the vertices with respect to
their degree minimizes the upper bound in Theorem 2.10. Hence, we use
this ordering to obtain the sequential algorithm called Decreasing Degree.
Unfortunately, the number of colors used by this algorithm can be much
larger than the number of colors used by the optimal solution. In fact,
the following example shows that there exist 2-colorable graphs with 2n
vertices and maximum degree n — 1 for which Decreasing Degree could
require 7 colors (as a side effect, the example also shows that the bound of
Corollary 2.11 is tight).

Let n be an integer and G(V,E) be a graph with V = {x1,... x5, v1,...,y,} and < Example 2.7
E = {(xi,y;) | i # j} (see Fig. 2.5 where n = 4). Note that all vertices have the

same degree 7 — 1 and that G can be easily colored with 2 colors. However, if the

initial ordering of the vertices is

(-xlayla-XZayZa cee a-xnayn)a

then Decreasing Degree uses n colors.
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