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Abstract
This thesis deals with combinatorics in connection with Coxeter groups, finitely generated but
not necessarily finite. The representation theory of groups as nonsingular matrices over a field
is of immense theoretical importance, but also basic for computational group theory, where the
group elements are data structures in a computer. Matrices are unnecessarily large structures,
and part of this thesis is concerned with small and efficient representations of a large class of
Coxeter groups (including most Coxeter groups that anyone ever payed any attention to.)

The main contents of the thesis can be summarized as follows.
• We prove that for all Coxeter graphs constructed from an n-path of unlabelled edges by
adding a new labelled edge and a new vertex (sometimes two new edges and vertices),
there is a permutational representation of the corresponding group. Group elements
correspond to integer n-sequences and the nodes in the path generate all n! permutations.
The extra node has a more complicated action, adding a certain quantity to some of the
numbers.
• We derive formulas and interpretations of many important group concepts in the permu-
tational representations, such as length and Bruhat order.
• Our computer implementation of the permutational representations have been used suc-
cessfully for various investigations. We obtain interesting variants of Peter Ungar’s the-
orem about the minimal number of partial flip moves required to accomplish a total
reversal of a permutation. The theorems give sharp bounds for the complexity of stack-
based sorting - a well-known problem in computer science.
• Is the language of reduced Coxeter group expressions regular? After much research,
giving only partial answers, the question was recently settled in the affirmative. We are
now able to construct simple finite automata for all Coxeter groups.
• The original pebbling game starts with one pebble on the lower left square of a potentially
infinite chessboard. Any pebble with empty squares above and to the right may be split
into two and moved to these two squares. We are able to enumerate and characterize
legal positions, not only in the plane, but in higher dimension and on general posets. In
particular, if played on a Coxeter group, the legal positions give unexpected connections
between the two poset structures, weak order and Bruhat order.
• The chip-firing game has been a rich source of combinatorical results in recent years. We
find a surprising connection between minimal recurrent games and conjugacy classes of
Coxeter elements.

Keywords: permutational representation, game, pebbling, polygon property, allowable se-
quence, essential chain, reachability, Coxeter groups, weak order, Bruhat order, polygon poset,
chip-firing, Coxeter element, conjugacy class
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Sammanfattning
Ämnet för denna avhandling är kombinatorik i samband med coxetergrupper, ändligt gener-
erade men inte nödvändigtvis ändliga. Teorin för grupprepresentation med ickesingulära matriser
över en kropp är av högsta teoretiska betydelse, men också grundläggande för datorräkningar
med grupper, där gruppelementen är datastrukturer i datorns minne. Matriser är här onödigt
utrymmeskrävande och en del av avhandlingen behandlar mindre och effektivare representationer
av en stor klass av coxetergrupper (de flesta grupper som någon intresserat sig för torde ingå).

Avhandlingen har i stora drag följande innehåll.
• Varje coxetergraf som man kan bilda av en n-stig av omärkta kanter genom att lägga till en
ny märkt kant (ibland två nya kanter) och en ny nod har en permutationsrepresentation.
Gruppelementen motsvaras av n-vektorer av heltal och stigens noder genererar alla n!
permutationer av komponenterna. Den extra noden har mer komplicerad verkan och
adderar en viss storhet till vissa av talen.
• Vi härleder ett otal formler och tolkningar av viktiga gruppbegrepp, såsom längd och
bruhatordningen.
• Vår datorimplementation av permutationsrepresentationerna har framgångsrikt använts
för olika undersökningar. Vi har erhållit intressanta varianter av Peter Ungars sats om
minimala antalet partiella omvändningar som behövs för att vända hela permutationen
bak och fram. Man får därmed skarpa gränser för komplexiteten hos sortering med stack,
ett känt problem inom datalogin.
• Utgör de reducerade uttrycken i en coxetergrupp ett reguljärt språk? Många har sysslat
med frågan under de senaste åren och många partiella resultat har ernåtts. Vi kan här för
godtycklig coxetergrupp beskriva en ändlig automat som känner igen reducerade uttryck.
• Det ursprungliga pebblingspelet börjar med en sten på nedre vänstra rutan i ett potentiellt
oändligt schackbräde. Om rutorna norr och öster om en sten är tomma får stenen klyvas
och flyttas till dessas rutor. Vi lyckas räkna och karakterisera legala ställningar, inte
bara i planet utan i högre dimension och på allmänna pomängder. Om spelet utförs
på en coxetergrupp ger legala ställningar oväntade samband mellan svaga ordningen och
bruhatordningen.
• Chipsspelet har på senare år varit en rik källa till kombinatoriska resultat. Vi finner
ett överraskande samband mellan minimala rekurrenta spel och konjugatklasser för cox-
eterelement.

Nyckelord: permutationsrepresentation, spel, polygonegenskapen, coxetergrupper, nåbarhet,
svaga ordningen, bruhatordningen, polygonpomängd, chipsspel, konjugatklass
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Preface
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I count myself fortunate to have had Anders Björner as my supervisor. He taught me every-
thing I know in combinatorics and he introduced me to the world of international mathematics.
I also want to thank my younger son Kimmo Eriksson for countless discussions of mathematics
(mainly at night) ever since his childhood, and my elder son Viggo Kann for solving all my LATEX
problems.

Henrik Eriksson
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Part 1. Combinatorial representations of Coxeter groups
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Chapter 1

Computational Coxeter group theory

1. Computational group theory

A modern encyclopedia (Nationalencyklopedin, 1992) defines computer as an automatic ma-
chine for numeric calculation and symbolic manipulation. It is a strange fact that in computa-
tional group theory, computers are used for symbolic calculation and the methods that we are
going to introduce could well be called numeric manipulation!

The first mathematician to think of using computers for group-theoretical calculations was
Alan Turing. During World War II, Turing and other British mathematicians were engaged in
cryptographic activities, mainly in breaking the German secret codes. At the end of the war,
Turing started to work on the design of an automatic computing engine. In a document circulated
at the end of 1945, Turing suggested several tasks that his engine would be able to take on. One
of these was the enumeration of all groups of order 720.

However, the fundamental algorithms of computational group theory predate the advent of the
computer by almost a century. In fact, calculation with groups was an established activity from
the middle of the nineteenth century, although the definition of an abstract group did not appear
until 1893 (Weber [81]). Cayley never gave the definition, but he certainly knew something about
groups. The famous theorems of Sylow date from 1872 and were originally results about certain
sets of permutations. Paradoxically stated, computational group theory is the mother of group
theory. The father? There is always some doubt, but a candidate is the surge of axiomatising,
abstraction and striving for purity and clarity, so evident in Hilbert’s talk in Paris at the turn of
the century. This emphasis on structure with some disregard for substance had its climax in the
nineteen-sixties, when many areas of mathematics were rewritten in the categorical language of
morphisms.

Since then, a remarkable change of attitude is evident. Much more attention is now paid
to concrete representations of mathematical objects. Chronologically, this change of attitude
coincides with the entry of computers into the academic world. It could not be termed far-
fetched to suggest a causal connection.

Conjecture 1. The current upswing in interest for concrete representations of mathematical
abstractions is a mental side-effect, when the computers go marching in.

(It should be noted that the author in an earlier paper, [38], 1985, has denied any impact
whatsoever of computers on university mathematics.)

1.1. Presentation and representation of groups. A typical problem in computational group
theory begins something like this: “Given a group G, determine . . .”. This problem may be easy
or difficult depending on how G is specified. The recent survey by Sims [72] states that there are
really only three methods in common use. We add one here, the game method, that we believe
to be of increasing importance.

(1) The simplest way is to start with a list of concrete objects, that we already know how to
multiply, and define G as the group generated by these elements. The most common such
objects are permutations and square matrices. Note that the matrix elements can belong
to any ring, for examples be polynomials in x and y with integer coefficients modulo 15.



One may be led to think that all problems about representation are solved with this
concrete specification, but that is not always true. The concrete objects may be unnec-
essarily large, making the representation unefficient. In some cases, Coxeter groups are
naturally defined by n×n-matrices and these are often large objects. A common situation
is the specification of n such reflection matrices and, most often, these reflections will
generate super-exponentially many other matrices, say ∼ nn. Even though n is seldom
greater than 10, memory space will soon be exhausted. That is one of the reasons why
we are going to derive permutational representations, where each matrix can be replaced
by an n-vector, resulting in space savings by a factor n.

(2) The next simplest way of specifying the group is to give a list of legal moves in a game. The
group consists of all legal move sequences, where two sequences are considered equivalent
if they lead to the same final position (starting from the same position). Here, the game
positions are the concrete objects, but the move sequences may be represented in many
ways, some of which may be very space consuming (for instance, a dynamic stack of
simple moves). Some may be very space efficient (for instance, the final position only)
but hopelessly time consuming (how do you multiply two final positions?).

This is precisely the state of things, when one uses the numbers game (soon to be
defined) to represent a Coxeter group. Our solution to this problem is to trade a small
amount of memory space (our permutational vectors have n + 1 components when the
numbers game vectors have n components) for a large gain in time efficiency.

(3) The third specification method uses one specific combinatorial or geometric object and
defines G as its group of automorphisms or symmetries. The object may be a graph, very
easily represented in a number of ways, or a regular polytope, very difficult to represent
at all (the coordinates of the vertices will not do in general, for they are irrational and
not easily representable in the computer).

Almost all finite Coxeter groups are symmetry groups of regular polytopes, but few
attempts have been made at using this in computer programs. In principle, it could be
done, and for automorphism groups, there is at least a concrete object to start with. 1

(4) Not so in the last and most well-known specification of an abstract group, the finite
presentation by generators and relations. A set of symbols, for example {x, y}, called
generators is given together with relations, for example x2 = y2 = e, where e is the
identity, and xyx = yxy.

The concept of a Coxeter group is defined in this way, with a certain kind of relations.
The two-generators group above is the Coxeter group denoted by A2. It has only six
elements, but from the presentation, it may be impossible to see if it is infinite or perhaps
trivial with only one element.

The study of groups given by presentations is called Combinatorial group theory. A good
book with many examples is Coxeter & Moser [31]. The overlap between the two CGT-areas is
smaller than one might think. First of all, many fundamental problems about finitely presented
groups have been shown to be algorithmically unsolvable, and we shall soon return to that
theme. Second, many of the most interesting problems are sufficiently general, that only marginal
progress can be made by calculations with specific groups.

In a seminal problem survey ([48], 1987) Roger Lyndon stated twenty important problems in
combinatorial group theory. Only two of these can be tackled by computational methods. The
others are of the following kind: “Is every finitely presented torsion group finite?”. Nevertheless,
computational group theory has had its greatest successes in connection with finitely presented
groups.

1A more promising object is the Coxeter complex, an abstract simplicial complex (no need for co-ordinates)
whose type-preserving automorphisms constitute the Coxeter group (see Tits [77]).
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1.2. Coset enumeration and other algoritms. The most basic of the computational group
algorithms is called coset enumeration. It appeared in 1936, long before computer implementa-
tions were even thought of, in a paper by Coxeter and Todd [28], but is now part of every existing
soft-ware package for group theory. For a very clear and readable description of the algorithm,
we refer to Atkinson [3], for a critical comparison of soft-ware implementations, see Neubüser’s
paper in [19]. Joacim Neubüser wrote the first published paper on the use of computers in group
theory in 1960 and is still a leading scientist in that area.

We have to restrict ourselves to a description of what the algorithm does. As input, it first
takes a finite presentation of G by generators and relations, for example x2 = y2 = e, where e is
the identity, and xyx = yxy. Further, it takes a subgroup H ⊂ G, where H is given by a set of
expressions that generate H, for example H = [xy]. After a finite period of time, the algorithm
has found the subgroup H and all its cosets aH. (In our small example, |G : H| = 2, i.e. there
are two cosets, one of which is H itself.) A special case is when H = {e}, in which case coset
enumeration means element enumeration.

A disadvantage with this algorithm is that no time limit can be given for its completion.
Computing cosets is simple, the hard part is recognizing when two seemingly different cosets are
in fact one and the same. But for Coxeter groups, there is no such problem. The numbers game
provides an auxiliary algorithm that works in time proportional to the order of the group and
gives immediate information about whether two elements are equal.

This thesis contains many results that have been proved by letting the computer execute a
program. Some of these programs are written for computer algebra systems (mostly Maple V)
but most of them (about twenty) were written in a general-purpose, high-level language called
Modula-3. The advantage of Modula-3 is its high degree of modularisation and data abstraction,
making it very easy to recycle program modules. The most common algorithms used are standard
computer science methods, like back-tracking, breadth-first search and hashing. An excellent
textbook is Robert Sedgewick’s [68] but behind Sedgewick one perceives a giant, Donald Knuth,
[59], [60],[61].

Since some theorems in this thesis have computer proofs, we consider these programs as an
appendix of the report, not included in print but available upon request.

1.3. Computability and complexity. The main objective of computational group theory is
devising algorithms for studying the structure of groups given by finite presentations. Unfortu-
nately, this is impossible! For many important questions, there are no algorithms for finding the
answer and it can be proved that no such algorithms can exist.

One of the most basic of these questions is the word problem. Let x and y be two words in the
generators of the finitely presented groups — how can we decide whether or not x and y denote
the same group element? Sometimes it is very simple; we can apply one or two of the relations
and get from x to y. In fact, if the two words define the same element, we can always prove it
by presenting such a chain of relation applications. But there are groups in which we can never
prove that two words define different group elements. We express this fact by saying that the
question is undecidable. (For full definition, see Sims [72], Ch.3.)

Many other important questions are even more undecidable. One such question is this one:
Are x and y conjugate? If we could decide all such questions, then in particular we could decide
whether or not xy−1 and e are conjugate, that is the word problem for x and y. And that, we
cannot do. We cannot even decide whether a finitely presented group has more than one element!

All of these questions are decidable for Coxeter groups, but there is still the question about
complexity. As already mentioned, the numbers game solves the word problem in time propor-
tional to the length of the words. It is even easier to answer the question about the group’s
being trivial — the answer is no! But the conjugacy complexity is still open, or at least, we do
not know the answer. The exponential bound recently proved by A. Cohen [23], certainly is not
sharp. In Chapter 5, we show how to do it in time proportional to the number of generators,
but only for a special kind of element, the Coxeter elements.
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There is some controversy about using the complexity measure of computer science (asymptotic
growth) in computer algebra, since the value of the parameter (number of generators, word length
etc) is seldom more than 10 in practise. It seems unnatural then to consider asymptotics. On
the other hand, that is exactly what makes theoretical computer science theoretic.

2. Coxeter groups

The prime object of our study is an amazingly versatile contraption. There are so many
radically different viewpoints, that communication of ideas is often rendered difficult. At the
same time, a change of viewpoint sometimes makes a hard problem much easier.

Our main reference is Humphreys [56], which focuses on reflection groups and root systems.
Root systems are important for Bourbaki [15] too, but the indefatigable count also finds time
and space for material about Coxeter complexes and hyperplane arrangements. For symmetries
of polytopes, we should listen to Coxeter himself [32], [31], for the Lie algebras and their gener-
alisations, Kac [57] is a good source and for the combinatorical aspects — well, that book is still
waiting to be written.

The definition of an abstract Coxeter group by generators and relations is straightforward.
With our combinatorial disposition, we feel free to assume all groups finitely generated. Following
Bourbaki, we shall use the term Coxeter system for a Coxeter group with a distinguished set
of generators. The generators must all be involutions, that is satisfy s2 = e, and also satisfy
mutual Coxeter relations, that is s1s2 = s2s1 or s1s2s1 = s2s1s2 or s1s2s1s2 = s2s1s2s1 etc.
By convention, the occurring mutual relations are coded in a Coxeter graph, where vertices
correspond to generators and edges are drawn between vertices corresponding to noncommuting
generators. An edge is left unlabelled if a relation of type s1s2s1 = s2s1s2 holds, it is labelled by
4 etc if the relation is s1s2s1s2 = s2s1s2s1 etc. Finally, the edge is labelled by ∞ if no relation
exists.

Example. Here is the graph of the group B3: c c ca b c4 . It has got three generators, a, b, c,
six relations: a2 = b2 = c2 = e, aba = bab, ac = ca, bcbc = cbcb and 48 elements.

Definition. The group W , finitely presented by the generators s1, . . . , sn and relations s2i = e,
(sisj)

mij = e specified in a Coxeter graph is called the Coxeter group of the graph. The graph
together with its group is called a Coxeter system (W,S). This abstract definition is not the
way Coxeter groups entered mathematics. They have a solid geometric background, that we
shall now sketch briefly.

2.1. Reflections and symmetries. The theory of reflection groups has its origin in research
into regular polyhedra in n dimensions and regular tesselations of n-space. The symmetry groups
of these objects are reflection groups. In 1934, Coxeter [26] was able to enumerate all finite
irreducible reflection groups and found that they were Coxeter groups. The connection is the
following.

All reflections are generated by some simple reflections si in hyperplanes Hi, which bound the
fundamental polyhedron P . The Coxeter relations (sisj)

mij = e are determined by the angles
between the faces of P supported by Hi and Hj , in fact, that angle is π/mij . If the faces do not
intersect, mij =∞.

In 1935, Coxeter [27] completed the classification of finite Coxeter groups by proving that there
are only the finite reflection groups. The established names of these groups and their graphs are
shown in table 1. (Note that Bn and Cn name the same group.)

Hyperplanes through the origin correspond to linear reflections, affine hyperplanes correspond
to affine reflections and some such affine arrangements divide space into congruent polytopes,
alcoves. The corresponding affine reflection groups are also Coxeter groups and were also enu-
merated by Coxeter. They are all obtained by addition of an extra node to the graph of one of
the finite groups, and named by tildefication.
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An d . . . d Ãn d d. . . d�� QQ

Bn d d . . .4 d B̃n
d d . . .4 dd d

Cn d d. . . 4 d C̃n d d . . .4 d4 d
Dn
d d . . .d d D̃n

d d . . . ddd d
E6
d d d d dd Ẽ6

d d d d ddd
E7
d d d d dd d Ẽ7

d d d d d dd d
E8
d d d d dd d d Ẽ8

d d d d dd d d d
F4 d d d d4 F̃4 d d d d d4

I2(p) d dp G̃2 d d6 d
H3 d d d5 No affine counterpart

H4 d d d d5 No affine counterpart

Table 1. Coxeter graphs of all irreducible finite and affine Coxeter groups

2.2. The standard geometric representation. After Coxeter’s pioneering work and Witt’s
[82] complementing investigations , the situation was the following. Finite Coxeter groups had
a very nice geometric representation as finite reflection groups, affine Coxeter groups also had a
very nice, but different, geometric interpretation as tesselations of n-space, a few of the others
(the hyperbolic groups) could be viewed as tesselations of hyperbolic n-space, but most infinite
Coxeter groups had no geometric model.

Coxeter was able to find a linear representation in Rn of an arbitrary Coxeter group, where
all generators map to (not necessarily orthogonal) linear reflections, but he gave no proof of the
faithfulness of this representation. The Bourbaki volume on Lie theory [15], that appeared in
1968, contained this faithfulness proof, so we can state the following theorem, see [56], p 110.

Theorem 2. [Standard geometric representation] Let (W,S) be a Coxeter system and {αi} any
basis for Rn. Then W has a faithful linear representation in which all si act as reflections

si : x 7→ x− 2〈x, αi〉αi

The symmetric bilinear form 〈, 〉 is defined on the basis by 〈αi, αj〉 = − cosπ/mij .6



The cosine-matrix appearing in the theorem is the key to the classification of Coxeter groups.
It is positive definite for the finite groups, positive semidefinite for the affine groups and indefinite
for all other groups.

2.3. Root systems and hyperplane arrangements. Almost all finite Coxeter groups had
occurred in the work of Cartan and Weyl, 1925–1927, on semisimple Lie groups. The term Weyl
group is still in use for these groups. The concept of a root and of root systems emanates from
that background. Every finite reflection group defines an arrangement of hyperplanes and each
hyperplane is defined by any perpendicular vector, a root. The length of this root is arbitrary if
we just want it to define a hyperplane, but in a root system, root lengths are chosen such that
roots are mapped to roots under all reflections.

The roots corresponding to simple reflections are called simple roots. It is a theorem that all
roots are unique linear combinations of simple roots and that the nonzero coefficients are either
all positive or all negative. A reflection maps positive roots to positive roots, with one exception
— the positive root α perpendicular to the hyperplane is of course mapped to −α.

Why should people be more interested in these root artefacts than in the natural reflections
themselves? The answer is simple from the viewpoint of computational group theory. We have
replaced a bulky n × n-matrix by a slim n-vector and with no loss of information. It is even
better than that. All finite groups have some particularly nice root systems where most roots
have only one or two nonzero components. This fact is exploited by John Stembridge in his
excellent Maple packages coxeter and weyl [75]. He does not store the zero components but uses
the Maple datastructure for linear expressions in the basis vectors instead. These expressions
then have only one or two terms.

The definition of a root can be generalized to infinite groups via the standard geometric
realization. In Chapter 3 we are going to use these roots to construct recognizing automata for
the language of reduced words.

Hyperplane arrangements are less attractive from the computational point of view, but have
the advantage of a geometrically intuitive length concept. The length of an element w is the
length of the shortest word in the generators si, that is equal to w. A reflection group hyperplane
arrangement divides the unit sphere into simplicial chambers, each face of which can be labelled
by one of the si, such that reflections map chambers onto chambers while respecting the labelling.
A word in the si can be represented by a walk through a gallery of chambers, namely by letting
each si in the word determine which wall to pass next. In this correspondence, shortest possible
galleries between two given chambers correspond to shortest possible words representing the
reflection that maps the first chamber onto the second. We also have the following theorem.

Theorem 3. The length of an element w is equal to the number of hyperplanes that separates
a chamber from its w-image.

The well-known intuitive geometric proof, that seems first to have appeared in Coxeter’s book
on polytopes [32], generalizes nicely to any hyperplane arrangement, see [11], Sec. 4.2.

3. The numbers game

The numbers game was originally presented to the contestants of the International Olympiad
of Mathematics, 1986: Five integers are arranged on a circle. The player may pick any negative
number, add it to its neighbours and reverse its sign. It was generalized by S. Mozes to general
graphs in 1987 and it was further generalized and studied by K. Eriksson in a series of papers
and in his thesis [42], 1993.

The key property of the numbers game is strong convergence (a concept due to A. Björner),
the purport being that if some legal game terminates, all legal games will terminate in the same
final position after the same number of moves. This is illustrated in the example below.

We are primarily interested in the following representation result ([42], p 80).
7



Theorem 4. Start a numbers game on a Coxeter graph with the value −1 on each node.
Every word in the generators si can be seen as describing a play sequence. This correspondence
establishes a faithful map from group elements to reachable game positions. A reduced word
(shortest possible) corresponds to a legal play sequence (only negative numbers played).

The theorem is incomplete as far as edge labels are concerned. The game rules must then
be modified accordingly. A number moving along a labelled edge (from right to left, say) is
multiplied by 2 if the edge label is 4, it is multiplied by 3 if the edge label is 6 and by 4 if the
label is∞. In general, the multiplier is 4 cos2 π/mij . Note that this multiplication does not take
place in the other, left to right, direction.

Example. Two games on B3: c c ca b c4 are shown. The directed edge has multiplier 2.

�������������−1 −1 −1
s1

�������������−1 −1 −1
s2

�������������1 −2 −1
s2

�������������−2 1 −2
s3

�������������−1 2 −3
s3

�������������−2 −3 2
s2

�������������−1 −4 3
s1

�������������−5 3 −1
s3

�������������1 −5 3
s2

�������������−5 1 1
s1

�������������−4 5 −2
s1

�������������5 −4 1
s2

�������������4 1 −2
s3

�������������1 4 −3
s3

�������������4 −3 2
s2

�������������1 −2 3
s2

�������������1 3 −1
s3

�������������−1 2 1
s1

�������������1 1 1 �������������1 1 1

Remark 5. K.Eriksson characterized game graphs where all games terminate and also graphs
with looping games. They turn out to be exactly the finite resp. the affine groups in Figure 1.

Regarding a Coxeter group as a numbers game is very different from interpreting it as a
hyperplane arrangement, a root system, a tesselation, reflections in n-space or symmetries of a
polytope. But there are even more exotic interpretations. In the 1977 paper by Hazewinkel et al.
[51] (an introduction to the ADE-problem), the theory of quivers is one such item. A quiver is
a diagram like q q q- � , symbolizing linear mappings of vectorspaces. When the (undirected)
graph is of type A, D or E, there are only finitely many types of indecomposable quivers, same
type meaning same matrices in well chosen bases, indecomposable meaning not direct sum of
other quivers (P. Gabriel [44], 1973). The ADE-graphs also emerged when V.I.Arnol’d classified
singularities of algebraic hypersurfaces. Who knows where they are going to materialize next
time!
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4. Length, order and permutations

This section deals with Coxeter group concepts of special interest to combinatorialists. A good
part of combinatorics takes place inside a Coxeter group, namely the group of all permutations
of the symbols 1, 2, . . . , n. It is called the symmetric group and usually denoted by Sn, but in
the classification of Coxeter groups, it is An−1. The generators s1, s2, . . . , sn−1 are the adjacent
transpositions, s1 transposes the first and second elements, s2 the second and third etc. One
can check the Coxeter relations: s2i = e, sisjsi = sjsisj if i, j are neighbours and sisj = sjsi
otherwise. (A general reference for all cited facts is Humphreys [56].)

We have already defined the length function as the length of the shortest possible word
s1s2 · · · sk = w. The length of the identity element is defined as zero. For the symmetric
group, it is an elementary fact that l(w) = #(inversions). Recall that an inversion is an occur-
rence of a larger number preceding a smaller number in the permutation. All finite groups have
an element of maximal length, wo. In the symmetric group, wo is the permutation n, . . . , 2, 1 and
l(wo) = n(n − 1)/2. (Depending upon point of view, l(wo) can also be regarded as the number
of hyperplanes or the number of positive roots or the length of the longest numbers game.)

If l(ws) = l(w) + 1, where s ∈ S, we can write w < ws. This relation generates a partial
order on W , the weak order. If l(ws) = l(w) − 1 (the only other possibility), we say that s
belongs to the descent set of w and write s ∈ D(w). We have D(e) = ∅ and D(wo) = S. In
the symmetric group, the descent set is indicated by the descents of the permutation, that is the
adjacent inversion pairs.

Choose any reduced word for w and take s ∈ D(w), so that ws can be written with one letter
less. The exchange condition states that this can be achieved simply by deleting an appropriate
letter s′ in w. (If we then write s at the end of the word, we again have a reduced word for
w obtained by exchanging s′ for s.) The interpretation for permutations is simple: if, after
a sequence of adjacent transpositions, there is an inversion of two symbols, then one of the
transpositions must have transposed that very pair of symbols, and deleting that transposition
has the same effect as transposing the pair in the final position.

Conjugates of generators are called reflections. A reflection can always be written as a palin-
drome t = s′k · · · s′2s′1s′2 · · · s′k, with s′i ∈ S. In the symmetric group, a reflection is a trans-
position, not necessarily adjacent. The weak order, generated by w < ws, where s ∈ S and
l(ws) = l(w) + 1, can be expanded to the Bruhat order, generated by w < wt, where t is any
reflection such that l(wt) = l(w) + 1. There are two weak orders, one defined by w <ws, the
other by w<sw, but only one Bruhat order, for wt = t′w, where t′ = wtw−1 is a reflection if t is.
For permutations, the following criterion can decide whether a permutation π precedes another
permutation σ in Bruhat order. It is mentioned by Lehmann [63] and can be seen as a special
case of Deodhar’s criterion [36] for general Coxeter groups.

Tableau criterion: Let πij be the element obtained by sorting the first
j symbols of π in increasing order and then picking the ith symbol. Then
π ≤ σ in Bruhat order if and only if πij ≤ σij whenever 1 ≤ i ≤ j ≤ n.

In terms of reduced words, u ≤ w in Bruhat order simply means that a reduced word for u can
be obtained by deleting some letters from a reduced word for w; this is the subword property.
The weak order and the Bruhat order interact in the lifting property.

Lifting property: Let u<w in Bruhat order and assume that for some
s ∈ S, u<us but ws<w. Then u ≤ ws and us ≤ w.

A new result connecting weak order and Bruhat order is Lemma 116 in chapter 4.
The symmetric group An−1 has two siblings, Bn and Dn, both representable by signed per-

mutations of 1, . . . , n, that is by vectors (x1, . . . , xn), such that (|x1|, . . . , |xn|) is an ordinary
permutation. As in An−1, s1, . . . , sn−1 mean adjacent transpositions, but sn means something
different. In Bn, sn acts by sign-inversion of x1. In table 1, sn is the leftmost node, followed by
s1 etc (sorry about that, but it suits our purpose), and so the relation sns1sns1 = s1sns1sn must
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hold. In Dn, sn acts by sign-inversions and transposition of x1, x2. The relation sns2sn = sns2sn
must and does hold.

There are 2nn! signed permutations, so that is the number of elements in Bn. In Dn, there
will only appear signed permutations with an even number of minus-signs, so Dn is only half as
big as Bn. For reference, we include a table of important data for the finite groups.

Remark 6. As always with group actions, one should state whether the groups acts from the left
or from the right. For example, with permutations, does s1s2 mean that transposal of the first
pair followed by transposal of the second pair, or is it the other way around? The conventional
evaluation order for operators is right-to-left, but this seems to be in conflict with the reading and
writing habits of the western world, and even if an author proclaims that she is using right-to-left
action, there is often some accidental occidental anomaly.

To avoid this effect, we are going to be rather vague about our intended interpretation. When-
ever possible, statements are written so as to fit both views. Otherwise, we stick to the natural
left-to-right order except when matrix notation is used. The action of a matrix A will be
x 7→ Ax, as usual.

Group An−1 Bn Dn E6 E7 E8 F4 I2(p) H3 H4

|W | n! 2nn! 2n−1n! 51840 2903040 696729600 1152 2p 120 14400
l(wo)

(
n
2

)
n2 n(n−1) 36 63 120 24 p 15 60

Table 2. Orders of finite Coxeter groups and number of reflection elements.
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Chapter 2

Permutational representations of Coxeter groups

5. Introduction and outline of results

The permutations of {1, . . . , n} represent the symmetric group Sn in such a way that the

generators si in the Coxeter graph An−1: d d d d1 2 3
. . .
n−1 correspond to transpositions of adjacent

elements. In this chapter, we consider similar representations for Coxeter graphs obtained by
adding one or two extra edges and nodes to An−1. In all these cases, group elements are repre-
sented by certain ordered n-subsets of some set of numbers. The well-known representations of
Bn and Dn by signed permutations (see page 10) are the generic examples.

It turns out that all finite and affine Coxeter groups have graphs of this kind and simple
permutational representations. If all edge labels are either 3, 4, 6 or ∞, that is if the group is
crystallographic, there is a permutational representation involving integers only.

Example. The infinite group C̃4 with Coxeter graph
d d dd d4 4 can be represented as a set of

integer lattice points in Z4. The identity element is (1, 2, 3, 4), the three nodes in the horizontal
path are transpositions of adjacent components, the lower left node reverses the sign of the first
component x1 and the lower right node replaces x4 by (10 − x4). This representation will be
derived in section 8.

Combinatorial, geometric and algebraic representations and interpretations of Coxeter groups
are already abundant, so what is the raison d’être for this study of representations? First, it
is a unified approach to all finite and affine Coxeter groups. Second, for each group element it
gives explicit formulas for the length of a reduced decomposition and related concepts. Third,
it provides an embedding of all finite Coxeter groups into the symmetric group Sn and all affine
groups into S∞ (bijections from Z to Z).

Example. C̃4 can be considered as a group of permutations of Z in the following way. Let
there be mirrors at co-ordinates x = 0 and x = 5. Now, the transposition 1 ↔ 2 has reflected
images −1↔ −2 and 8↔ 9 and doubly reflected images −9↔ −8 and 11↔ 12 etc. Let s1 be
the combination of these transpositions, let s2 be the mirror images of 2↔ 3 and s3 the mirror
images of 3 ↔ 4. The lower left node s4 is −1 ↔ 1, 9 ↔ 11 etc and the lower right node s5 is
4↔ 6, 14↔ 16 etc.

In this way, every generator si will correspond to a combination of transpositions. It will be
proved in section 10 that the generated group of permutations of Z is indeed isomorphic to C̃4.

The material in this chapter is organized in sections, one for each type of Coxeter graph. All
useful results appear as propositions in these sections, but before losing the reader in a jumble
of details, we take the opportunity to state a summarizing theorem.

Theorem 7. For every Coxeter graph that can be transformed into a path d d d d1 2 3
. . .
n−1 by

contraction of an edge (labelled or unlabelled), there is a faithful group representation on Rn

in which the path nodes correspond to transpositions of adjacent co-ordinates. By choosing an
appropriate orbit, one can faithfully represent group elements as certain vectors in Rn, and the
length of an element is easily calculable from its representing vector.
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Figure 1. The action of s1 ∈ C̃4 as transpositions on Z.

Although the affine Coxeter graphs are not of this type, all mentioned results are valid for the
affine groups too.

6. Representations of Dn, E6, E7 and E8 and friends

The groups Dn:
d d d dd · · ·
1 2 3 n−1

· · ·

n
already have well-known representations as signed permutations

of {±1, . . . ,±n}, where the generator sn acts by transposition and sign change of the first two
elements, sn : (x1, x2, . . .) 7→ (−x2,−x1, . . .). To see how this can be generalized to other groups,
in particular to E6, E7 and E8, we start with a description of Dn, suitable for that generalization.

Each element of Dn corresponds to an ordered n-subset x1, . . . , xn of {−n, . . . , n}, the identity
e to (1, 2, . . . , n). The generators s1, . . . , sn−1 act as transpositions of adjacent numbers, while
sn adds a quantity γ to the first two numbers, namely γ = −x1 − x2.

In the analogous representation of E6:
d d d d dd1 2 3 4 5

6
, the elements correspond to certain

ordered six-subsets of {−8, . . . , 8}, in particular, e corresponds to (3, 4, 5, 6, 7, 8) and wo to
(−3,−4,−5,−6,−7,−8). The generators s1, . . . , s5 act as transpositions of adjacent numbers,
while s6 adds a quantity γ to the first three numbers, namely γ = 1

3

∑
xi − x1 − x2 − x3.

Example. 345678
s37→ 346578

s67→ 124578
s37→ 125478

s67→ 236478
s37→ 234678

s67→ 345678 , as
expected, since (s6s3)

3 = e.
The representations of E7 and E8 are very similar. The identity gets another representation,

but the action of the si is exactly as for E6, with the same expression γ = 1
3

∑
xi −x1−x2−x3.

All these graphs are of the special kind considered in the following section.

6.1. Analysis of permutational representations. We can try this game for any group d d d dd··· ···
1 2 m n−1

n
,

letting it act on Rn in the following way. As before, the generators s1, . . . , sn−1 transpose ad-
jacent vector components, so that si : (. . . , xi, xi+1, . . .) 7→ (. . . , xi+1, xi, . . .), while sn acts by
adding a quantity γ to x1, . . . , xm. Here γ is a linear expression in the xi, chosen such that the
commutation relations involving sn are maintained. We shall see that the only such expression
is γ =

∑n
m+1 xi −

2
m

∑n
1 xi + const.

First, sn commutes with s1, . . . , sm−1 and with sm+1, . . . , sn−1, therefore γ must be invariant
under permutations of x1, . . . , xm and under permutations of xm+1, . . . , xn, so we can write
γ = α(x1 + · · ·+xm) +β(xm+1 + · · ·+xn) + const. Second, (sn)2 = e, and one easily checks that
this is equivalent to α = − 2

m . Third, (snsm)3 = e, and some elementary algebra proves this to be
equivalent to β = m−2

m . Thus, the final expression can be written γ = m−2
m

∑n
1 xi−

∑m
1 xi+const.

Proposition 8. A Coxeter group with graph d d d dd··· ···
1 2 m n−1

n
has a faithful representation on

Rn in which s1, . . . , sn−1 act as transpositions of adjacent components, while sn acts by adding a
certain real number γ to the firstm components, x1, . . . , xm, namely γ = m−2

m

∑n
1 xi−

∑m
1 xi+c,

where c is an arbitrary constant.

Proof. As we have seen, this expression for γ ensures the desired commutation relations between
the si-actions. What remains to be shown is faithfulness, and for that we can use the standard
geometric representation for general Coxeter groups (page 6). In our case, sn corresponds to
an affine transformation, so to begin with we must get rid of the constant. In all cases, except
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when m2 = (m− 2)n, the constant can be disposed of by a translation of the origin. In fact, let
(x′1, x

′
2, . . .) = (x1−d, x2−d, . . .), where d is chosen such that (m2−(m−2)n) d = mc. Then the

group action on the x′-coordinates is the same as before, except that the constant has disappeared
from γ.

We now introduce basis vectors αi, namely α1 = (1,−1, 0, . . .), α2 = (0, 1,−1, 0, . . .) etc,
αn−1 = (. . . , 0, 1,−1) and αn = (. . . ,−1,−1︸ ︷︷ ︸

m

, 0, . . .), and also a symmetric bilinear form defined

by

〈αi, αj〉 =


1 if i = j
0 if si and sj commute
−1

2 if (sisj)
3 = e

It is easily checked that all si act as reflections x 7→ x−2〈x, αi〉αi and the theorem is applicable.
For instance, the transposition s2 should map (1,−1, 0, . . .) to (1, 0,−1 . . .) and this is exactly
what α1 7→ α1 − 2〈α1, α2〉α2 = α1 + α2 means.

The remaining graphs with m2 = (m− 2)n are the affine groups, Ẽ7:
d d d d d d dd1 2 3 4 5 6 7

8
and Ẽ8:
d d d d d d d dd1 2 3 4 5 6 7 8

9
. Here, no translation (x′1, x

′
2, . . .) = (x1−d, x2−d, . . .) will make

sn linear, at least not with a constant d. But with d = c
m + 1

n

∑n
1 xi, the group action on the

x′-coordinates becomes linear. The transpositions s1, . . . , sn−1 act as before, but the sn-action
is more complicated. Since

∑n
1 xi increases by mγ, the d-expression will increase by mγ/n. But

γ −mγ/n = 2γ/m, so the action of sn is
(x′1, . . . , x

′
n) 7→ (x′1 +

2γ

m
, . . . , x′m +

2γ

m
, x′m+1 −

mγ

n
, . . . , x′n −

mγ

n
) .

Straightforward calculation shows that γ = −x′1 − . . . − x′m, so sn is indeed linear. It is easily
checked that all si act as reflections x 7→ x− 2〈x, αi〉αi, so again the theorem is applicable and
we find that the action on the x′-coordinates is a faithful linear representation of the group.

There may still be some doubt concerning the mapping from x-coordinates to x′-coordinates.
How do we know that it is invertible? We don’t and it isn’t! It is easily seen that the mapping
is the orthogonal projection onto the affine hyperplane x1 + · · · + xn = −nc/m. Any vector in
x ∈ Rn splits uniquely as x = (x′1, . . . , x

′
n) + d(1, 1, . . .), with x′1 + · · · + x′n = −nc/m, and the

transpositions s1, . . . , sn−1 as well as the affine reflection sn are compatible with this split.
So, the representation being faithful after the projection, it must have been even more so

before! For the special case c = 0, the projection would make the representation collapse, but
then sn is a linear action, so that case is already covered. � �

In section 3, an alternative model of the general Coxeter group, the numbers game, was presented.
In this game, real numbers are placed on the nodes of the Coxeter graph, so a game position is a
vector in Rn. For a graph with unlabelled edges (such as those considered here) the generators
si transform the positions according to the following rule: the value on node i is added to the
values on the neighbouring nodes j and then the sign is reversed on node i itself. The resulting
linear representation is faithful (Theorem 4, p 8).

There is a close connection between the numbers game and permutation representations of
Coxeter groups. Loosely speaking, the node numbers in the game are the differences in the
permutation.

Proposition 9. The permutational representation in Proposition 8 can be interpreted as a

numbers game on the Coxeter graph d d d dd··· ···
1 2 m n−1

n
in the following way. Every vector

x ∈ Rn+1 defines a numbers game position with x1−x2 on the first node, x2−x3 on the second
node etc., and finally γ = m−2

m

∑n
1 xi −

∑m
1 xi + c on the nth (lower) node. The action of si on

the x-vector corresponds to playing the ith node.

Proof. The action s2 : (x1, x2, x3, x4, . . .) 7→ (x1, x3, x2, x4, . . .) adds the number on node two to
its neighbours, for x1− x3 = (x1− x2) + (x2− x3) and x2− x4 = (x3− x4) + (x2− x3). There is
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also a sign change on node two itself, for x3 − x2 = −(x2 − x3). The γ-value is affected only by
sm, which is the way it should be in the numbers game. Finally, sn adds γ to x1, . . . , xm, which
does not affect differences, except for (xm − xm+1), which increases by γ. The only complicated
(but still trivial) verification concerns the action of sn on the γ-expression. We leave it to the
reader to check that this action is just a sign-change. � �

Note that the correpondence is one–way; many permutations have the same difference vector,
and there is no natural way of associating one permutation to a numbers game position. This
observation is what makes our investigation worthwhile! The permutation encodes some extra
information, which is not readily obtainable from the difference vector. After all, the permutation
has one component more than the difference vector.

We give two examples of this correspondence for E6, one with c = 0 in the expression for γ,
the other with c = −1.

Example.

345678
s37→ 346578

s67→ 124578 corresponds to d d d d dd-1 -1 -1 -1 -1

-1

s37→ d d d d dd-1 -2 1 -2 -1

-2

s67→ d d d d dd-1 -2 -1 -2 -1

2
.

Here we used γ = 1
3

∑
xi − x1 − x2 − x3, but we can redo it with γ = 1

3

∑
xi − x1 − x2 − x3 − 1.

345678
s37→ 346578

s67→ 013578 corresponds to d d d d dd-1 -1 -1 -1 -1

-2

s37→ d d d d dd-1 -2 1 -2 -1

-3

s67→ d d d d dd-1 -2 -2 -2 -1

3
.

Our real interest lies in finding an integer representation by choosing an orbit consisting only
of integer lattice points. From the numbers game perspective, it is clear that if the start vector
has integer components and integer γ-value, then everything stays integer. It is also important
that the orbit is faithful, i.e. that it does not double up on itself, and there is a useful numbers
game result about that too.

Proposition 10. A Coxeter group of type d d d dd··· ···
1 2 m n−1

n
has a faithful representation as a

set of vectors in Zn, compatible with the group action described in Proposition 8.
A sufficient condition for faithfulness is that some vector in the set has increasing integer

components and a negative integer γ-value.

Proof. Starting the numbers game with negative values on all nodes ensures a bijective corre-
spondence between game positions and group elements (Theorem 4, p 8). The theorem also
states that all positions can be reached by playing nodes with negative values only, and we shall
make use of that later. To see that some increasing integer vector has a negative integer γ-value,
we use (1, 2, . . . , n) and compute

γ =
m− 2

m
· n(n+ 1)

2
− m(m+ 1)

2
+ c .

By choosing c appropriately, we can give γ any desired value, for instance γ = −1. We may
have to use a noninteger c, but that is all right; no fractional numbers will ever creep into the
vector. � �

In all cases except the two affine groups Ẽ7 and Ẽ8, we can get rid of the constant c by
translating the start vector, as in the proof of Proposition 8. Again, this may produce noninteger
values as vector components, and in such cases, there are two ways to restore integrity. Either
multiply all numbers by the least common denominator or replace γ = −1 by another negative
integer value. The procedure is best clarified in a few examples.

Example. The group E10 characterized by m = 3, n = 10 has an integral representation
containing the vector (1, 2, . . . , 10) and with the corresponding γ = −1, namely for c = −40/3.
One can eliminate c by translation (1− d, 2− d, . . . , 10− d), where d = mc/(m2−(m−2)n) = 40,
so the perfect start vector is (−39,−38, . . . ,−30).
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The group E11 also has an integral representation containing (1, 2, . . . , 11) and with γ = −1,
namely for c = −17. But here, to eliminate c, one must translate the vector by d = 51/2, i.e.
to (−24.5,−23.5, . . . ,−14.5). We can get rid of the fractions by doubling, thus starting with
(−49,−47,−45, . . . ,−29) instead. It is immediate by induction that all vector components stay
odd, that their sum stays divisible by three and that γ stays even.

Alternatively, one can use γ = −2 and get c = −18, d = 27 and a consecutive startvector
(−26,−25, . . . ,−16). This would usually seem preferable, and our next proposition states that
this technique is always available.

Proposition 11. All Coxeter groups of type d d d dd··· ···
1 2 m n−1

n
, except those specified below,

admit integer permutational representations with c = 0 and such that the identity element is
represented by an increasing sequence of consecutive integers. Exceptions are

• the affine groups Ẽ7 and Ẽ8,
• cases where m and n are even and m contains a higher power of two than n does.

Proof. As in the above examples, we start with the vector (1, 2, . . . , n) and an unspecified negative
integer γ-value. By putting together the formulas involving γ, c and d, we find the following
expression for the translation d eliminating c:

d =
(m− 2)n(n+ 1)/2−m2(m+ 1)/2− γm

(m− 2)n−m2
.

Usually, this value can be made integer for some suitable γ, in particular if the denominator and
m are relatively prime, so we only have to consider the case where m and (m−2)n have common
factors.

Factors other than two are of no significance, as they must divide all three terms in the
numerator. Also when n is odd and m even, the common factor two appears in all these three
terms. We are left with the case when both m and n are even. Assume that 2r is the highest
power of two that divides n but that m is divisible by at least 2r+1. Divide all terms by 2r

and note that now the first term of the numerator is odd while all other terms are even. The
conclusion follows. � �

For the ordinary signed permutations representation of Dn, it is evident that the expression∑
x2i has the same value for all elements of the group, i.e. is invariant. The generalization of

this quadratic invariant constitutes our next proposition.

Proposition 12. The quadratic expression Q(x) = m2
∑
x2i − (m − 2)(

∑
xi)

2 − 2mc
∑
xi is

invariant in the permutational representations of proposition 8. The quadric surface Q(x) =
const. is bounded (an ellipsoid) if m2 > (m − 2)n, otherwise unbounded. The bounded case
occurs for the finite groups, i.e. Dn, E6, E7, E8.

Proof. It is an easy exercise to check that Q(x) is invariant when γ is added to the first m
components.

The eigenvalues of the quadratic form can be found and are λ1 = . . . = λn−1 = m2, λn =
m2−(m−2)n, so the form is positive definite only when m2 > (m−2)n, that is for combinations
of m and n that produce the listed finite groups. � �

6.2. Representations of Dn, E6, E7, E8. For the finite groups, the condition for faithfulness
given in Proposition 10 is in fact necessary, not only sufficient. But it is possible to state more
explicit criteria that recognize vectors x, for which the group action on the orbit of x is faithful.

As a trivial example, consider the ordinary signed permutations representation for D4 and
look at the orbit of x = (2,−1, 7,−2). Is it faithful? Certainly not, since after application of s3
and s2 we reach (2,−2,−1, 7) which is left unchanged by s4. How about x = (0, 1, 2, 3)? The
zero component may seem jeopardous, but as seen from the following proposition, it is perfectly
all right.
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Proposition 13. For Dn, the orbit of a vector x under the group action defined in Proposition
8 is faithful if and only if two criteria are fulfilled.

(1) No two xi are equal.
(2) No two xi sum to c.

For E6 and E7, there are three criteria, and a fourth one for E8.
(1) No two xi are equal.
(2) No three xi sum to 1

3

∑
xj + c.

(3) No six xi sum to 2
3

∑
xj + 2c.

(4) No xi equals 3c. (E8 only)

Proof. A necessary provision for faithfulness is that the xi are different from each other, otherwise
some product of the si corresponding to a transposition of the two equal numbers will leave x
unchanged.

Also, we must have γ 6= 0, otherwise sn will leave x unchanged. Thus, the necessity of
conditions 1 and 2 is clear.

The third condition for the En-case emerges if one applies sn to a vector with x1 + · · ·+ x6 =
2
3

∑
xj +2c, for afterwards x4 +x5 +x6 will violate the second condition (with the updated value

of
∑
xj). The necessity of the fourth condition for E8 is also clear, for after application of sn

to a vector with x1 = 3c, the new value of x1 + x4 + x5 + x6 + x7 + x8 will violate the third
condition.

This set of necessary conditions is invariant under further application of s1, . . . , sn−1 (trivial)
and sn (takes some checking). That is at least an indication of the fact that they are also
sufficient. The length function, defined in section 6.4 below, will give a simple proof of this, so
we shall postpone the sufficiency proof until then. � �

In each orbit that represents the group, as described in the proposition, there is exactly one
vector with increasing xi and negative γ. This fact is also a consequence of the existence of a
length function, and will be proved in section 6.4. From now on, we assume that this vector
represents the identity e. According to Proposition 10, each such e-vector also satisfies the
conditions of Proposition 13.

In most cases, such e-vectors also have positive components. The exception is E6, and to deal
with that, a digression on the graphic automorphism is called for. This is the group automorphism

induced by the reflection map of the symmetric graph d d d d dd , that is s1 ↔ s5 , s2 ↔ s4. In
the matrix representation on R6 defined in Proposition 8, the graphic automorphism corresponds
to a certain inner automorphism W 7→ UWU−1.

Proposition 14. Let U be the 6× 6-matrix defined by

Uij =

{
−2/3 if i+ j = 7

1/3 otherwise .

The inner automorhism W 7→ UWU−1 induces the graphic automorphism on the E6 matrix
group, defined by setting c = 0 in Proposition 8. If e = (e1, . . . , e6) satisfies the criteria in
Proposition 13, then so does Ue.

Proof. Let Si be the matrix representing si, e.g. S1 =


0 1 · · ·
1 0 · · ·
· · · · · · · · ·

 . Switching the first

two rows of U means the same as switching the last two columns, therefore S1U = US5. For the
same reason, S2U = US4 and S3U = US3. Finally, computation shows that S6U = US6.

A faithful orbit is mapped onto a faithful orbit by the matrix U . In fact, the vector We
representing a group element w maps to UWe = (UWU−1)Ue, so Ue complies with the criteria
of proposition 13. � �
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The Dn-graphs are also symmetric if drawn like this
d d d ddHH�� · · · and there is a corresponding

graphic automorphism, defined by s1 ↔ sn. The analog of the previous proposition is almost
trivial, but stated for reference.

Proposition 15. Let U be the n× n diagonal matrix defined by

Uii =

{
−1 if i = 1

1 otherwise .

The inner automorhism W 7→ UWU−1 induces the graphic automorphism on the Dn matrix
group, defined by setting c = 0 in Proposition 8. If e = (e1, . . . , en) satisfies the criteria in
Proposition 13, then so does Ue.

Proof. As the proof of the previous proposition. � �

Our next goal is a characterization of the vector set corresponding to a fixed such e-vector.
For simplicity, we assume that the constant c has been eliminated.

Proposition 16. Let the identity element of one of the finite Coxeter groups under consideration
correspond to an increasing vector (e1, . . . , en) with negative γ. For E6 and Dn, we also assume
that the first component of the graphically automorphic vector Ue is less than or equal to e1
(otherwise Ue is used instead of e). Then,

• all components of e are positive,
• all vectors in the e-orbit have all components in the interval [−en, en].

Proof. To begin with, all ei are positive in E7, for in γ = 1
3

∑
ej − e1 − e2 − e3 < 0, we can

use e2+e3+e4
3 > e2 and e5+e6+e7

3 > e3 and conclude that e1 > 0. The same computation and
the same conclusion holds for E8. In E6, the first component e1 may be negative, but then
(Ue)1 = 1

3

∑
ej − e6 = e1 + e2 + e3 + e4 + e5 − 2

3

∑
ej > e4 + e5 − e1 − e2 − e3 > 0, so Ue is

positive. In Dn, γ < 0 means e1 + e2 > 0, so if e1 is negative, Ue will be a positive, increasing
vector.

For the signed permutations representation of Dn, the second statement is trivial. For E6, E7,
E8, it can be proved by induction, but only if we strengthen it by adding two more statements
for E6, E7 and a third one for E8. The strengthened hypothesis states that for all i ≤ n,

(1) |xi| ≤ en,
(2) |13

∑
xj − xi1 − xi2 | ≤ en,

(3) |23
∑
xj − xi1 − xi2 − xi3 − xi4 − xi5 | ≤ en,

(4) |xi − xj | ≤ en (E8 only).
If we can verify that these conditions are true for x = e, and that they stay true (i.e. are invariant
under all si), the proposition will follow.

Monotonicity and 1
3

∑
ej − e1 − e2 < e3 imply 1

3

∑
ej − ei1 − ei2 < en, which is the second

inequality except for the absolute value sign. The other half, 1
3

∑
ej − ei1 − ei2 > −en, is easier

doubled: −2
3

∑
ej + 2ei1 + 2ei2 − 2en < −2

3

∑
ej + ei1 + ei2 < −2

3

∑
ej + e4 + · · · + en =

1
3

∑
ej − e1 − e2 − e3 < 0

The first half of the third inequality is 2
3

∑
ej − ei1 − · · · − ei5 ≤ 2

3

∑
ej − e1 − · · · − e5 <

1
3

∑
ej − e4 − e5 < en. For E7, E8, the other half follows from 2

3

∑
ej − ei1 − · · · − ei5 ≥

e1+e2− 1
3

∑
ej > −e3 > −en and for E6 it is just another way of writing (Ue)1 = 1

3

∑
ej−e6 ≤ e1.

Finally, the fourth condition is evident, all ei being positive.
Assuming that these conditions hold for some vector x, we must prove that they stay true

after application of si. It is obvious that the conditions are invariant under permutations, so we

can concentrate on the sn-action. Let x 7→ x′ under sn, i.e. x′i =

{
xi + γ if i ≤ 3

xi otherwise .We must

show that, for example, |x1 + γ| ≤ en, but this can be written as |13
∑
xj − x2 − x3| < en, which
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is the second condition for x exactly. All four conditions for x′ are equivalent to some or other
of the same four conditions for x, in fact, this is how these conditions have been constructed.
Depending on whether both, one or none of i1, i2 are in {1, 2, 3}, condition two for x′ turns
into condition one, two or three for x. And depending on whether three or two of i1, . . . , i5
are in {1, 2, 3}, condition three for x′ turns into condition two or three. For E8, there are also
the possibilities of one or none of the i1, . . . , i5 belonging to {1, 2, 3} and these correspond to
condition four or three for x. For E7 with exactly one of i1, . . . , i5 in {1, 2, 3}, we get condition
one for x. Finally, condition four turns into condition three, four or three, depending on whether
both, one or none of i, j belong to {1, 2, 3}. � �

Remark 17. The resemblance between these four numbered inequalities and the four criteria in
proposition 13 is no coincidence, but a consequence of their invariance under the si. Specifically,
the invariance under sn of the first criterion means x′i 6= x′j , so that, for example, x1 +γ 6= x4. In
this way, the second criterion appears; the invariance of the second criterion produces the third
criterion etc. The inequalities of the proof come up in the same way.

The most natural choice of permutational representation of the identity element e seems to
be an increasing sequence of consecutive positive integers, chosen as small as possible. The
corresponding vector sets are completely characterized in the next proposition. As before, we
state the result only for c = 0.

Proposition 18. The following choices of representing vector for the identity element are min-
imal among increasing sequences of consecutive integers.

Dn:
d d d dd · · · e = (0, 1, 2, . . . , n−1)

E6:
d d d d dd e = (3, 4, 5, 6, 7, 8)

E7:
d d d d dd d e = (9, 10, 11, 12, 13, 14, 15)

E8:
d d d d dd d d e = (22, 23, 24, 25, 26, 27, 28, 29)

The representation involves exactly those integer vectors (x1, . . . , xn) that satisfy the inequalities
of Proposition 13 and give the quadratic form in Proposition 12 the same value as the e-vector
does.

Proof. The statement about Dn is almost evident. For the other groups, the proof of the pudding
is a computer check. A program ran through and counted all combinations of integers satisfying
the criteria. For any legal integer vector, all permutations of it are legal too, so we only had
to count vectors with increasing components. The totals obtained were 72, 576 and 17280, in
agreement with the table on page 10, namely |E6| = 72 · 6!, |E7| = 576 · 7!, |E8| = 17280 · 8!.

It would be nice to be able to give a mathematical explanation of the fact that all integer lattice
points on a certain ellipsoid and outside certain hyperplanes belong to one and the same orbit.
As things stand, however, we must admit the possibility that chance, rather than mathematical
necessity, is responsible. � �

It is interesting to see how the parabolic subgroup relations E8⊃E7⊃E6⊃D5 are reflected in
these representations. Fix the last component of the E8-vector e and consider only the E7-action.
Now the γ-expression for E8 can be interpreted as

γ =
1

3

8∑
1

xi − x1 − x2 − x3 =
1

3

7∑
1

xi − x1 − x2 − x3 + c, where c = e8/3 is constant.

So the subgroup E7 gets a representation of our type. Note also that a coset xE7 consists of the
vectors reachable from x by E7-action only, i.e. fixing the x8-component. Since |E8 : E7| = 240
(see Humphreys, [56], p 44), we can anticipate that there are 240 different values occuring as
x8 of a vector in the E8-representation. Similar conclusions follow from |E7 : E6| = 56 and
|E6 : D5| = 27. All these numbers reappear in Proposition 19.
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The other embedding of D5 as the subgroup [s2, s3, s4, s5, s6] ⊂ E6, corresponds to the rein-
terpretation

γ =
1

3

6∑
1

xi − x1 − x2 − x3 = −x2 − x3 + c, where c =
1

3

6∑
1

xi − x1

This makes sense only if the expression for c is constant in D5, and, in fact, it is. Transpositions
s2, . . . , s5 do not change it, and s6 adds 1

3(γ + γ + γ)− γ to c.

6.3. Interpretation of Dn, E6, E7, E8 as subgroups of Sk. The signed permutations model
of Dn using e = (1, 2, . . . , n) admits an interpretation as a subgroup of S2n. Let e′ be the
antisymmetric vector (−n, . . . ,−1, 1, . . . , n), then every signed permutation x induces an ordinary
permutation (−xn, . . . ,−x1, x1, . . . , xn) of e′. The action of s1 now transposes not only x1 and x2
but also −x2 and −x1 and similarly for s2 to sn−1. The action of sn is a transposition of −x2 and
x1 and also of −x1 and x2. In this way, Dn is interpreted as the subgroup of all antisymmetric
permutations of e′, but of course, such a permutation is completely specified by its right half.

If instead one had used e = (0, 1, 2, . . . , n−1), the set would have contained two different
zeroes. Still, looking through the right half window one would be able to identify the whole
permutation, and in particular decide which of the zeroes is visible in the window.

It is useful to have similar interpretations of the permutational representations of E6, E7, E8,
and here they are. For the sake of simplicity, they are stated only for the case c = 0.

A word of caution: when the proposition states “a total of 27 values”, it means that 27 different
linear expressions in the ei occur. For special choices of the ei, some of these values may coincide,
just as in the case of two different zeroes above. As an example, e = (3, 4, 5, 6, 7, 8) gives rise
to seventeen different values only, namely −8, . . . , 8, but out of these, −4, . . . , 4 come in two
flavours and 0 even in a third flavour. The resulting homomorphism E6→ S17 is not one-to-
one, so different flavours should be distinguished. For the purpose of finding embeddings in Sk,
one can as well assume that the ei are rationally independent or even that they belong to a
transcendental field extension R(e1, e2, . . .).

Proposition 19. All component values in the permutational representations considered are
given by the following expressions in the e-components.
E6 : All six ei, all fifteen (13

∑
ej − ei1 − ei2) for any two ei, and all six (23

∑
ej − ei1 − ei2 −

ei3 − ei4 − ei5) for any five ei. A total of 27 values.
E7 : All fourteen ±ei, all forty-two ±(13

∑
ej − ei1 − ei2) for any two ei. In all, 56 values.

E8 : All sixteen ±ei, all fifty-six ±(13
∑
ej − ei1 − ei2) for any two ei, all one hundred and

twelve ±(23
∑
ej − ei1 − ei2 − ei3 − ei4 − ei5) for any five ei, and all fifty-six (ei1 − ei2) for

any two ei. Altogether 240 values.

Proof. Let the linear expressions in the proposition be represented by row vectors, with (1,−1, 0, . . .)
meaning e1 − e2 etc. Originally, the only existing values are the ei, so we start with the vectors
u>
1 = (1, 0, . . .), u>

2 = (0, 1, 0, . . .) etc. Since s1, . . . , sn−1 only permute e1, . . . , en, we can concen-
trate on the action of sn, that can produce three new values. After the first application of sn,
these are u>

1 Sne, u>
2 Sne and u>

3 Sne. The first value is e1 + γ = 1
3

∑
ej − e2 − e3, but we can get

any value of the type 1
3

∑
ej − ei1 − ei2 as u>

1 SnSk1Sk2 · · ·Skre, with appropriate transpositions
Sk, and that explains those expressions in the proposition.

This algorithm is iterative. Whenever v> is one of our row vectors, so is v>Sn and all its per-
mutations. In practice, no matrix calculations are needed, for Sn acts very simply on expressions:
ei 7→ ei + γ if i = 1, 2, 3
ei 7→ ei otherwise
γ 7→ −γ
1
3

∑
ej 7→ 1

3

∑
ej + γ

As always, γ denotes 1
3

∑
ej − e1 − e2 − e3.
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Let us apply these rules to 1
3

∑
ej−ei1−ei2 . First assume that i1 ≤ 3, i2 > 3. The γ from the

sum and the γ from ei1 cancel, so the expression is left intact. Then assume that both i1, i2 ≤ 3.
The expressions is changed into 1

3

∑
ej − ei1 − ei2 − γ = ei3 , an old value. Finally, assume both

i1, i2 > 3. The expressions turns into 1
3

∑
ej + γ − ei1 − ei2 = 2

3

∑
ej − e1 − e2 − e3 − ei1 − ei2 ,

and all possible permutations hereof.
The analysis ends here for E6, but must be iterated a few more times for E7 and E8. � �

The proposition provides an embedding E6 ⊂ S27, that can be interpreted as the incidence-
preserving permutations of the famous 27 lines on the general cubic surface in projective space
(see the Atlas of finite groups [25] under U4(2) ∼= S4(3)). For E8, the expressions come in plus-
minus pairs and the actions of all si commute with sign inversion. Therefore, the usual signed
permutations model of Bn defines an embedding E8 ⊂ B120 ⊂ S240. The same thing is true for
E7, but here we even have E7 ⊂ D28 ⊂ S56. That is because all si transform an even number of
positive expressions into negative expressions.

6.4. The length function for Dn, E6, E7, E8. The length l(w) of an element of any Coxeter
group (W,S) is defined as the length of a reduced expression for w as a product of the generators
si. For Sn, the length of an element is the number of inversions in the corresponding permutation.
The descent set of a permutation is defined as {i |xi > xi+1} and this notion is generalized to
any Coxeter group in the following way. The product of an element w by a generator s has
length l(w)± 1 and the descent set D(w) consists of the generators that shorten w.

Proposition 20. For a Coxeter group of type d d d dd··· ···
1 2 m n−1

n
, represented as in Proposition

10 with an integer e-vector with increasing components and negative γ, the descent set of an
element corresponding to a vector x includes all si such that xi > xi+1 and sn if the value of γ
is positive.

Proof. Restated in the terminology of the numbers game, only nodes with negative numbers are
legal in play sequences corresponding to reduced expressions ([42], p 81). � �

Finite Coxeter groups have a unique element wo of maximal length. Which vectors represent
this wo for Dn, E6, E7, E8?

Proposition 21. If the identity is represented by the vector (e1, e2, . . .), then the element of
maximal length will be represented as

Dn: wo = (w1, c− e2, c− e3, . . .), where w1 =

{
c− e1 if n is even

e1 if n is odd
E6: wo = (e6 + b, e5 + b, . . .), where b = 2c− 1

3

∑
ei

E7: wo = (3c− e1, 3c− e2, . . .)
E8: wo = (6c− e1, 6c− e2, . . .)

Proof. The statement about Dn is well-known in the case c = 0 and the constant can always be
disposed of by a translation of the origin. In fact, let (x′1, x

′
2, . . .) = (x1−d, x2−d, . . .), where d

is chosen such that (m2−(m−2)n) d = mc. Then the group action on the x′-coordinates is the
same as before, except that the constant has disappeared from γ. With m = 2 we get d = c/2,
so x′i = xi − c/2 changes sign to −xi + c/2 in w′o, which corresponds to c− xi in wo.

The verification of the wo-formulas for E6, E7, E8 are best left to the computer. It is sufficient
to check the case c = 0, for translation of the origin works as above. � �

We can now derive formulas for l(w) in the finite Coxeter groups considered. We use the
shorthand #(xi1 + xi2 + xi3 <

1
3

∑
xj + c) for the number of three-subsets of the xi which sum

to less than 1
3

∑
xj + c and #(inversions) for the number of pairs i < j with xi > xj .

Proposition 22. Let (x1, . . . , xn) represent a group element w and assume that the e-vector
has been chosen with increasing components and negative γ.
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In Dn, the length of w is given by l(w) = #(inversions) + #(xi1 + xi2 < c) .
In E6 and E7, the formula is
l(w) = #(inversions) + #(xi1 + xi2 + xi3 <

1
3

∑
xj + c) + #(xi1 + · · ·+ xi6 <

2
3

∑
xj + 2c) .

For E8, the expression contains one more term, l(w) = . . .+ #(xi < 3c).

Proof. One way to prove the formula is to show that it changes by ±1 when w is multiplied
by si. To complete the proof, it is then sufficient to check that l(e) = 0 and that l(wo) is
correct. In that case, our l-expression must also be correct for any initial segment of any reduced
expression si1 , . . . , sik = wo, and a reduced expression for any w is an initial segment of some
such wo-expression.

The assumptions about the e-vector forces l(e) to be zero. In Dn, we have γ = c− e1− e2 < 0
and since e is increasing, all ei1 + ei2 > c. The same argument gives ei1 + ei2 + ei3 >

1
3

∑
ej + c

in E6, E7, E8. Adding the inequality ei4 + ei5 + ei6 >
1
3

∑
ej + c, we see that the contribution

of the third term in l(e) is zero too. Finally, adding ei7 + ei8 + ei >
1
3

∑
ej + c, we see that the

extra term in E8 does not contribute either.
Applying the formulas to our wo-expressions, we get maximal contribution of all terms:

Dn: l(wo) = n(n− 1)/2 + n(n− 1)/2 = n(n− 1)
E6: l(wo) = 15 + 20 + 1 = 36
E7: l(wo) = 21 + 35 + 7 = 63
E8: l(wo) = 28 + 56 + 28 + 8 = 120

From the theory of root systems, it is clear that l(wo) is the number of positive roots, so that
2l(wo) = #(roots). Our results are consistent with the table of the number of roots in all finite
Weyl groups, that can be found in Humphreys, [56] p 44.

The remaining step in the proof is showing that the expression changes by ±1 when w is
multiplied by si. For all transpositions, s1, . . . , sn−1, the only change is an inversion more or
less, but for sn things are more complicated. The γ-expression is negative when sn is applied
and positive afterwards, and that contributes +1 to the second term. Many other changes may
occur, however, and we have to check that these always cancel out. Let us look at an example
in E6.

The element w represented by (5, 4, 3,−2,−3,−4) has l(w) = 15 + 10 + 0 = 25. The γ-value
is −11, so ws6 corresponds to (−6,−7,−8,−2,−3,−4) with l(ws6) = 6 + 19 + 1 = 26. Nine of
the fifteen inversions have changed into second term contributions and one of the second term
contributions has turned into a third term contribution. A disappearing inversion means that,
for instance, x1 > x4 but x1 + γ < x4. Here x1 may as well be x2 or x3 and x4 may as well
be x5 or x6. The second inequality is equivalent to x2 + x3 + x4 >

1
3

∑
xj + c, meaning that

x2 + x3 + x4 did not contribute to the second term before, and the first inequality is equivalent
to x2 + γ + x3 + γ + x4 <

1
3

∑
xj + γ + c, meaning a second term contribution after application

of s6.
One more case for E6, E7 and another one for E8 has to be checked in the same way. We leave

out these details. For Dn, there are no complications, so that concludes the proof. � �

We have stated some rather complicated formulas with no motivation. The proof, using
verification by manipulation, was not very illuminative either. Also, a comparison of the formulas
for l(w) with the inequalities in Proposition 13 makes it reasonable to ask for a proof that provides
some insight into what is going on here. Our next section aims to present such an approach.

6.5. Geometric interpretation of the formulas. The connection between propositions 13
and 22 is due to the fact (Theorem 2) that every Coxeter group can be realized as a group
generated by (skew) reflections in Rn. The reflections correspond in turn to some hyperplane
arrangement, dividing space into cones, where the cones correspond to the elements of the group.
Our representation picks one interior point from each cone and the inequalities in Proposition 13
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state that the point must not lie on any hyperplane in the arrangement. For the finite groups,
the invariant positive definite quadratic form means that all points in the orbit lie on an ellipsoid.

Seen in this light, Proposition 18 states that the cell decomposition of the ellipsoid surface
induced by the hyperplane arrangement contains exactly one lattice point in each (n − 1)-
dimensional cell.

Let us find the geometric content of the subgroup relations E8⊃E7⊃E6⊃D5 considered at
the end of section 6.2. Fixing the last component of an E8-vector x and considering only the
E7-action, means intersecting the ellipsoid with a hyperplane x8 = const. The intersection is
of course an ellipsoid surface in one dimension less. This is straightforward. Considering D5

as the parabolic subgroup [s2, s3, s4, s5, s6] in E6, does not mean fixing the first component x1,
for s6 certainly affects x1. But, as we found, the expression 1

3

∑6
1 xi − x1 is invariant under

s2, . . . , s6, and so, the corresponding hyperplane 1
3

∑6
1 xi−x1 = const. intersects the E6-ellipsoid

in a D5-ellipsoid.
Proposition 22 equates the length l(w) with the number of hyperplanes separating the points

representing e and w. This equality is valid not only for finite Coxeter groups, but for all linear
and affine representations such that all reflection elements wsiw−1 have different hyperplanes.
The treatment of the affine case in Humphreys [56], p 91, is general enough to show this.

For the affine groups Ẽ7 and Ẽ8, the quadratic form in Proposition 12 is positive semidefinite,
so the quadric surface will be a circular cylinder if c = 0 and a rotation paraboloid if c 6= 0.
The axis direction is the eigenvector (1, 1, . . . , 1) corresponding to the eigenvalue zero. As we
will see below, for c 6= 0, the hyperplanes are all different and the length formula valid. For
c = 0, however, infinitely many reflection elements have the same hyperplane, and thus we get
no simple length formula. A pity, for the cylindric representation is attractive in other respects.

In the proof of Proposition 8, we noted that it is possible to transform the affine reflection
sn into a linear reflection by projecting the paraboloid in its axis direction onto the hyperplane
x1+ · · ·+xn = −nc

m . If we wish, we can then get a representation in dimension n−1, for instance
by simply suppressing the last co-ordinate. The disadvantage is that sn−1 cannot be interpreted
as a transposition any more. Instead, it becomes an affine reflection. For completeness, this
slimmed–down representation will be stated in the next section, but it is not a permutational
representation in our sense.

Projection along the cylinder axis obviously would make the structure collapse, so in the case
c = 0, the dimension cannot be lowered.

For other infinite groups, the set of hyperplanes is more complicated, but in principle the
same method can produce length formulas. Starting with the hyperplanes of type xi = xi+1 and
x1 + · · · + xm = m−2

m

∑
xi + c, and letting co-ordinate permutations and sn act on them over

and over again will produce the complete hyperplane arrangement. The length of the element
represented by x is the number of these hyperplanes separating it from the e-vector.

6.6. Representations of Ẽ7 and Ẽ8. For the affine groups, elimination of the constant c by a
change of origin in the co-ordinate system is neither possible nor desirable. However, the next
proposition remains true for c = 0 if the congruences modulo 2c or 3c are replaced by ordinary
equality.

Proposition 23. For the group Ẽ7:
d d d d d d dd1 2 3 4 5 6 7

8
, the permutational representation using

γ = 1
2

∑
xi − x1 − x2 − x3 − x4 + c is faithful if and only if any vector x = (x1, . . . , x8) in the

orbit satisfies two conditions :
(1) No two xi are congruent modulo |2c|.
(2) No sum of four xi is congruent to (12

∑
xj + c) modulo |2c|.

For Ẽ8:
d d d d dd d d d1 2 3 4 5 6 7 8

9
, the permutational representation using γ = 1

3

∑
xi −x1−x2−x3+c

is faithful if and only if any orbit vector x = (x1, . . . , x9) satisfies two conditions :
(1) No two xi are congruent modulo |3c|.
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(2) No sum of three xi is congruent to (13
∑
xj + c) modulo |3c|.

Proof. Exactly as in the proof of Proposition 13, one finds that this is the set of affine hyperplanes
obtained by iterated reflections of the hyperplanes corresponding to the simple reflections si. In
Ẽ7, for example, application of s8 to the hyperplane x4 = x5 + 2kc gives x4 + 1

2

∑
xj −x1−x2−

x3 − x4 + c = x5 + 2kc. But this is a case of the congruence x1 + x2 + x3 + x5 ≡ 1
2

∑
xj + c

(mod |2c|).
The discussion in the previous section and in Proposition 10 applies. The vector representing

the identity e cannot reappear as the vector representing some other element w, for these two
vectors are separated by exactly l(w) of the hyperplanes in the proposition. That argument is
of course valid only when c 6= 0. For c = 0, we get a finite number of hyperplanes only, all
intersecting along the (1, 1, 1, . . .)-ray, the axis of a circular cylinder containing the orbit. The
cylinder is divided into finitely many infinitely long slices by the hyperplane wedges, and each
slice contains an infinite number of orbit points.

A proof of the proposition for this case can be based upon the theory of looping numbers
games in Eriksson [42], p 59. Looping games occur only on the affine Coxeter graphs, these
graphs have adjacency matrices with largest eigenvalue 2 and a corresponding eigenvector with
only positive components. For Ẽ7 it is (1, 2, 3, 4, 3, 2, 1, 2) and for Ẽ8 it is (2, 4, 6, 5, 4, 3, 2, 1, 3).
A looping game has a shot vector that is a multiple of this eigenvector, the kth component of
the shot vector being the sum of the numbers fired from node k. In terms of the permutational
representation, s1 fires x1−x2, s2 fires x2−x3 etc and sn fires γ. The shot vector’s nth component
is the sum of the γ-values fired in the course of the game.

Now, consider the change in
∑
xj caused by an si. It is only sn that makes the sum increase by

mγ. The total increase is m times the nth component of the shotvector, i.e. a nonzero increase.
But that demonstrates that we are not back where we started. Although the differences xi−xi+1

are the same as before, the sum has increased, so the vector has been translated some distance
along the cylinder axis (1, 1, 1, . . .). � �

The subgroup relations E7 ⊂ Ẽ7 and E8 ⊂ Ẽ8 appear in the following way. Fix x1 in the
Ẽ7–representation (with c = 0) and let [s2, . . . , s8] be the parabolic subgroup isomorphic to E7.
The γ-expression can be reinterpreted as

γ =
1

2

8∑
1

xi−x1−x2−x3−x4 =
1

3

8∑
2

−x2−x3−x4 + c, where c =
1

6

8∑
2

xi−
1

2
x1 is constant.

Also, the inequalities for E8 in Proposition 13 follow directly from the inequalities for Ẽ8 (with
c = 0) by fixing x8 and putting 3c = x8.

The natural representation of the identity as an increasing sequence of consecutive integers is
not possible if c = 0, by the second condition.

Proposition 24. Simple permutational representations of Ẽ7 and Ẽ8 are given by
Ẽ7: e = (1, 2, 3, 4, 5, 6, 7, 8) and c = −9

or e = (1, 2, 3, 4, 5, 6, 7, 17) and c = 0

Ẽ8: e = (1, 2, 3, 4, 5, 6, 7, 8, 9) and c = −10
or e = (1, 2, 3, 4, 5, 6, 7, 8, 30) and c = 0

For the representations with c 6= 0, the descent set of an element is determined by the inversions
and by the sign of γ, as stated in Proposition 20.

Proof. All node values of the corresponding numbers game are negative. � �

The following conjecture can be computer tested for c = 0, for the orbit points on the cylinder
are periodic, but we have disdained to do so – there should be some mathematical proof hiding
in the undergrowth.
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Conjecture 25. The representation involves exactly those integer vectors (x1, . . . , xn) that
satisfy the inequalities of Proposition 23 and give the quadratic form in Proposition 12 the same
value as the e-vector does.

We also have formulas for l(w) in the natural representations with c 6= 0. Note our convention

that every pair xi1 , xi2 generates one term in the sum
∑⌊
|xi1−xi2 |
|2c|

⌋
.

Proposition 26. Let (x1, . . . , xn) represent a group element w, in the representations of Propo-
sition 24 with c 6= 0.
In Ẽ7, the length of w is given by

#(inversions)+#(xi1+xi2+xi3+xi4<
1
2

∑
xj +c)+

∑⌊
|xi1−xi2 |
|2c|

⌋
+
∑⌊
| 12

∑
xj+c−xi1−xi2−xi3−xi4 |

|2c|

⌋
In Ẽ8, the formula is

#(inversions) + #(xi1 +xi2 +xi3<
1
3

∑
xj +c) +

∑⌊
|xi1−xi2 |
|3c|

⌋
+
∑⌊
| 13

∑
xj+c−xi1−xi2−xi3 |

|3c|

⌋
Proof. The formulas evidently count the number of hyperplanes separating e and w, so the
discussion in section 6.5 gives the proof. � �

Remark 27. In analogy with the finite case (see section 6.3), these affine groups can be embed-
ded in S∞, the group of bijections on Z. In this way, the linear algebra flavour of the represen-
tations is completely replaced by a combinatorial setting. We postpone this line of investigation
until section 10, where all affine Coxeter groups will be reconsidered.

For completeness, we shall also state the analogous results for the slimmed–down representa-
tions, mentioned at the end of the previous section.

Proposition 28. The group Ẽ7 has a representation on R7 with s1, . . . , s6 acting as transposi-
tions and s7 : (x1, . . . , x7) 7→ (x1, . . . , x6,−(2c+ x1 + . . .+ x7)),

s8 : (x1, . . . , x7) 7→ (x1 +
γ

2
, . . . , x4 +

γ

2
, x5 −

γ

2
, x6 −

γ

2
, x7 −

γ

2
),

where γ = −x1−x2−x3−x4. It is faithful if and only if any vector x = (x1, . . . , x7) in the orbit
satisfies three conditions :

(1) No two xi are congruent modulo |2c|.
(2) No sum of four xi is congruent to zero modulo |2c|.
(3) No xi is congruent to −

∑
xj modulo |2c|.

For Ẽ8, the representation on R8 with s1, . . . , s7 acting as transpositions and
s8 : (x1, . . . , x8) 7→ (x1, . . . , x7,−(3c+ x1 + . . .+ x8))

s9 : (x1, . . . , x8) 7→ (x1 +
2γ

3
, x2 +

2γ

3
, x3 +

2γ

3
, x4 −

γ

3
, . . . , x8 −

γ

3
),

where γ = −x1− x2− x3, is faithful if and only if any orbit vector x = (x1, . . . , x8) satisfies four
conditions :

(1) No two xi are congruent modulo |3c|.
(2) No sum of three xi is congruent to zero modulo |3c|.
(3) No sum of six xi is congruent to zero modulo |3c|.
(4) No xi is congruent to −

∑
xj modulo |3c|.

Proof. As for Proposition 23. � �

The reader should be able to find length formulas, similar to the previous ones.
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7. Representations of D̃n, Ẽ6 and friends

In this section, we shall find that the affine group D̃n:
d d d dd · · · dd has a permutation

representation of vectors (x1, . . . , xn), just like Dn. The extra generator sn+1 acts in analogy
with sn but on the last two components.

The simplest case is D̃4:
d d ddd , with e-vector (0, 1, 2, 3). The generators s1, s2, s3 are

transpositions of adjacent numbers, s4: (x1, x2, x3, x4) 7→ (−x2,−x1, x3, x4) as before and s5:
(x1, x2, x3, x4) 7→ (x1, x2, 6−x4, 6−x3).

The hyperplanes in the arrangement are xi ≡±xj (mod 6), and the length function follows
directly from this.

Another Coxeter graph with two extra edges joined to a path is Ẽ6:

d d d d ddd . We shall
find a permutational representation with e-vector (3, 4, 5, 6, 7, 8). The nodes in the horizontal
path are transpositions of adjacent numbers, the middle center node s6 adds γ = 1

3

∑
xi − x1 −

x2 − x3 to x1, x2 and x3, as in the E6-representation. The lower center node s7 subtracts the
number µ = 1

3

∑
xi + 12 from all six components of the vector.

The hyperplanes in the arrangement are xi≡xj (mod 12),
∑
xj≡0 (mod 12) and xi1+xi2+xi3≡

1
3

∑
xj (mod 12) and the length function follows directly from this.

7.1. Analysis of possible permutational representations. Let us consider groups of typed dd dd d··· ······
1 m n−m′

n n+1

n−1
(we can assume m,m′ ≥ 2), acting on Rn as in section 6.1, but with

the new generator sn+1 adding a quantity γ′ to the last m′ components. It is clear that, in
analogy with γ, we must have γ′ = − 2

m′
∑n

1 xi −
∑n−m′

1 xn−i + c′. Now, it is easy to check
that the commutation relation between sn and sn+1 forces m = 2 and m′ = 2, so permutational
representations exist only for D̃n.

In the same way, we can check all groups of type d dd dd
··· ···

1 m n−1

n

n+1

, and find permutational
representations only for n = 6, m = 3 (the Ẽ6–case)
and for n = 8, m = 2 (an unusual rendering of Ẽ8).

Proposition 29. The Coxeter group D̃n with graph d d d dd · · · dd has a faithful repre-
sentation on Rn in which s1, . . . , sn−1 act as transpositions of adjacent components, while
sn : (x1, x2, . . .) 7→ (c − x2, c − x1, . . .) and sn+1 : (. . . , xn−1, xn) 7→ (. . . , c′ − xn, c

′ − xn−1).
Here c 6= c′ are otherwise arbitrary constants.

The group Ẽ6 with graph

d d d d ddd has a faithful representation on R6 in which
s1, . . . , s5 are adjacent transpositions, s6 adds γ to x1, x2, x3 and s7 subtracts µ from all six xi.
Here γ = 1

3

∑
xi − x1 − x2 − x3 + c, and µ = 1

3

∑
xi + c′ for arbitrary constants c′ 6= −2c.

No other groups of type d dd dd d··· ······ or d d ddd dd
··· ··· have permutational

representations of this kind.

Proof. It is straightforward to check that these expressions for γ and µ ensure the desired com-
mutation relations. What remains to be shown is faithfulness. By a translation of the origin,
x′i = xi − c/2, we can accomplish that c = 0 in the D̃n-case. Then s1, . . . , sn are orthogonal
linear reflections while sn+1 is an orthogonal affine reflection. A known result about affine Cox-
eter groups ([56], p 95) states that these can be faithfully represented in Rn, such that s1, . . . , sn
correspond to orthogonal reflections in hyperplanes through the origin, while sn+1 corresponds to
an orthogonal affine reflection. This is exactly our situation, so we conclude that D̃n is faithfully
represented.

By translating the origin, x′i = xi−c, we can get rid of c in the Ẽ6-case too. Now s6 is a linear
reflection and s7 is still an affine orthogonal reflection. We cannot immediately use the same
theorem though, for s6 is not orthogonal. However, in the next section we shall derive a length
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function l(w) that counts the number of hyperplanes between e and w. It will be apparent that
l(w) > 0 for w 6= 0, so faithfulness is evident. � �

7.2. Representations of D̃n and Ẽ6. As can be seen from the proof, we are dealing with affine
reflections in dimension one lower than the number of generators. Thus, there is no quadratic
invariant in these cases.

The arrangement of affine hyperplanes can be found as in proposition 23, and immediately
tells us which e-vectors are useful. For simplicity, the statements are formulated for the case
c = 0 only.

Proposition 30. For D̃n, the orbit of the vector x under the group action defined in Proposition
29 is faithful if and only if for any two components, xi 6≡ ±xj (mod |c′|).
For Ẽ6, there are three criteria:

(1) xi 6≡ xj (mod |c′|)
(2) xi1 + xi2 + xi3 6≡ 1

3

∑
xj (mod |c′|).

(3) 1
3

∑
xj 6≡ 0 (mod |c′|).

Proposition 31. Simple vectors satisfying the faithfulness criteria are
D̃n: e = (0, 1, . . . , n−1), c = 0, c′ = 2n− 2.
Ẽ6: e = (3, 4, 5, 6, 7, 8), c = 0, c′ = −12.

The descent set corresponding to a vector x includes all si such that xi > xi+1. Furthermore,
for D̃n, sn is included if x1 + x2 < 0 and sn+1 if xn−1 + xn > c′. For Ẽ6, sn is included if the
value of γ is positive and sn+1 if µ is positive.

Proposition 32. Let (x1, . . . , xn) represent w, in the representations of Proposition 31.

In D̃n, the length of w is given by

#(inversions) + #(xi1 +xi2< 0) +
∑⌊
|xi1−xi2 |
|c′|

⌋
+
∑⌊
|xi1+xi2 |
|c′|

⌋
In Ẽ6, the length of w is given by

#(inversions) + #(xi1 +xi2 +xi3<
1
3

∑
xj) +

∑⌊
|xi1−xi2 |
|c′|

⌋
+
∑⌊
| 13

∑
xj−xi1−xi2−xi3 |
|c′|

⌋
+

+#(
∑
xj<0) +

⌊
|
∑
xj |

|3c′|

⌋
(where #(

∑
xj<0) is either zero or one).

Proof. The formulas evidently count the number of hyperplanes separating e and w, so the
discussion in section 6.5 gives the proof. � �

Remark 33. The algebra involved in the action of sn and sn+1 can be avoided completely by
embedding the groups in S∞, the group of bijections on Z. This program is carried out in section
10, where all affine Coxeter groups will be reconsidered.

8. Representations of Bn, B̃n, C̃n and friends

The finite group Bn: d d d d4 . . . can be represented by signed permutations of (1, . . . , n),
letting sn act by reversing the sign of x1. In this section, we generalize to all groups of typed dd d... ...
1 m n−1

n
p , where Bn is the particular case

dd d d1 2
. . .
n−1

n
4 . Permutational representations

exist in all these cases. Note that all finite Coxeter groups except F4: d d d d4 are of this general
type.

In section 6.6. we saw that the affine groups D̃n and Ẽ6 can be represented by permutations.
Two more classes of affine Coxeter groups can be obtained by adding two extra edges and nodes

to a horizontal path, namely B̃n:
dd d d dd. . .

4 and C̃n:
dd d d dd. . .

4 4 , and these groups can also
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be represented by permutations. The only affine groups not covered are Ãn and F̃4, but they are
the subject of the next section.

8.1. Analysis of possible representations. As before, for any group d dd d... ...
1 m n−1

n
p , we

let s1, . . . , sn−1 act onRn by adjacent transpositions and sn by adding a quantity γ to x1, . . . , xm.
Here γ is a linear expression in the xi, chosen such that the commutation relations involving sn
are maintained. As we saw in section 6.1, the relations (sn)2 = e and snsi = sisn for i 6= m
forces the following expression γ = β(xm+1 + · · ·+ xn)− 2

m(x1 + · · ·+ xm) + c.
Here, β and c must be chosen such that (snsm)p = e. This may seem like a simple exercise,

but is in fact a formidable task, not feasible without computer algebra even for p = 4.
So, it is fortunate that one can avoid all calculation by recasting the permutations into an

edge weighted numbers game (see p 8) on the Coxeter graph. The number on node i is xi−xi+1

and the number on node n is γ. The rules are the usual, that is the played node adds its number
to the neighbours and then reverses the sign of its own number, except for one case: When node
m is played, its number is multiplied by a constant before it is added to node n. The multiplier
is the downwards edge weight. Eriksson ([42], p 31) showed that the value of this constant must
be 4 cos2 πp to produce the Coxeter relation (snsm)p = e.

Example.
d d dd has p = 3, so the edge weight should be 4 cos2 π3 = 1, i.e. unweighted.d dd4 has edge weight 4 cos2 π4 = 2 in the downwards direction. A sample game follows.

0 1

2

i ii s27→ 1 -1

4

i ii s37→ 1 3

-4

i ii s27→ 4 -3

2

i ii s37→ 4 -1

-2

i ii s27→ 3 1

-4

i ii s37→ 3 -3

4

i ii s27→ 0 3

-2

i ii s37→ 0 1

2

i ii
The game illustrates the relation (s2s3)

4 = e.
Returning to the permutations, we must choose β such that playing node m increases the

value γ on node n by 4 cos2 πp times the value (xm−xm+1) on node m. But sm is a transposition
of xm and xm+1, so the value of γ = β(xm+1 + · · · + xn) − 2

m(x1 + · · · + xm) + c increases by
(β + 2

m)(xm − xm+1). The result follows.

Proposition 34. A Coxeter group with graph d dd d... ...
1 m n−1

n
p has a faithful representation

on Rn in which s1, . . . , sn−1 act as transpositions of adjacent components, while sn acts by
adding a certain real number γ to the first m components, x1, . . . , xm, namely

γ = − 2

m

n∑
1

xi + 4 cos2
π

p

n∑
m+1

xj + c ,

where c is an arbitrary constant.

Proof. As in section 6.1, we can usually get rid of the constant c by a translation of the origin to
(d, d, . . .), where d is chosen such that (2n− 4m(n−m) cos2 πp )d = mc. For a few combinations
of p, m and n, this cannot be done, namely when n = 2m(n − m) cos2 πp . All these cases are

affine Coxeter groups. For p = 3, we found Ẽ7 and Ẽ8. For p = 4, we get B̃3:
d d dd4 and for

p = 6, we have G̃2:
d dd6 . These two affine groups will get special treatment in sections 8.3 and

8.4, so for the moment, we can ignore them.
In all other cases, we can apply the linear representation theorem for general Coxeter groups.

As in the proof of Proposition 8, we introduce basis vectors α1 = (1,−1, 0, . . .), α2 = (0, 1,−1, 0, . . .)

etc, αn = (. . . ,−2 cos
π

p
,−2 cos

π

p︸ ︷︷ ︸
m

, 0, . . .), and also a symmetric bilinear form defined by

〈αi, αj〉 = − cos
π

p
if (sisj)

p = e
It is easily checked that all si act as reflections x 7→ x−2〈x, αi〉αi and the theorem is applicable.

� �
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In Proposition 12, we derived a quadratic invariant of the representing vector x, namely
Q(x) = m2

∑
x2i − (m− 2)(

∑
xi)

2 − 2mc
∑
xi. There is a quadratic invariant also in the more

general situation, we just have to look for a second degree symmetric polynomial in the xi, which
stays the same when γ is added to x1, . . . , xm.

Proposition 35. For each representation in Proposition 34, the following quadratic expression
is invariant.

Q(x) = 2m2 cos2
π

p

∑
x2i + (1− 2m cos2

π

p
)(
∑

xi)
2 −mc

∑
xi

The quadric surface Q(x) = const. is bounded (an ellipsoid) if n > 2m(n−m) cos2 πp , otherwise
unbounded. The bounded case occurs for the finite groups An, Bn, Dn, E6, E7, E8, H3, H4 and
I2(p).

Proof. The matrix of the quadratic form is of the following general type
a+ b b b b
b a+ b b b
b b a+ b b
b b b a+ b


where a = 2m2 cos2 πp and b = 1 − 2m cos2 πp . The eigenvalues are λ1 = . . . = λn−1 = a,
λn = a+ nb. Since a is positive, the sign of a+ nb determines positive definiteness. � �

The combinations of m, n and p that satisfy the inequality of Proposition 35 correspond to all
finite Coxeter groups except F4 (which does not have a graph of this kind). Some of these have
already been analyzed in section 6.3 so we can concentrate on the groups with a labelled edge.
The only really new feature is the noncrystallographic groups, H3 and H4, which can have no
integer permutational representation.

Recall that the geometric significance of a positive definite quadratic invariant is that the
orbits are bounded and so contain only finitely many integer points. For H3 and H4, there are
faithful orbits that live in the intersection of the invariant ellipsoid and the dense lattice of points
with co-ordinates in

{
i+ j

√
5 | i, j ∈ Z

}
. Apart from that, everything works the same way as

before.

8.2. Representations of Bn, H3, H4 and I2(p). In these cases, we have m = 1, i.e. the labelled
edge is attached at the end of the horizontal path. We can write γ = −2x1 + (4 cos2 πp − 2)(x2 +

x3+· · · )+c, so the action of sn simplifies to x1 ← −x1+2 cos2πp (x2+x3+· · · )+c. The quadratic
invariant is simplified to Q(x) = x21+x22+· · ·−2 cos2πp (x1x2+x1x3+· · ·+xn−1xn)−c(x1+· · ·+xn)

Proposition 36. For Bn,
dd d d. . .

4 , the orbit of the vector x under the group action defined
in Proposition 34 is faithful if and only if three criteria are fulfilled.

(1) No two xi are equal.
(2) No two xi sum to c.
(3) No xi equals c/2.

For H3,
dd d5 , there are four criteria. The golden ratio 1+

√
5

2 is denoted by α.
(1) No two xi are equal.
(2) No xi satisfies (α+ 1)xi = (α− 1)

∑
xj + c.

(3) No two xi1 , xi2 satisfy xi1 + αxi2 = (α− 1)
∑
xj + c.

(4) No three xi1 , xi2 , xi3 satisfy xi1 + xi2 + (α− 1)xi3 = (α− 1)
∑
xj + c.

For H4,
dd d d5 , the same four criteria and four more apply.

(5) No xi satisfies xi = (2− α)
∑
xj − (α+ 2)c.
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(6) No xi satisfies xi = (3α+ 2)c.
(7) No two xi1 , xi2 satisfy xi1 + xi2 = (α− 1)

∑
xj − 2αc.

(8) No two xi1 , xi2 satisfy xi1 = (α− 1)xi2 + (α+ 1)c.
For I2(p), there are p illegal hyperplanes, namely for k = 1, . . . , p

Hk: x1 cos (k−1)π
p = x2 cos (k+1)π

p + sin(kπ/p)
sinπp

c
2

Proof. As we have seen twice already, the important point is finding the set of reflecting hyper-
planes. In all cases, xi = xi+1 and γ = 0 are the hyperplanes belonging to the simple reflections
si. The other hyperplanes are found by iterated application of the si to the planes already found.
After a few such iterations, the set of planes obtained is invariant under all reflections and is
therefore complete.

Note that Hk = Hk+p and that H0 : x1 = x2, H1 : γ = 0. The hyperplanes transform
according to s1(Hk) = Hp−k and s2(Hp−k) = Hk+2. � �

For simplicity, the remaining results in this section are stated for c = 0 only. As before, we let
α denote the golden ratio.

Proposition 37. The set of values occurring as co-ordinates in the representations can be
expressed in the components ei of the start vector as follows.
Bn : All ±ei. A total of 2n values.
H3 : As for Bn and also ± [αei − (α− 1)

∑
ej ]. In all, 12 values.

H4 : As for H3 and further
± [(α+ 1)ei − (α− 1)

∑
ej ], ± [(α+ 1)ei1 + ei2 −

∑
ej ], ± [αei1 −

∑
ej ]

± [(α+ 1)ei1 + αei2 −
∑
ej ], ± [ei1 − ei2 ], ± [ei1 − αei2 ]. Altogether, 120 values.

I2(p): Only p values, namely vk = sin kϕ
sinϕ e1 −

sin(k−1)ϕ
sinϕ e2, where ϕ = 2π

p .

Proof. For Bn, H3, H4, the proof is exactly as in Proposition 19. For I2(p), we note that vk+p = vk
and that v1 = e1, v2 = e2. The rest is trickonometry. � �

In order to avoid cumbersome formulas, we have stated these results only for the case c = 0.
However, if one wants the general expression, it is not necessary to redo the calculation from the
start. There is a simple way to obtain the missing c-term in these expressions. Set all ei = 1 and
determine c such that γ = 0. Then no other value than 1 can ever occur, so every expression
must be supplemented with a c-term that makes the the total value equal to 1. For example, in
Bn the complete expressions are ei and c−ei, for from γ = −2e1+c = 0 we see that ei = 1, c = 2
should make all expressions equal to 1.

Example. For I2(6), also denoted by G2, we learn from Proposition 36 that (with c = 0)

H0 : x1 = x2, H1 : 2x1 = x2, H2 : x1 = 0, H3 : x1 = −x2, H4 : 0 = x2, H5 : x1 = 2x2.p p p p p p pp p p p p p pp p p p p p pp p p p p p pp p p p p p pp p p p p p pp p p p p p p

r rr rr r

rr rr rr
s1 :

s2 :
-3 -2 -1 321����

����� �

Figure 2. The group G2 represented as points in Z2 and as permutations of six numbers.
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A legal start is e = (2, 3) and then Proposition 37 tells us that six values will occur, namely

vk =
2 sin(kπ/3)− 3 sin((k + 1)π/3)

sin(π/3)
,

i.e. v0 = 3, v1 = 2, v2 = −1, v3 = −3, v4 = −2, v5 = 1. It is indeed easy to construct all twelve
vectors using s2 : x1 ← −x1 + x2 (and the transposition s1).

(2, 3)
s27→ (1, 3)

s17→ (3, 1)
s27→ (−2, 1)

s17→ etc.

A plot of these points reveals the invariant quadric, Q(x) = x21 + x22− x1x2 = 7. The embedding
G2 ⊂ S6 is defined by the combined transpositions effected by s1 and s2 (see figure).

Proposition 38. Simple vectors satisfying the faithfulness criteria are

Bn:
dd d d. . .

4 , e = (1, 2, . . . , n)

H3:
dd d5 , e = (2, 1+α, 2α) , where α = 1+

√
5

2

H4:
dd d d5 , e = (3α, 5, 2+2α, 7−α)

I2(p):
ddp , e = (2 cos πp − 1, 1)

Proof. According to Proposition 36, we only have to check a few criteria. Apart from that, the
vectors have been chosen so as to make sure that the length function in the next proposition is
correct. In other words, e is chosen as the element of minimal length. �

Conjecture 39. The representations of H3 and H4 involve exactly those (x1, . . . , xn) with
components in {i + jα | i, j ∈ Z} that satisfy the inequalities of Proposition 36 and give the
quadratic form in Proposition 35 the same value as the e-vector does.

Proposition 40. Let (x1, . . . , xn) represent a group element w, with e-vector as in Prop. 38.
In Bn, the length of w is given by l(w) = #(inversions) + #(xi < 0) + #(xi1 + xi2 < 0) .

In H3, the formula is l(w) = #(inversions) + #((α+ 1)xi < (α− 1)
∑
xj) +

+ #(xi1 + αxi2 < (α− 1)
∑
xj) + #(xi1 + xi2 + (α− 1)xi3 < (α− 1)

∑
xj) .

For H4, the expression contains four more terms, l(w) = . . .+ #(αxi < (α− 1)
∑
xj) +

+ #(xi < 0) + #(xi1 + xi2 < (α− 1)
∑
xj) + #(xi1 < (α− 1)xi2) .

For I2(p), we have l(w) = #(x1 cos (k−1)π
p < x2 cos (k+1)π

p ) .

Proof. In all cases, l(w) is the number of hyperplanes separating w from e. � �

Remark 41. The length formula for Bn has an elegant alternative form, due to Brenti [16],
namely

l(w) = #(inversions) −
∑
xi<0

xi .

8.3. A special study of G̃2. One of the infinite groups with an extra labelled edge merits a

separate treatment, and that is the affine group G̃2

d dd6 . We start by specializing the results
of section 8.1 to the case m = 1, p = 6.

Proposition 42. The faithful representation on R3 of the affine Coxeter group G̃2 (in which
s1 : x1 ↔ x2 and s2 : x2 ↔ x3 transpose co-ordinates and s3 : x1 ← −x1 + x2 + x3 + c changes
the first co-ordinate) has the following properties.

• The quadratic expression Q(x) = x21 + x22 + x23 − (x1x2 + x1x3 + x2x3)− c(x1 + x2 + x3)

is invariant under the action of G̃2.
• The quadric surface Q(x) = const. is paraboloidal if c 6= 0 and cylindrical if c = 0.
• The orbit of the vector x is faithful if and only if for i 6= j
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(1) xi 6≡ xj (mod |c|).
(2) xi 6≡ 1

3(
∑
xj + c) (mod |c|).

If c = 0, congruence is to be interpreted as equality.
• The set of component values occurring in the orbit is{

(1− j − k)e1 + je2 + ke3 + (j2 + jk + k2 − j − k)c | j, k ∈ Z
}
,

where ei are the components of the start vector.
• A simple legal e-vector is (2, 3, 4) with c =−6 or alternatively (0, 1, 3) with c = 0.
• For an increasing e-vector and c 6= 0, the length function is

#(inversions) + #
(
xi<

1
3(
∑
xj + c)

)
+
∑⌊
|xi1−xi2 |
|c|

⌋
+
∑⌊
| 13 (

∑
xj+c)−xi|
|c|

⌋
• For e = (0, 1, 3) and c = 0, the orbit consists of the intersection of the integer lattice and
the elliptic cylinder Q(x) = x21 + x22 + x23 − (x1x2 + x1x3 + x2x3) = 7

Proof. Apply the same methods as in the last section! The equation of the cylinder may be
written (x1 − x3)2 + (x2 − x3)2 + (x1 − x3)(x2 − x3) = 7, so all horizontal cross–sections look
like the G2–invariant ellipse in figure 2, but with center (x3, x3). Therefore, the last statement
is evident. � �

The expression for the component values occurring in an orbit is valid regardless of whether the
ei are integers. Using this expression, one can describe the orbit even more explicitly and in the
noninteger case too.

Proposition 43. The orbit of (e1, e2, e3) under the G̃2–action of the previous proposition con-
sists of all vectors (x1, x2, x3) such that {x1, x2, x3} = {Vj,k, Vj+1,k, Vj,k+1} or {x1, x2, x3} =
{Vj,k, Vj−1,k, Vj,k−1} for some j, k ∈ Z, where Vj,k = (1−j−k)e1+je2+ke3+(j2+jk+k2−j−k)c.

Proof. One can check that s1, s2 and s3 transform a vector of either type into a vector of the
other type. The vector e itself is of the first type, with j = k = 0. �

Remark 44. If one could choose integers e1, e2, e3 and c such that the values Vj,k were all
different, then the last two propositions would define an embedding of G̃2 into S∞, the autobi-
jection group of Z. Unfortunately, this is not possible, as Vj,−k = V−j,k if j = c + e1 − e3 and
k = c+ e1 − e2.

8.4. Two extra edges, B̃n, C̃n and D̃n. Let us consider groups of type d dd dd d··· ······
1 m n−m′ n−1

p p′ ,
acting on Rn as in the previous section, but with the new generator sn+1 adding a quantity γ′
to the last m′ components. It is clear that, in analogy with γ, we must have

γ′ = − 2

m′

n∑
1

xi + 4 cos2(
π

p′
)
n−m′∑

1

xj + c′ .

Now, it is easy to check that sn and sn+1 commute only if 2
m = 4 cos2(πp ) and 2

m′ = 4 cos2( πp′ ).
After testing some combinations of m and p, we find that there are only two possibilities, namely
m = 1, p = 4 and m = 2, p = 3, so permutational representations exist only for Coxeter graphs

starting like
dd d ···4 or
d dd ··· and ending like

ddd··· 4 or
ddd··· . The conclusion is that the

affine groups B̃n, C̃n and D̃n are all we get. The analysis of D̃n in section 7 applies to B̃n and
C̃n with small changes, so we can state the following results.

Proposition 45. The Coxeter groups B̃n and C̃n have faithful representations as groups of affine
transformations on Rn in which s1, . . . , sn−1 act as transpositions of adjacent components while
sn and sn+1 act in the following way.

B̃n: (x1, x2, . . .)
sn7→ (c− x1, x2, . . .) and (. . . , xn−1, xn)

sn+17→ (. . . , c′ − xn, c′ − xn−1)
C̃n: (x1, x2, . . .)

sn7→ (c− x1, x2, . . .) and (. . . , xn−1, xn)
sn+17→ (. . . , xn−1, c

′ − xn).
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Here c 6= c′ are otherwise arbitrary constants.

Proof. The group generated by the si has two affine reflections, sn and sn+1, but we can always
make sn linear by a co-ordinate translation (x′1, x

′
2, . . .) = (x1− c

2 , x2−
c
2 , . . .). Then s1, . . . , sn are

orthogonal linear reflections while sn+1 is an orthogonal affine reflection. But the analysis of affine
reflecion groups in Humphreys, [56] p 95, makes it clear that we have a faithful representation
of an affine Coxeter group. � �

For simplicity, the following results are stated only for the case c = 0, c′ 6= 0. The general case
can be obtained by adding c

2 to all xi in the formulas.

Proposition 46. For B̃n, the orbit of the vector x under the group action defined in Proposition
45 is faithful if and only if for any two components, xi 6≡ ±xj (mod |c′|) and further xi 6≡ 0 (mod
|c′|). For C̃n, the last condition is modified to 2xi 6≡ 0 (mod |c′|).

Proposition 47. The simplest permutational representations are given by
B̃n: e = (1, 2, . . . , n), c = 0, c′ = 2n.
C̃n: e = (1, 2, . . . , n), c = 0, c′ = 2n+ 1.

The descent set corresponding to a vector x includes all si such that xi > xi+1 and it includes
sn if x1 < 0. For B̃n, sn+1 is in the descent set if xn−1 + xn > c′, but for C̃n, sn+1 is included if
xn > c′.

Proposition 48. Let (x1, . . . , xn) represent w, in the representations of Proposition 47.

In B̃n, the length of w is given by

l(w) = #(inversions) + #(xi1 +xi2< 0) + #(xi< 0) +
∑⌊
|xi1−xi2 |
|c′|

⌋
+
∑⌊
|xi1+xi2 |
|c′|

⌋
+
∑⌊

|xi|
|c′|

⌋
For C̃n, the last term is modified to . . .+

∑⌊
|2xi|
|c′|

⌋
.

Proof. The formulas evidently count the number of hyperplanes separating e and w, so the
discussion in section 6.5 gives the proof. � �

Remark 49. The e-vectors in Proposition 47 may be simplest possible, but the most pleasing
representation for B̃n and C̃n is the mirror model, mentioned in the introduction and developed
in section 10.

9. Representations of F4, F̃4, Ãn and friends

The finite group F4: d d d d4 and the infinite group F̃4: d d d d d4 are different from the
Coxeter groups considered earlier in this paper. They cannot be constructed from an Sn-path
by adding an edge or two. Rather, they consist of a pair of paths connected by a four–edge.
Still, it is possible to represent F4 on R5 by letting s1, s3 and s4 be adjacent transpositions,
while s2 : (x1, x2, y1, y2, y3) 7→ (x1+x2−y1, x2, 2x2−y1, y2, y3). With e = (7, 8, 9, 10, 11) one
gets a faithful representation as vectors in Z5, where the element of greatest length is wo =
(−7,−8,−9,−10,−11).

The construction can be generalized to all Coxeter graphs obtained by connecting two paths
by a marked edge. Integer representations exist in the crystallographic cases, i.e. when the
connecting edge is marked four or six.

The permutations of Sn and the representing vectors of F4, F̃4 etc have a common feature,
namely a linear invariant. Just as for all permutations in Sn the sum

∑
xi is invariant, for

all (x1, x2, y1, y2, y3) in the F4–representation the linear expression 2x1 + 2x2 − y1 − y2 − y3 is
invariant. As these vectors are restricted to some hyperplane, they are really representations in
degree one less. It turns out that this slimmed–down representation is affine for F̃4 and linear
for the other groups considered.
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Alternatively, one can use the superfluous dimension to represent an extra node and edge, just
as we have done for Sn–paths in previous sections. In this way, permutational representations

are obtained for groups like d dd d d d4 . In a few cases, namely for the affine groups, we were
able to add two edges to a path and still get a permutational representation. As might be
expected, this scheme never works for F–paths. But there is another feasible way of adding two

edges to an ordinary path, namely the last affine group Ãn−1: d dd d···�� @@

1 2 n−1
. It can be represented

in Zn, with s1, . . . , sn−1 transposing adjacent components and with the extra generator sn :
(x1, x2, . . . , xn) 7→ (xn−c, x2, . . . , xn−1, x1+c). The simplest choice is e = (1, 2, . . . , n) and c = n.

9.1. Possible representations of F–type groups. Let us call a group with Coxeter graphd d d d··· ···41 m m+1 n , an F–type group. The generators act on vectors (x1, . . . , xm, y1, . . . , yn−m+1)
in the following way. We let s1, . . . , sm−1 be adjacent transpositions of (x1, . . . , xm) and sm+1, . . .
be adjacent transpositions of (y1, . . .). What is the appropriate linear or affine transformation
corresponding to sm? In full generality, we can put

sm :

(
x
y

)
7→ Sm

(
x
y

)
+

(
u
v

)
, for some n×n-matrix Sm and some constant vector

(
u
v

)
.

The relation s2m = e means an identity S2
m

(
x
y

)
+ Sm

(
u
v

)
+

(
u
v

)
≡
(
x
y

)
, that is

S2
m = I and Sm

(
u
v

)
= −

(
u
v

)
. Other relations are (SmSm−1)

3 = I, (SmSm+1)
4 = I and

SmSi = SiSm for all other i. Using computer algebra (Maple V) and hours and hours of computer
time, one finds the following unique class of solutions:
(x1, . . . , xm−1, xm, y1, y2, y3, . . .)

sm7→ (x1 +aγ, . . . , xm−1 +aγ, xm−bγ, y1 +2(a2−b2)γ, y2, y3, . . .) ,
where γ = 1

a2−b2 (axm + b(x1 + · · · + xm−1) + c− y1) and a, b, c are constants, with a2 − b2 6= 0
but otherwise arbitrary. If we choose the simplest possible parameter values a = 1, b = c = 0,
the action can be described in words as follows.

sm adds (xm − y1) to x1, . . . , xm−1 and 2(xm − y1) to y1.

Before the computer era, we would probably have obtained the same result in a few seconds!

The numbers game modelling the group has an edge weight 2 on d d-m m+1 , like on page 8.
The numbers on the nodes are to be the differences, x1 − x2 etc; in particular, the three nodesd d dm m+1 m+2 , carry the values (xm−1 − xm), (xm − y1) and (y1 − y2) respectively. After firing
the middle node, we get (xm−1−y1), (−xm+y1) and (2xm−y1−y2) and these differences belong
to a permutation vector (. . . , xm−1 + (xm − y1), xm, y1 + 2(xm − y1), y2, y3, . . .). Q.E.D.

The possibility of a constant c in the γ-expression is unessential, for a translation of the
origin (x′1, x

′
2, . . .) = (x1−c, . . . , xm−c, y1, y2, . . .) makes away with c. Note, however, that we

have a representation of F4 in R5, that is, in one dimension too many. The explanation is
the existence of a linear invariant

∑
yj − 2

m−1
∑
xi. Transpositions within the xi or the yj

do not alter the value, nor does the sm-action, for
∑
yj increases by 2γ and

∑
xi increases by

(m − 1)γ. A representation in one degree less is obtained by leaving out the last co-ordinate,
but not until after making a mental note of the invariant value, let us call it c. Then, we can
always reconstruct the lost co-ordinate if need be — and there be need whenever sn-action shall
be taken! The old sn-action replaced yn−m by yn−m+1, so the new action replaces yn−m by
c+ 2

m−1
∑
xi − (y1 + · · ·+ yn−m).

As so many times before, we can try to get rid of this new constant c too, by translating the
origin as (x′1, . . . , y

′
1, . . .) = (x1−d, . . . , y1−d, . . .), and that works if d = c/(n −m − 1 − 2

m−1).

It fails only when the denominator happens to be zero and that is for d d d d d4 and ford d d d d4 , two renderings of the affine group F̃4.
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For all other cases, we now have a linear reflection representation in Rn and with the following
basis vectors, we can again use the standard geometric representation on page 6. (We use ‖ to
separate x from y.)

α1 = (1,−1, 0, . . .)
α2 = (0, 1,−1, 0, . . .)
...

αm−1 = (. . . , 0, 1,−1 ‖ 0, . . .)
αm = (−1, . . . ,−1, 0 ‖ −2, 0, . . .)

αm+1 = (. . . , 0 ‖
√

2,−
√

2, . . .)
αm+2 = (. . . , 0 ‖ 0,

√
2,−
√

2, . . .)
...

αn−1 = (. . . ,
√

2,−
√

2)
αn = (. . . , 0,

√
2)

With the symmetric bilinear form defined by
〈αi, αj〉 = − cos

π

p
if (sisj)

p = e ,

it is easily checked that all si act as reflections x 7→ x−2〈x, αi〉αi and the theorem is applicable.

Proposition 50. The Coxeter groups of F -type d d d d··· ···41 m m+1 n (assuming 1<m< n)
have faithful representations as groups of affine transformations on Rm ×Rn−m = {(x, y)}, in
which s1, . . . , sm−1 and sm+1, . . . , sn−1 act as transpositions of adjacent components, sm acts by
adding (xm− y1) to the first m− 1 components in Rm and 2(xm− y1) to the first component in
Rn−m and sn replaces the last component in Rn−m by c+ 2

m−1
∑
xi − (y1 + · · ·+ yn−m). Here

c is an arbitrary constant.

Proof. The only case remaining to be proved is F̃4 when the constant c is nonzero. Here, no
translation (x′1, x

′
2, y
′
1, y
′
2, y
′
3) = (x1−d, x2−d, y1−d, y2−d, y3−d) will make s5 linear, at least not with

a constant d. But with d = c+2x1+2x2−y1−y2−y3, the group action on (x′, y′) becomes linear.
As can be seen, the new components satisfy c+ 2x′1 + 2x′2 − y′1 − y′2 − y′3 = 0, and we are in fact
dealing with a projection onto that hyperplane. The d-expression is invariant under s1, s2, s3, s4,
so these actions are compatible (i.e. commute) with the projection, but the s5-action is more
complicated. Straightforward calculation shows that s5 is linear, namely (x′1, x

′
2, y
′
1, y
′
2, y
′
3)

s57→
(x′1 − y′3, x′2 − y′3, y′1 − y′3, y′2 − y′3,−y′3). Now, the linear representation theorem can be invoked
again, with the basis vectors

α1 = (1,−1, 0, 0, 0)
α2 = (−1, 0,−2, 0, 0)
α3 = (0, 0,

√
2,−
√

2, 0)
α4 = (0, 0, 0,

√
2,−
√

2)
α5 = (

√
2,
√

2,
√

2,
√

2, 2
√

2)

for one can check that all si act as reflections x 7→ x − 2〈x, αi〉αi. And a representation that
becomes faithful after projection must have been even more so before! � �

This slimmed-down representation is not a favourite of ours. We prefer to have sn act as a
transposition, even if that requires an extra component. The main reason for our analysis of the
slim version is its usefulness in the proof of the next proposition.

Proposition 51. A Coxeter group of F -type d d d d··· ···41 m m+1 n has a faithful representation
on Rn+1 in which s1, . . . , sm−1 and sm+1, . . . , sn act as transpositions of adjacent components
while sm acts by adding (xm − xm+1) to the first m − 1 components and 2(xm − xm+1) to
component m+1.

Proof. There is a forgetful mapping onto the slim representation, and since the slim one is faithful,
so is the fat one. � �

34



The statement about the quadratic invariant takes a slightly different form, now that there is
an extra dimension.

Proposition 52. For the (n+1)-dimensional representation in Proposition 51, the following
quadratic expression

Q = 2
∑

x2i −
2

m−1

(∑
xi

)2
+
∑

y2j

is invariant, as is the linear expression

c = y1 + · · ·+ yn−m+1 −
2

m−1

∑
xi .

By eliminating yn−m+1 between these equations, one obtains a quadratic invariant for the n-
dimensional representations of proposition 50.

In both cases, the relevant quadric surface is the intersection of the plane with Q = const . It
is bounded (an ellipsoid) if n < m + 1 + 2

m−1 , otherwise unbounded. The bounded case occurs
for the finite groups F4, B3 and B4. For the affine group F̃4, the surface is a cylinder.

Proof. One checks that Q is left invariant by sm, and then the invariance claim is established.
After elimination of yn−m+1, the quadratic form gets more complicated, but it is still possible to
find its eigenvalues. The eigenvalue λ = 2 has multiplicity m−1, λ = 1 has multiplicity n−m−1,
and then there are two more eigenvalues, namely the roots of the equation

λ2 − 2λ

(
m+ 1

(m− 1)2
+
n−m+ 1

2

)
+

2

m− 1

(
m+ 1− n+

2

m− 1

)
= 0 .

All eigenvalues are positive if the constant term is positive, that is if n < m + 1 + 2
m−1 . For

m = 2, we get n = 3 or n = 4, for m = 3, we get n = 4 and no other solutions exist.
The positive semidefinite case with a zero eigenvalue occurs when n = m + 1 + 2

m−1 , which
means n = 5 and m = 2 or m = 3. � �

The only groups of F–type, worthy of closer study, are F4 and F̃4, so these will be our next
theme.

9.2. Representations of F4 and F̃4. We are using the fat permutational representation, where
F4-vectors are (x1, x2, y1, y2, y3) and F̃4-vectors are (x1, x2, y1, y2, y3, y4). The action of s2 adds
(x2 − y1) to the x1-component and twice as much to the y1-component. For F4, we can assume
that the invariant value c = −2x1 − 2x2 +

∑
yj is zero, for a translation of the origin will make

c vanish, except in the affine case.

Proposition 53. For F4, d d d d4 , the orbit of the vector (x1, x2, y1, y2, y3) under the group
action defined in Proposition 51 is faithful if and only if four criteria are fulfilled.

(1) No two components are equal.
(2) No component is zero.
(3) No yj equals x1 + x2.
(4) No yj equals 2xi for any xi.

For F̃4: d d d d d4 , the criteria for faithfulness must be stated as congruences modulo the
invariant c = −2x1−2x2 +y1 +y2 +y3 +y4. If c = 0, congruence is to be interpreted as ordinary
equality.

(1) No two components are congruent modulo |c|.
(2) No two yj1 , yj2 satisfy yj1 + yj2 ≡ x1 + x2 (mod |c|).
(3) No two yj1 , yj2 satisfy yj1 + yj2 ≡ 2xi (mod |c|), for any xi.
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Proof. Finding the set of reflecting hyperplanes presents no complications. In both cases, x1 =
x2, x2 = y1 and yj = yj+1 are the hyperplanes belonging to the simple reflections si. The other
hyperplanes are found by iterated application of the si to the planes already found. After a few
such iterations with F4, we get this set of twentyfour planes through the origin, invariant under
all reflections and therefore complete.

In the affine case with c 6= 0, we first get thirty-three hyperplanes through the origin and then
their translations by an arbitrary multiple of c. As an example, the plane y1 = y4 is transformed
by s2 into y1 + y4 = 2x2, that plane is transformed by s1s3s5 into y2 + y3 = 2x1 and that plane
is transformed by s2 into y1 = y4 − c. � �

The dual procedure of enumerating the component values, considered as linear expressions in
the components of the e-vector, is equally simple. The resulting total of 48 values is less than
thrilling, for that is also the number of roots in F4 (see table in in Humphreys, [56] p 44). Any
finite Coxeter group is a permutation group on its set of roots, so our representation did not
produce a more effective embedding in the symmetric group.

Proposition 54. The set of values occurring as co-ordinates in the F4-representation can be
expressed in the components ei of the start vector as follows.

All twenty ±(ei − ej).
All ten ±ei.
All six ±(e1 + e2 − ej), with j ≥ 3.
All twelve ±(2ei − ej), with i ≤ 2, j ≥ 3.
A total of 48 values.

Proof. Exactly as in the proof of Proposition 19. � �

Note that the number of numerically different component values in a faithful F4-orbit can be
less than forty-eight. In fact, the e-vector recommended below produces twenty-two different
values only.

Proposition 55. Simple vectors satisfying the faithfulness criteria are

F4: d d d d4 , e = (7, 8, 9, 10, 11)

F̃4: d d d d d4 , e = (1, 2, 3, 4, 5, 6)

Proof. We only have to check a few criteria, namely those appearing in proposition 53. � �

Conjecture 56. These representations of F4 and F̃4 involve exactly those integer vectors that
satisfy the inequalities of Proposition 53 and give the quadratic form and the linear invariant in
Proposition 52 the same value as the e-vector does.

The computer has been good enough to verify the conjecture for the finite group. Using the
periodic structure of the orbit in the affine case, one can prove or disprove the statement for the
affine group by a finite computer effort, but this remains to be done.

9.3. The length function for F4 and F̃4. Recall that the descent set D(w) of a group element
w consists of those generators s that shorten w. If the e-vector is chosen appropriately, the
descent set will be directly visible in the w-vector.

Proposition 57. For an F -type Coxeter group d d d d··· ···41 m m+1 n , represented as in Propo-
sition 51 with increasing e-vector, the descent set corresponding to a vector z consists of all si
such that zi > zi+1.

Proof. In a numbers game starting with negative values on all nodes, the descent set consists
of the nodes that carry positive numbers. The node numbers in our representations are the
differences zi > zi+1. � �
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For wo ∈ F4, the descent set consists of all si, so the vector representing wo must be decreasing.
In Proposition 54, we found that the component values come in ±pairs if c = 0, so in that case,
wo will correspond to −e. The general case is almost as simple.

Proposition 58. If the identity in F4 is represented by the vector (e1, e2, e3, e4, e5), then the
element of maximal length will be (−e1−2c, . . . ,−e5−2c), where c = −2e1 − 2e2 + e3 + e4 + e5.

Proof. A translation (z′1, . . . , z
′
5) = (z1 + c, . . . , z5 + c) will make the new c′ = 0, and since

w′o = (−e′1, . . . ,−e′5) = (−e1−c, . . . ,−e5−c), we obtain wo = (−e1−2c, . . . ,−e5−2c). � �

According to the table in Humphreys, l(wo) = 24 in F4 and we can check that result with the
following length formula.

Proposition 59. Let (x1, x2, y1, y2, . . .) = (z1, z2, z3, z4, . . .) represent a group element w and
assume that the e-vector has been chosen with increasing components.
In F4, the length of w is given by

l(w) = #(inversions) + #(zi< 0) + #(x1+x2< yj) + #(2xi< yj) .

In F̃4, the length of w is given by

l(w) = #(inversions) +
∑⌊
|zi1−zi2 |

c

⌋
+
∑

+

⌈
x1+x2−yj1−yj2

c

⌉
+
∑

+

⌈
2xi−yj1−yj2

c

⌉
,

where
∑

+ denotes summation of all positive terms.

Proof. The F4-formula evidently counts the number of hyperplanes separating e and w, as de-
scribed in Proposition 53, so the discussion in section 6.5 gives the proof. The reason for summing
positive terms only in the F̃4-formula is the following. The plane x1 + x2 − y1 − y2 = 3c is the
same as x1 + x2 − y3 − y4 = −4c. By neglecting the negative terms, we take each plane into
account only once. � �

9.4. Other edge labels or extra edges. The analysis of F -type Coxeter graphs carries over

with little effort to d d d d··· ···p1 m m+1 n , with p > 4. The numbers game modelling the

group has an edge weight 4 cos2 πp on d d-m m+1 , as explained on page 8. The numbers on

the nodes are the differences, x1 − x2 etc, so the three nodes d d dm m+1 m+2 , carry the values
(xm−1−xm), (xm−y1) and (y1−y2) respectively. After firing the middle node, we get (xm−1−y1),
(−xm + y1) and y1− y2 + 4 cos2 πp (xm− y1) and these differences belong to a permutation vector
(. . . , xm−1+γ, y1+γ, y1+λ, y2, y3, . . .), where γ = (4 cos2 πp−1)(xm−y1) and λ = 4 cos2 πp (xm−y1)

Two special cases may be worth noting. When p = 6, the sm-action simplifies to
(. . . , xm−1, xm, y1, y2, . . .)

sm7→ (. . . , xm−1 + 2(xm − y1), y1 + 2(xm − y1), y1 + 3(xm − y1), y2, . . .) ,
and when p =∞ it becomes
(. . . , xm−1, xm, y1, y2, . . .)

sm7→ (. . . , xm−1 + 3(xm − y1), y1 + 3(xm − y1), y1 + 4(xm − y1), y2, . . .) .
These are the only cases where orbits can have all integer components.

Proposition 60. All Coxeter groups of type d d d d··· ···41 m m+1 n have faithful representations
on Rn+1 in which s1, . . . , sm−1 and sm+1, . . . , sn act as transpositions of adjacent components
while sm acts by adding β(xm−xm+1) to the first m−1 components, (β−1)(xm−xm+1) to the
mth component and (β + 1)(xm − xm+1) to component m+1. Here, β = (4 cos2 πp − 1) is integer

only in the crystallographic cases p 3 4 6 ∞
β 0 1 2 3

.

The following quadratic expression

Q = (β + 1)
∑

x2i −
β(β + 1)

mβ−1

(∑
xi

)2
+
∑

y2j
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is invariant, as is the linear expression

c = y1 + · · ·+ yn−m+1 −
β + 1

mβ−1

∑
xi .

Proof. A straightforward generalization of the F -type propositions 51 and 52, but without the
affine complication. � �

Example. The hyperbolic group with graph d d d d6 has an integer representation with
e = (0, 1, 2, 3, 4) and

(x1, x2, y1, y2, y3)
s27→ (x1 + 2(x2 − y1), x2 + (x2 − y1), y1 + 3(x2 − y1), y2, y3) .

The quadratic invariant is
3
∑

x2i − 2
(∑

xi

)2
+
∑

y2j = 14 ,

and the linear invariant
y1 + y2 + y3 − x1 − x2 = 8 .

The eigenvalues of the quadratic form are −1, 1, 1, 1, 3, so the orbit lives on a hyperboloid surface.

The parabolic subgroup isomorphic to G̃2, d d d6 , keeps 2x2 − x1 = 2 fixed, and because of
the linear invariant, we can compute y1+3(x2−y1) = −y1+y2+y3−6. So we get a representation
of G̃2 using vectors (y1, y2, y3), with e = (2, 3, 4) and, in fact, exactly the representation studied
in section 8.3.

The existence of a linear invariant can be used to slim down the representation by erasing the
last component, as we have seen before. Or, we can keep the fat vector and add an extra node

and edge, as in d d d dd d··· ··· ···p

p′
with no change in the representation. Of course, the

action of the extra generator sn+1 must be as described in Proposition 34, but mirrored. That
is, the quantity −γ is added to the numbers to the right of the vertical edge.

The possibility of two vertical edges with two new nodes was investigated in section 8.4 and it
was shown that the affine groups are the only instances. As might be expected, no new instances
exist with the present, more general kind of graph. But there is always the possibility of adding

two edges and one new node, such as d d ddd d d··· ··· ···�� @@

1 m n−m′ n−1
. The action of the new node adds

a quantity γ to the first m components and subtracts the same quantity γ from the last m′
components. It takes no great effort to generalize the formula in section 6.1 to

γ =
m+m′−2

m+m′

n∑
1

xi −
m∑
1

xi +
m‘∑
1

xn−i − c .

The only group of this type worthy of any deeper study is of course Ãn−1.

9.5. A special study of Ãn−1. We are back at the starting point, the representation of the
symmetric group Sn = An−1 by permutations of (1, . . . , n). Obviously, An−1 is a subgroup of

Ãn−1: d dd d···�� @@

1 2 n−1

n

, and, as always, we look for an extension of the permutation representation to

this infinite group. We just found a linear representation on Rn, and it turns out that the set of
permutations of (1, . . . , n) is part of an orbit, that models Ãn−1 faithfully.

In this case, we do not even bother to give legality criteria for other e-vectors than (1, . . . , n).
Nor do we consider any other c-value than c = n.

Proposition 61. The group Ãn−1 can be represented as the set of integer vectors (x1, . . . , xn)
satisfying

• x1 + · · ·+ xn = n(n+1)/2 .
• No two xi are congruent modulo n.
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The generators s1, . . . , sn−1 act as transpositions of adjacent components and the last generator
as sn : (x1, x2, . . . , xn) 7→ (xn−n, x2, . . . , xn−1, x1+n). If the identity element is represented by
the vector e = (1, . . . , n), the length of the element w = (x1, . . . , xn) is given by

l(w) = #(inversions) +
∑⌊

|xi1−xi2 |
n

⌋
.

The descent set D(w) contains si if xi > xi+1 and sn if xn > x1 + n.

Proof. The faithfulness of the representation is immediate from the fact that the corresponding
numbers game starts with −1 on each node.

Both criteria are true for (1, . . . , n) and are invariant under the si. Now, assume that there
are vectors satisfying the criteria, but not appearing in the representation. Among such vectors,
select those with minimal span, i.e. minimal (maxxi−minxi) and choose one such nondecreasing
vector x = (x1, . . . , xn). We claim that the span (xn − x1) is exactly n−1. It cannot be less,
for it must accommodate n different congruence classes modulo n. And it cannot be more, for
then x′ = (xn − n, x2, . . . , xn−1, x1 + n) would have a smaller span, and therefore both x′ and
x = sn(x′) belong to the representation. So x = (k + 1, . . . , k + n), and the first criterion forces
k = 0. But x = e certainly belongs to the representation, so the contradiction completes the
proof.

The length function counts the number of separating hyperplanes, and using our usual methods
we can establish that all these are given by xi ≡ xj(mod n). The descent set follows from the
numbers game. � �

This representation is also known from the work of Lusztig, see comment after Prop. 63. The
length formula appears in Shi [70]. A forthcoming book [10] by A.Björner and F.Brenti has a
more elegant one-term version of the length formula, namely

l(w) =
∑

1≤i<j≤n

∣∣∣∣⌊xi−xjn

⌋∣∣∣∣ .

10. The affine groups as infinite permutations

A permutation representation of a finite group G is an embedding G ⊆ Sn. By Cayley’s
theorem, such an embedding always exists with n equal to |G|. We have been using the term
permutational representation when one generator has a linear action which is not a permutation.

In order to convert our permutational representations to permutation representations proper,
we have computed the values appearing as vector components and described them as linear
expressions in the start numbers ej . Every group element (x1, . . . , xn) has a natural action as
a permutation of this set of expressions, namely that given by

∑
λiei 7→

∑
λixi, for each xi is

also such a linear expression in the ej .
In Bn, the set of values is {±ei} and the group element (x1, . . . , xn) permutes them like

±ei 7→ ±xi. (Of course, every xi is of the type ±ej .)
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The algorithm used to find the set of values was described on page 19. It is only a special
case of a general method of finding a permutation representation of a matrix group W , namely
the following procedure. Let {u1, . . . , un} be a basis for Rn and let U = {Aui | A ∈ W}.
Evidently, W is now represented as permutations of U , and the representation is faithful, since
the ui span Rn. In general, U is an infinite set, and we should speak about bijections rather
than permutations.

There is of course a dual procedure using row vectors (or transposed matrices) and our set of
values algorithm is of that kind. Another variation is the use of an affine representation instead
of a linear one. The linear expressions in the ei acquire a constant term, but that is the only
modification necessary.

If integer values are given to e1, . . . , en, such that all our different expressions take different
integer values, then the group elements act as bijections of Z. One can also express this situation
as an embedding into S∞, the countably infinite symmetric group. The theme of this section is
to try and find such embeddings for the affine groups.

The natural choice, e = (1, . . . , n), does indeed supply such an embedding Ãn−1 ⊆ S∞. The
permutational vector (x1, . . . , xn) is extended infinitely in both directions by the simple formula
xi+n = xi + n. Conversely, every such n-translative infinite permutation with (x1 + · · ·+ xn) =
n(n+1)/2 belongs to the representation.

Proposition 62. In the defined embedding of Ãn−1 into S∞, an infinite permutation vector
(. . . , x−1, x0, x1, . . .) ∈ S∞ represents an element in Ãn−1, if two conditions are satisfied

(1) xi+n = xi + n for all i
(2) x1 + · · ·+ xn = n(n+1)/2

Proof. A consequence of Proposition 61. Note that a vector may satisfy both conditions without
being a permutation! The criterion for that is that the numbers x1, . . . , xn belong to different
congruence classes modulo n. � �

A simple reflection si maps onto a permutation of order two, that is with fixed points and
two-cycles only. Such a permutation is conveniently illustrated as in the figures below. For Ãn,
the structure is periodic with period n, for the two-cycles of si are of the form (i+kn, i+1+kn).

A natural mechanical model for this structure is a pile of n rulers, each with a protruding
pin at every nth mark. The pinheads are round and so large that when a ruler is put on top of
another, the pins must occupy different positions. In the complete ruler pile, the only movement
possible is switching two neighbour pins by sliding their rulers one unit relative to the pile. The
pinheads of ruler 1 are marked . . . , 1−2n, 1−n, 1, 1+n, 1+2n, . . . etc, so a consecutive sequence of n
pinhead numbers has got all congruence classes modulo n in it. Only one such sequence has the
sum n(n+1)/2, and that is the permutational vector.

Before we move on to the B̃-, C̃- and D̃-type groups, let us consider the corresponding finite
Coxeter groups as permutations of the set of integers [−n, . . . , n]. The symmetric group action
can be envisioned as a mirror at x = 0 and therefore, the ordinary transposition by s3 has a
mirror action on the negative side. The figure also shows the two different actions of the special
node sn.

-14131211109876543210-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 
	 
	 
	
	 
	
	
Figure 3. The action of s1 ∈ Ã4 as transpositions on Z.
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Figure 4. The actions of s3 and s4 in B4 and D4

The corresponding affine groups have an extra node, sn+1 and in the previous sections, we
have established that its action must be

(. . . , xn−1, xn)
sn+17→

{
(. . . , c′ − xn, c′ − xn−1) for B̃n and D̃n

(. . . , xn−1, c
′ − xn) for C̃n

.

The value c′ = 2n + 2 can be used in all cases and has a direct optical significance: a second
mirror is erected at x = n+ 1.

We get embeddings into S∞ by extending the permutational vector (x1, . . . , xn) infinitely in
both directions by the mirror formulas

x−i = −xi ,
x2n+2−i = 2n+2− xi .

Note that as a consequence of these two mirror relations, the (2n+ 2)-translative property
x2n+2+i = 2n+2 + xi holds!
It is now possible to characterize the elements of S∞ that belong to these representations.

Proposition 63. An infinite permutation vector (. . . , x−1, x0, x1, . . .) ∈ S∞ represents an ele-
ment in the defined embeddings of B̃n, C̃n, D̃n into S∞, if two conditions are satisfied (three for
B̃n and D̃n), namely

(1) x−i = −xi for all i.
(2) x2n+2−i = 2n+2− xi for all i.
(3) Among x1, . . . , xn, an even number have odd

⌊
xi

2n+2

⌋
. (B̃n only)

(4) Among x1, . . . , xn, an even number have odd
⌊
xi
n+1

⌋
. (D̃n only)

Proof. Exactly as in the Ãn-case, we first check that the conditions are invariant, then assume
that there are vectors outside the representation and satisfying the conditions, select such a
vector with minimal (x1, . . . , xn)-span and derive a contradiction. � �

Remark 64. It is clear that B̃n is C̃n-like at one end and D̃n-like at the other. Depending on
which end goes to 0 and which goes to n+1, we get different representations. The reader should
have no difficulty in finding big-endian versions of the little-endian ones given here. For instance,
in the third condition above, the fraction is modified to

⌊
xi+n+1
2n+2

⌋
.

C̃4

ee ee e4 4

-rrrrrrrrrrrrrrr r r r r r r r r r r r r ���� ���� ���� � � � �� � � �� �
s1 s1 s1s1s1s1

s4 s4s4 s5 s5

Figure 5. The actions of s1, s4, s5 ∈ C̃4 as transpositions on Z.
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Figure 6. Single and double class inversion in Ã3.

Remark 65. The infinite permutation representation of Ãn and its description in Prop. 62 was
stated (without proof) by Lusztig [64]. Representations for B̃n, C̃n, D̃n, similar to the ones put
forward here, were also known to Lusztig (private communication). A more detailed treatment
will appear in the forthcoming book by Björner and Brenti [10].

Although these infinite permutations are fully determined by the components x1, . . . , xn and
really only flamboyant versions of our old permutational representations, they are so intuitively
appealing that we shall restate some simple facts in the language of transpositions and mirrors.

The ordinary descents xi > xi+1 in the fundamental segment x1, . . . , xn determine which si
belong to the descent set. That holds true also for sn in the Ãn−1-case, but for B̃n, C̃n, the
relevant descent for sn is x−1>x1, and for D̃n it is x−2>x1. This is quite natural, for those are
the pairs transposed by sn. For sn+1, the relevant descent is xn >xn+2 in C̃n and xn >xn+3 in
B̃n, D̃n.

For an ordinary permutation, the length is the same as the number of inversions. Counting
inversions in the infinite permutations does not make sense, however, for if xi > xj , i < j is an
inversion pair, so are infinitely many other pairs, namely those generated by n-translations in
the Ãn−1-case and those generated by mirror reflections in the other cases. If we count such an
infinite set of translated or mirrored pairs as one class inversion, the length function will again be
the inversion count! Note that a pair of classes may contribute more than once to the inversion
count, as illustrated above. In the second case, (5, 1) and (5, 4) are two different class inversions.

There are many other ways of expressing the same concept. Counting class inversions in the
Ãn−1-case, is the same thing as counting inversions, where the first xi is in the fundamental
segment (x1, . . . , xn), or as counting inversions where the first value is in {1, . . . , n} etc.

For B̃n and C̃n, sn creates an inversion within a class. Instead of counting these, we can clearly
count inversions between that class and the artificial class . . . ,−c′, 0, c′, 2c′, . . ..

Proposition 66. The length of an infinite permutation is the number of class inversions. By
translations or mirror reflections, x1, . . . , xn define one class each, and these are the classes used
for Ãn−1 and D̃n. For B̃n and C̃n, the class generated by 0 should also be considered in counting
class inversions and for C̃n also the class generated by n+1.

Proof. We only have to translate our old length formulas in propositions 32, 48, 61 into the new
language, and we start with Ãn−1. Let xi, xj be two class representatives in the fundamental
segment and assume xi > xj , xj +n, . . . , xj +kn, but xi < xj +(k+1)n. This means k class
inversions if i>j or k+1 if i<j, and these counts add up to our old formula

l(w) = #(inversions) +
∑⌊

|xi−xj |
n

⌋
.

Again, in the D̃n-case, let xi, xj be two class representatives in the fundamental segment
and assume xi > xj , xj+c′, . . . , xj +kc′, k maximal. Here we have k class inversions if i > j,
or k+ 1 if i < j, and these add up to #(inversions) +

∑⌊
|xi−xj |
c′

⌋
in our old formula. But

there are more mirror images of xj that may give inversions with xi. If xi > −xj , assume
xi > c′−xj , 2c′−xj , . . . , kc′−xj , k maximal. This means k more inversions, where k =

⌊
|xi+xj |
c′

⌋
.
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Finally, if xi < −xj , some mirror images of x − j to the left of xi give inversions, namely
−xj−kc′, . . . ,−xj−c′,−xj > xi, k maximal, that is k+1 more inversions. Together with the
previous term, it all adds up to #(xi + xj < 0) +

∑⌊
|xi+xj |
c′

⌋
.

For B̃n, we must also count inversions represented by xi and 0, where xi is assumed to be in
the fundamental segment. Depending on whether xi is negative or positive, class inversions are
given either by 0 > xi, xi+c

′, . . . , xi+kc
′, with k maximal, or by xi > c′, . . . , kc′, with k maximal,

summarized in #(xi < 0) +
∑⌊

|xi|
c′

⌋
as expected.

For C̃n, we also consider class inversions represented by c′

2 and xi. Their contribution is 1 if
c′

2 < |xi| < 3c′

2 , it is 2 if 3c′

2 < |xi| < 5c′

2 etc and so they nicely fill out the last term to give

. . .
∑⌊

|2xi|
c′

⌋
. � �

A reflection is a conjugate wsw−1 of a simple reflection s. For ordinary permutations, reflec-
tion means transposition and simple reflection means adjacent transposition. For the infinite
permutations, reflection still means transposition, class transposition that is, for by translation
or mirror images, a transposition pair defines a transposition of classes. Of course, only those
transpositions that comply with the conditions of Proposition 63 can be considered. The truth
of this statement is evident if one thinks of wsw−1 as “permute, transpose, unpermute”.

Example. What are the legal transposition partners of x1 in the interval (−c′, c′)? (We let
c′ = n in Ãn−1 and c′ = 2n+ 2 in the mirror groups.) In all cases, the translate x1−c′ is illegal.
In the mirror groups, the fixed points − c′

2 , 0,
c′

2 are always illegal. The point c′ − 1 is illegal in
B̃n and D̃n and the point −1 in D̃n.

The intuitive appeal of these S∞-embeddings prompts the following question. What about
the sporadic affine groups, Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2 and Ã1, and embeddings into S∞? We have looked
into this question and can answer it affirmatively.

To start with the trivial case, Ã1 is the affine group d d∞ , also denoted by I2(∞). Its el-
ements are of three types, words starting with s1, like s1s2s1s2s1 . . ., words starting with s2,
like s2s1s2s1s2 . . . and the identity e. The simplest representation of an element is of course the
integer value ±l(w), where a plus sign denotes the first type and a minus sign the second type.
Using an infinite permutation would indeed be overkill.

There are embeddings of Ẽ6, Ẽ7 and Ẽ8 into S∞, obtainable from the permutational represen-
tations by computing the occurring component values as expressions in the ei. We have already
found these expressions for the corresponding finite groups in Proposition 19 and further com-
putation shows that the affine groups have the same set of expressions, but translated by an
arbitrary multiple of c, the constant in the affine transformation.

Next, we need some start vector such that all different expressions have different numerical
values. After an extensive computer search, one finds that the following suggestions are best
possible in some sense.

Ẽ6: e = (3, 6, 11, 13, 19, 20), c = 42

Ẽ7: e = (7, 14, 32, 34, 35, 36, 40), c = 91

Ẽ8: e = (12, 17, 31, 39, 46, 47, 58, 72), c = 150

Since the si permute value expressions and value expressions are faithfully mapped onto Z, we
now have infinite permutations representing these groups. They seem exceptionally unattractive.

For G̃2, this road is not even practicable, for in remark 44 we noted that no integer e-vector
can give all expressions different values. However, there is a much simpler way of constructing
permutation representations of Coxeter groups. The last section of this chapter will present the
Cox Box, a construction kit for crackerjack embedders, but right now we are content to admire
the finished construction for G̃2.
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Proposition 67. The affine group G̃2 can be embedded into S∞ in the following way.

The fundamental segment for G̃2:
ee es1 s2

s3
6 is (x1, x2, x3) with mirrors at 0 and 4 and si-actions

r r r��s10 4 r r r��s20 4 rrrrrrr ��# # 
s3

0 4

The embedding can be factored via B̃3:

eee es1

s3

s4
s2

4 by letting s3 ∈ G̃2 correspond to s3s4 ∈ B̃3, while
s1, s2 are unchanged. An infinite permutation in B̃3 is in G̃2 if the sum x1 + x2 + x3 equals 6 or
10.

Proof. If we throw away everything but the fundamental segment, we have something very similar
to the permutational representation derived in section 8.3, the only difference being that the
action of s3 on (x1, x2, x3) used to be (−x1 +x2 +x3−8, x2, x3), but now is (−x1, 8−x3, 8−x2).

Recall that the orbits used to live on a paraboloid surface but now reside in two parallel planes
(coinciding if we use an e-vector with e1 + e2 + e3 = 8). By projecting the orbit onto the plane,
one obtains our new representation. We leave the simple details as an exercise. � �

Proposition 68. The remaining affine groups, Ẽ6, Ẽ7, Ẽ8, F̃4, also have embeddings into S∞,
more complicated, but similar to the others.

Proof. For F̃4: d d d d d4 , the fundamental segment is (x1, . . . , x18), with mirrors at 0 and 19.
The transpositional actions are

s1 : 3↔ 5, 4↔ 6, 9↔ 11, 10↔ 12, 15↔ 17, 16↔ 18,
s2 : 1↔ 3, 2↔ 4, 7↔ 9, 8↔ 10, 13↔ 15, 14↔ 16,
s3 : −1↔ 1, −2↔ 2, 7↔ 8, (9 . . . 12)↔ (15 . . . 18),
s4 : (1 . . . 6)↔ (7 . . . 12), [short for 1↔ 7, 2↔ 8, . . .]
s5 : (7 . . . 12)↔ (25 . . . 20) [short for 7↔ 25, 8↔ 24, . . .].

For Ẽ6, Ẽ7, Ẽ8, the permutations of values in the previous page is already of the type sought,
except that there are many unused integers. By moving values closer to the origin, one can fill
out the holes and get something like the other infinite permutations. � �

Remark 69. The fact that all affine groups can be represented by infinite periodic permutations
is a consequence of the periodic structure of their root systems. Figures 11 and 12 illustrate the
fact that the root system of an affine group can be obtained by iterated translation of the finite
set of roots of the correponding tilde-less subgroup. In principle, one can arbitrarily assign a
tilde-less root to each integer in an interval of Z and let all other roots be assigned values obtained
by iterated translation by the length of that interval. Since group elements permute the roots,
one does indeed obtain a representation by infinite permutations in this way.

11. The Cox Box for building permutation representations

Most important algorithms of computational group theory, such as coset enumeration, use
generators and relations as antithetic forces – the generators are constructive and produce new
elements by multiplication, the relations are destructive and make elements disappear or coincide.
In the case of Coxeter groups, all generators have order two, s2 = e, and so they are, so to speak,
less productive than in the general situation. What we are going to present here is perhaps
more of a game than a systematic approach to the alternative strategy of using the relations as
building blocks. [THIS SECTION INTENTIONALLY LEFT VAGUE!]
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11.1. The Cox Box blocks. Let us open the Cox Box and look at some of its contents. The box
has several compartments, one for each Coxeter graph edge, such as d d4a b . Letters are used for
node numbering to avoid confusion. All edges have their compartments, even the invisible ones
(meaning edge label 2). Here are some of the Cox Box blocks to be found in these compartments.

u u u ua b au u u ub a b
u u u uu u u ua b a

a b ab b
u u ux y u u uu u ux y

x yy x
u uuu uv u uu uuuv v

e e4a b e ex y e eu v

Figure 7. Cox Box blocks for three different edges

Edges that bear the same label stick together, and that is how you construct with Cox Box

blocks. Example: t t tx y + t t ty z = t t t tx y z . Assuming that our Coxeter graph is B3:d d d
x y z

4 , we can use the blocks t t tx y , t t t ty z y and t t ty x to build t t t t t tx y z y x . This
construction defines a certain subgroup of S6, in the following way. The six black dots are
elements of the permuted six-set, and each letter is a permutation of order two. For instance,
z transposes the two middle elements, x transposes the first two and also the last two elements
etc. But not only do we have the relations x2 = e, y2 = e, z2 = e, we also have xyx = yxy and
yzyz = zyzy, as can be laboriously checked for each of the six points. Why is that? Because the
Cox Box contains only blocks with these particular properties!

If we have another look at the resulting embedding into S6, we may recognize the signed
permutations model of B3! That useful model materializes with no effort from our side, and
similar results can be obtained almost as easily for almost all finite and affine Coxeter groups.

From D4:
d dd da b c

d we can build t t t��
@@

t
t@@��t t tc b d a

a d
b c , easily recognizable as signed permutations.

Before we go on to other examples, let us study the rules of the game in some greater depth
and reconsider B3: d d dx y z

4 . How do we know when our construction is completed? Why, for

example, can we not stop after t t t t tx y z y ? Well, if we do, we have constructed an embedding
into S5, in which xyx = yxy is false. The right endpoint is taken one step to the left by xyx, but
it is left fixed by yxy. In fact, a y-edge must always be connected to an x-edge and vice versa.

The general rule is that an odd edge label, e.g. d dx y or d d5x y, forces x and y to appear together
in the construction, never one without the other. A more evident rule is that each edge in the
Coxeter graph must have at least one building block in the construction.

These rules certainly do not make the construction unique. Another solution for B3 is the

following: t t t��
@@

t
t@@��t t tz y x z

z x
y z , and now we see an embedding B3 ⊂ D4, rather unexpected! But

worse than the nondeterminism of the construction process is the sad fact that the resulting rep-
resentation need not be faithful. It is possible to follow the construction rules and yet introduce
new and unwanted relations. The moral is that representations built from the Cox Box should
be verified by some other means.

11.2. Examples of Cox Box constructions. We have collected the simplest Cox Box con-
structions for some finite and affine groups in the figure in the next page. Note in particular,
that all constructions can be carried out on Z and that we retrieve the infinite permutation
representations that we have already made aquaintance with. As long as we are satisfied with
permutations and do not insist on linear representations, noncrystallographic groups as H3 in-
volve no complications. The embedding H3 ⊂ S12 given here has a geometric interpretation:
Let S12 denote permutations of the twelve vertices of an icosahedron, then H3 is the subgroup
generated by rigid rotations and reflections, i.e. the symmetry group of the regular solid.

It is evident from the diagrams that H3 ⊂ D5, a result published by Sekiguchi and Yano, [69].
The assertion in Humphreys [56] p 48, that H3 ⊂ D3 is a misprint.
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Remark 70. We have not touched upon the question of which blocks to put into the Cox Box.
In all the examples that we have tried, two kinds of blocks is enough in each compartmentd dba

p . First, there is the (p−1)-path with alternating labellings and starting with either a
or b. Second, there is the 2p-circuit with alternating labels. Simple verification shows that these
blocks do belong in this compartment, experience shows that no other blocks are needed.

Note. The Cox Box terminology was inspired by a Gilbert and Sullivan opera [48].
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Figure 8. Permutation representations with Cox Box blocks

47



12. The Bruhat order for permutation representations

In the concluding section of this chapter, we are going to present a generalization of the
tableau criterion for the Bruhat order in the symmetric group to most groups with permutation
representations like those in figure 8. As we have seen, all finite and all affine groups have such
representations, so this is a useful result. The criterion uses the embedding in Sk of S∞, but for
each group, it can be interpreted in terms of the permutational vector and result in formulas,
much like the length formulas we have seen in so many versions. Our plans are to collect all
these results in a forthcoming paper, and the sketchy presentation in this short section is just a
preview of coming attractions.

Let us review some facts about the weak order and the Bruhat order for ordinary permu-
tations. The Bruhat ordering is an extension of the weak ordering, in the following sense. A
permutation π precedes a permutation σ in the weak ordering if there is a sequence of adja-
cent transpositions transforming π into σ and such that each transposition creates an inversion.
Similarly, π precedes σ in the Bruhat ordering if there is a sequence of not-necessarily-adjacent
transpositions transforming π into σ and such that each transposition creates an inversion.

Example. Let π = (2, 1, 3, 4) and σ = (3, 1, 4, 2). We have l(π) = 1 and l(σ) = 3 and a
transposition chain (2, 1, 3, 4) 7→ (3, 1, 2, 4) 7→ (3, 1, 4, 2) demonstrating that π < σ in Bruhat
order. But there is no such chain using adjacent transpositions, so no weak order relation exists.

The tableau criterion (see page 10) involves sorting all initial segments and comparing them:
(2)≤ (3), (1, 2)≤ (1, 3), (1, 2, 3)≤ (1, 3, 4), (1, 2, 3, 4)≤ (1, 2, 3, 4). The conclusion is that π <σ.
The dual tableau criterion is equivalent, it sorts final segments instead: (4)≥ (2), (3, 4)≥ (2, 4),
(1, 3, 4)≥(1, 2, 4), (1, 2, 3, 4)≥(1, 2, 3, 4).

We now want to generalize these things to the permutation representations of the previous
sections. First note that some of the si are no longer adjacent transpositions, so it is not
evident that the statement “s creates an inversion” has any sense. If, for example, s is a double
transposition, it seems possible that one of them could create an inversion and the other one
resolve an inversion. However, the symmetries of the groups, whether they be translations or
mirror reflections, guarantee that all transpositions in s create inversions if one of them do. Just
to take one example, in Dn, the two transpositions x−2 ↔ x1 and x−1 ↔ x2 together constitute
sn. But since x−i = −xi, inversions are created in neither pair or in both.

If we use class inversion for an inversion together with its translated and reflected images,
and if every si creates or resolves exactly one class inversion (note the special treatment of the
B,C-cases in Prop. 66), a general length formula is l(w) = #(class inversions).

In all cases, a reflection element t = wsw−1 is a not-necessarily-adjacent transposition, together
with its symmetric transpositions. This is clear, as the action is “permute, transpose, unpermute”.
So the Bruhat order can be described combinatorially easily enough. But is there a generalization
also of the tableau criterion? Yes, there is, and for the finite groups, there is absolutely no change
from the symmetric group!

Proposition 71. For a finite Coxeter group of type B,C,D,G orH, represented as permutations
of −n, . . . , n, the Bruhat relation π < σ holds when the following criterion is satisfied. Any initial
segment (π−n, . . . , πi), sorted in increasing order must be componentwise less than or equal to
the corresponding sorted initial segment of σ.

Proof. A transposition that creates a class inversion changes some of the sorted segments and
always by replacing a number by a larger number. Therefore, the criterion is necessary.

To show sufficiency, it is enough to show the existence of a transposition τ such that l(π) ≤
l(στ) ≤ l(σ) and such that π and στ satisfy the criterion. Iteration will then give the full chain.
We shall define τ as a transposition σj ↔ σk, together with −σk ↔ −σj . To find j, do like
this. Ignore all positions where πi = σi, these can be left fixed and might as well not exist. Let
a = σj = πj′ be the largest number left. The criterion implies j < j′. Among σj+1, . . . , σj′ , let
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b = σk be the largest. Thus, all numbers (b+ 1), . . . , (a− 1) are either to the left of σj or to the
right of σj′ . By the dual of the ordinary tableau criterion, those to the right are covered by the
corresponding π-segment, so in the π-segment to the left of πj , there are not sufficiently many
elements greater than b for it to make a difference when b and a are interchanged in σ.

There is also the interchange of −b and −a, but because of complete symmetry the same
argument can be used. � �

We would like to extend the result to the infinite permutations, but there seem to be compli-
cations. Is it possible to sort an infinite interval? Yes, it is! Assuming that the Z-axis has ben
cut in two between x0 and x1, the right half-axis is sorted by putting its smallest element in x1,
its next smallest in x2 etc. And the left half-axis sorts its largest element into x0, its next largest
into x−1 etc. So we do not have to change the criterion at all, just state it in a suitable way.

Proposition 72. For an affine Coxeter group of type Ã, B̃, C̃, D̃, F̃ or G̃, represented as infinite
permutations of Z, the Bruhat relation π < σ holds when the following criterion is satisfied. Any
initial half-infinite segment (. . . , πi), sorted in increasing order must be componentwise less than
or equal to the corresponding sorted initial segment of σ.

Proof sketch. The necessity is simple, for a transposition that creates inversions replaces
some numbers by greater numbers in some of the initial segments. The sufficiency is proved in
the same fashion as before. First, we remove all positions where πi = σi. Then, we find a suitable
transposition pair and check that the criterion is still satisfied with π and στ . �
Note. For other versions of tableau criteria for Bn and Dn, see Proctor [66]. Combinatorial
Bruhat order criteria for some of the affine groups will appear in Björner and Brenti [10].
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Chapter 3

Reduced word representations

13. Introduction

For any group defined by generators and relations, the natural thing is to represent group
elements as words in the alphabet S, where S is the set of generators. The main advantages are
evident, namely

• the multiplication algorithm is simply concatenation of words,
• a computer implementation can use available data structures, such as arrays or linked
lists.

But there are also disadvantages, and these often outweigh the advantages.

• Many words correspond to the same group element, and there is, in general, no finite
algorithm that solves the word problem, i.e. determines whether two different words are
equivalent.
• In general, no finite algorithm exists that will solve the reduction problem, i.e. reduce
any word to an equivalent shortest possible word.
• In general, not even the recognition problem can be solved for the language of reduced
words, i.e. there may exist reduced words that cannot be proved to be such. (All nonre-
duced words w can of course be proved such by a finite word sequence w = w1, w2, . . . , wn,
in which adjacent words are equivalent by one of the relations in the group presentation
and the last word wn is shorter than w.)

Coxeter groups are far better than the average group in these respects. The word problem
is indeed solvable for any Coxeter group. Two words w, u are equivalent if and only if wu−1
is equivalent to the empty word, so one can apply the Word theorem of Tits (see [76]) to the
product wu−1. According to this theorem, if the reduction is at all possible, then it can be
brought about using only the elementary substitutions sisi → e and sisj · · · → sjsi · · · . As these
never increase the length of the word, only finitely many words can be generated in this way, so
after a finite number of steps it is known whether the empty word is among these.

The computational complexity of this method seems to increase exponentially with the word
length l(wu−1), so a better algorithm would be welcome. As an alternative to Tits’s Word The-
orem, we could refer to the faithful matrix representation, known to exist for any Coxeter group
([56], p 108ff). The word problem can be solved by simply performing the matrix multiplica-
tions corresponding to the two words and checking that the result is the same in both cases.
However, the amount of computation can be reduced enormously if the matrix representation
is replaced by a faithful orbit. For the affine Coxeter groups, the permutation representations
of the previous chapter are such orbits and for the general infinite Coxeter group, the numbers
game representation is of this kind. With any of these methods, the computational complexity
of the word problem seems to be proportional to the word length, but this is not strictly true.
The number of operations (additions and subtractions) is proportional to the word length, but
the size of the numbers also grows linearly, so the bit complexity is proportional to n log n.

The reduction and recognition problems are, in a sense, solved if the word problem is solved.
For there are only finitely many words u of equal or smaller length than a given word w and, in
principle, the word problem can be solved for every such pair (u,w). That algorithm would run
in exponential time, even if the word problems are solved in linear time, so a better approach is



clearly desirable. The numbers game and the permutational representations obviously provide
n log n–time recognition of reduced words, since the concept of a legal move sequence corresponds
exactly to the reduced word concept. By the results of the next section, there is even a recognition
algorithm with linear bit complexity.

It is less obvious how to find a reduction of a given nonreduced word by using numbers games or
permutation representations, but the following algorithm solves this problem too in n log n–time.

(1) Perform the move sequence corresponding to the given word w.
(2) Make any illegal move, i.e. corresponding to an s such that l(ws) <

l(w).
(3) Repeat step 2 until a position with no illegal moves appears. This must

then be the starting position.
(4) The sequence of illegal moves in reverse order will correspond to a

reduced word for w.

Figure 9. n log n–time reduction algorithm for words in any Coxeter group

14. Language automata

Consider words on a finite alphabet A = {a, b, . . .}. A language L ⊂ A∗ is a set of words.
Languages are classified according to their complexity, finite languages being the simplest and
regular languages coming next. A regular language can be defined by a regular expression (fre-
quently used by computer programmers). As an example, the language defined by the regular
expression

abba+ c(aa)∗
contains the words abba, c, caa, caaaa, caaaaaa, . . .. In other words, the set of regular languages
is the closure of the set of finite languages under unions (+), concatenation and iteration(∗).
Kleene (1956) characterized regular languages as those languages that can be recognized by a
finite automaton (i.e. an ordinary computer with finite memory).

A closely related concept is that of a rational language. It is defined by Berstel and Reutenauer
(1988) as a formal power series in the variables of the alphabet A∑

w∈A∗
αww,

with coefficients in Z or R (or any semiring) and satisfying a certain rationality condition. For a
one letter alphabet, rationality means that the series is the power series expansion of a rational
function P (a)/Q(a). For several variables, a rational series can be expressed using polynomials,
addition, multiplication and inversion. It is known that the support of a rational language, that
is the set of words with nonzero coefficients, is a regular language and, conversely, that∑

w∈L
w

is rational for any regular language L (see Berstel and Reutenauer [6])
Our language L is going to be the language of reduced words in the alphabet S of a Coxeter

group (W,S). The recognition algorithm based upon a permutational representation or the
numbers game representation of the group does not correspond to a finite automaton, as the
numbers involved are unbounded. This is clear already for Ã2, considered as permutations of the
set of all integers. In fact, no representation of the group elements can be used in the recognition
automaton, for there is only a finite number of states available.
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Figure 10. A finite automaton that recognizes reduced words in Ã2

We can represent the automaton as a directed graph with edge labels in S, no two edges
from one node bearing the same label, and with one node designated as the starting state. The
automaton is supposed to enter a permanent error state when it reads a symbol for which there
is no edge leading from the current state.

For a finite group, the Cayley graph itself is the required automaton. There is a node for each
element and an arrow w wss- if l(ws) = l(w) + 1.

For an infinite group like Ã2, some states must correspond to infinitely many different group
elements. Elements sharing the same state must have the same descent set, D(w), the same
descent sets D(ws) for each s 6∈ D(w) and so on. The problem is to show that a finite amount
of information is sufficient to determine all these descent sets. Knowledge of all reflections t,
such that l(wt) < l(w), i.e. the reflection descent set D(w) constitutes sufficient information, for
(recall that reflections are palindromic words)

D(ws) = {s} ∪ {sts | t ∈ D(w)} .
However, for the infinite groups there is no bound for the cardinality of the reflection descent
sets, in fact |D(w)| = l(w). The solution is to be found in restricting one’s attention to small
reflections, of which there are only finitely many. A successful definition of small reflection must
satisfy

Dsmall(ws) = {s} ∪ {sts | t ∈ Dsmall(w) and sts is small} .
Our definition of small reflection has this property, and as we shall see, other possible defi-

nitions must include our small reflections. For this reason, the constructed automaton will be
smallest possible. In our example Ã2, there are six small reflections: x, y, z, xyx, yzy, zxz and
the sixteen states correspond to the sixteen subsets that can occur as Dsmall(w). The starting
state is the empty subset, the following three states are one element subsets {x}, {y} and {z},
the six states in the two triangles are the two-element subsets {x, xyx} etc and the hexagon
states are three-element subsets {x, y, xyx} etc and {x, xyx, xzx} etc. It is easily seen that no
other subsets can occur as Dsmall(w).

The automaton for Ã2 was invented by Anders Björner in 1990 (unpublished). It was general-
ized by the present author ([39]) to Ã3 and some other groups and by Richard Stanley to all Ãn
(unpublished). Patrick Headley found automata for the other affine groups [52] and the detailed
analysis by Kimmo Eriksson of the geometry of affine Coxeter complexes ([43]) also implies the
regularity of all the affine Coxeter languages.

Gabor Moussong ([65]) made an important contribution by proving that all hyperbolic Coxeter
groups have regular languages of reduced words (see [56] for a comprehensive list of hyperbolic
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Figure 11. The edge labelled root poset of Ã2.

Coxeter groups). In 1991, a preprint by Davis and Shapiro [34] stated the theorem that all
Coxeter groups have regular languages; however, their proof remains incomplete. In 1993 Brigitte
Brink and Robert B. Howlett ([17]) established that Coxeter groups are automatic. Their finite
automaton recognizes the smaller language of lexicographically minimal reduced words, and it is
not generally true that automatic groups have finite automata for the language of reduced words
(see [20] for a counterexample). However, Brink and Howlett state (without proof) that their

theorem 2.8 implies the parallel wall property conjectured by Davis and Shapiro, thus providing
the missing link in their proof. For this reason, we believe that the following result should be
attributed to Brink, Howlett, Davis and Shapiro.

Theorem 73. For any Coxeter group, the language of reduced expressions is regular.

Our next section is devoted to a proof of this theorem. Although it is much simpler than Brink’s
and Howlett’s, the reader should be aware of the fact that the end product – the automaton – is
very similar to the one in [17]. Another proof will appear in Patrick Headley’s thesis [53].

15. A finite automaton for reduced expressions

Rather than working with reflections as palindromic words in the si, we shall invoke the
standard geometric realization and deal with the corresponding roots. Recall from page 6 that
the matrix Bi,j = 2 cos π

mij
defines a symmetric bilinear form, negative definite for the finite

groups, negative semidefinite for the affine groups and indefinite for all other groups. To each
primitive reflection si there is a primitive root ei and a (not necessarily orthogonal) reflection
matrix Si = I + eie

>
i B, so in particular we have Siei = −ei. A reflection t = sik · · · si1 · · · sik

corresponds to the matrix T = Sik · · ·Si1 · · ·Sik , also a reflection with Tα = −α for the
root α = Sik · · ·Si2ei1 . One of the roots α and −α has all components positive, the other
one all components negative. The matrix Si maps positive roots onto positive roots, with one
exception: ei maps to −ei. These properties are well-known, see Humphrey’s book [56], chapter
5.

Recall that a position in the numbers game is a vector p and that the new position after
playing node i is S>i p. The simplest way to generate the roots is by playing the dual of the
numbers game. A position in the dual game is a root α and playing i leads from α to Siα.
As Si = I + eie

>
i B, only the i-th component of α is affected, namely by adding to αi the

i-th component of Bα. The dual game interpretation demonstrates that the roots constitute a
symmetric graded graph (see figure 11), with each covering edge labelled by some si.

In connection with the numbers game, the roots have a particularly nice interpretation. The
game starts with certain numbers p1, p2, . . . on the nodes, but in the course of the game, new
numbers appear. All of these are certain linear combinations of the pi, namely α·p for some root

α. The primitive root

 1
0
0

 has the value p1, the root

 1
1
0

 the value p1 + p2 (that appears
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on node one or two after one move in the numbers game) etc. A move from p to S>i p moves
the value α·p along an edge labelled si (if there is one, otherwise it stays), and it is clear that
the only interchange between a positive and a negative root is between ei and −ei. Usually,
one starts with –1 on all nodes, so all positive roots have negative values at this stage (and vice
versa). A legal play sequence is a reduced word w = s1 · · · sn and each move brings in exactly
one positive value; therefore the number of positive roots with positive values equals l(w).

All our statements about the numbers game and its dual game are proved in [42], so we move
on to the heart of the matter: the states of the finite automaton for Ã2.

15.1. An automaton for Ã2.

Proposition 74. Let Dsmall(w) be a subset of the six roots 1
0
0

 ,

 0
1
0

 ,

 0
0
1

 ,

 1
1
0

 ,

 0
1
1

 ,

 1
0
1

 ,

namely those that have positive values after a numbers game starting with −1 on all nodes and
with a play sequence corresponding to w. Then Dsmall(w) completely determines Dsmall(ws) for
every s 6∈ D(w). There are sixteen different Dsmall(w), and so there is a recognizing automaton
with sixteen states. This is the minimal number of states for any recognizer of reduced words in
Ã2.

Proof. To fix ideas, we take an example. The reduced word w = xyzy corresponds to the numbers
game (−1,−1,−1)

x→ (1,−2,−2)
y→ (−1, 2,−4)

z→ (−5,−2, 4)
y→ (−7, 2, 2), and the linear

combinations −7α1 + 2α2 + 2α3 are positive for α in Dsmall(w) = {

 0
1
0

 ,

 0
0
1

 ,

 0
1
1

}.
Now, we can determine Dsmall(wx) as follows. The positive values on

 0
1
0

 and

 0
0
1

 move

along their x-edges to

 1
1
0

 and

 1
0
1

. The positive value on

 0
1
1

 disappears from the

set of small roots. A new positive value enters the primitive root

 1
0
0

. We can deduce all

this from Dsmall(w) without knowing w. An apparent uncertainty concerns the value that enters 0
1
1

 from

 2
1
1

. But that value must be negative, for

 2
1
1

 =

 1
0
0

+

 1
1
1

, and we

know that the fired number p1 is negative and that p1 + p2 + p3 = −3 is an invariant in this
numbers game! This argument works for any w (and, in fact, for any affine group).

Only sixteen of the sixty-four subsets appear as Dsmall(w). There are restrictions of two kinds:
if the values ei·p and ej ·p on any two primitive roots are either both positive or both negative,
then (ei + ej)·p has the same sign; all three values e1 ·p, e2 ·p, e3 ·p cannot be positive, for
p1 + p2 + p3 = −3.

The constructed automaton is minimal if and only if for any two different states Dsmall(w1)
and Dsmall(w2), there is a play continuation which is legal for one and illegal for the other. This is
easily verified for the sixteen Ã2–states but it is also a special case of theorem 80 below. � �

15.2. Automata for affine groups. The Ã2–automaton generalizes to all affine groups. The
common feature of these groups is the linear invariant in the numbers game, which is a conse-
quence of the fact that the matrix B is singular for the affine groups (see [42], p 64). By the
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Group # small roots # states

Ãn n(n+ 1) (n+ 2)n

B̃n 2n2 (2n+ 1)n

C̃n 2n2 (2n+ 1)n

D̃n 2n(n− 1) (2n− 1)n

Ẽ6 72 136

Ẽ7 126 197

Ẽ8 240 318

F̃4 48 134

G̃2 12 72

Table 3. Small roots and states in the affine Coxeter groups

Perron–Frobenius theorem, the nullspace is spanned by a vector λ with nonnegative components
and λ·p is the invariant. The invariant value is of course −

∑
λi. The dual game is an extremely

efficient algorithm for generating the roots recursively, but if we are satisfied with the small roots,
the situation is even better: the small roots come out first and there are only finitely many.

Definition. The small roots are defined recursively as follows. All primitive roots ei are small.
If α is a small root with an si-labelled edge to β and if αi < βi < αi + 2, then β is small too.

The first part of our next proposition can be found as a remark, tucked away in a remote
corner of Kimmo Eriksson’s thesis [42], p 71.

Proposition 75. The number of small roots in an affine group is equal to the total number of
roots in the corresponding finite group (see table 3). Recognizing automata for the language of
reduced words can use the subsets of type Dsmall(w) as states.

Proof. Assisted by two computers, Jonas (human) and Balzac (electronic), we have constructed
the small roots case by case. The correctness of the automata can be proved by the argument of
the previous proposition. � �

The computer also found the number of states in many small cases. The formulas in the
table were, originally, verified by the computer only for n ≤ 8. When they were presented at
the Discrete Math Seminar at KTH, Ulf Berggren conjectured the following result, which, at
that time, we were unable to prove. Patrick Headley later told us that a Shi [71] contained the
required enumerative result. The following proposition also appears in [52].

Proposition 76. For an affine group of type X̃n, the number of states in the automaton is
( pn + 1)n , where p is the number of roots in the finite group Xn.

Proof. The set of small roots defines a hyperplane arrangementH, namely the set of hyperplanes
that are fixed by some small root reflection. The hyperplanes divide Rn+1 into compartments,
i.e. connected components of Rn+1 − H. A numbers game position p gives positive value to
a certain root if it is on the positive side of the corresponding hyperplane. Therefore, the sets
Dsmall(w) correspond to the compartments, so to know the number of states in our automaton,
we must count these compartments.

This is exactly what Shi [71] has done (although with different terminology) and his result is
(h+ 1)n, where h is the Coxeter number of the finite group. That number is defined as the order
of a Coxeter element (see chapter 5 for definitions and some results) but it is known that h = p

n
(see page 79 in Humphreys [56]), so the formula of the proposition is also valid. � �
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15.3. Automata for nonaffine infinite groups. For each of the affine groups, we could com-
pute the small roots and verify that there are only finitely many. The first step in the general case
is proving this finiteness property. This result is equivalent to Brink’s and Howlett’s Theorem
2.8, and according to these authors, their theorem is equivalent to the Parallel Wall Theorem of
[34]. The second step is proving that no positive value enters a small root from a neighbouring
big root. In the affine case, the negative linear invariant sprang to our aid, but there is no such
thing in the general Coxeter group. The final step is to check whether we have the minimal
number of states.

Theorem 77. For any Coxeter group, the small roots are only finitely many.

Proof. Let α be a small root and let c = Bα. For every 0 < ci < 2, there is an si-labelled edge
to another small root, β in which αi has been replaced with αi + ci.

Let Tα and Si be the reflection matrices corresponding to α and ei. A straightforward
calculation shows that

Tα α = −α , Tα ei = ei + ciα

Si ei = −ei , Si α = α+ ciei

and that is the very definition of the dual game on a two-node graph with multiplier ci in both
directions. It is easy to check ([42], p 32) that the game is infinite if ci ≥ 2 and that otherwise
(as in our case), we must have ci = 2 cos π

m for some integer m. Thus we conclude that Tα and
Si generate a finite dihedral subgroup of W and that the order of TαSi is m.

Bourbaki [15], Exercise V, §4, 2d), tells us that this dihedral group, or a conjugate of it, is
contained in a finite parabolic subgroup of W . Now, there are only finitely many finite parabolic
subgroups and each of them has only finitely many angles π

m between reflecting hyperplanes.
It follows that there are only finitely many small change types, i.e. Bα-vectors where small
components −2 < ci < 2 are kept but all large components are replaced by either +∞ or −∞.
If there were infinitely many small roots, then there would be some infinite chain of small roots
α0 < α1 < α2 < . . ., and some of these, say αj and αk, would necessarily have the same
small change type. Forget about α0, . . . , αj−1, since we are going to redefine them presently!

Let c = Bαj and suppose that some cr ≥ 2. Then, the r-th component of Bαj+1 will
be at least as big, for it increases by ciBir, where ci and Bir are nonnegative. Iterating the
argument we see that sr will never be legal, so the r-th component is constant for αj, . . . , αk.
Analogously, if the r-th component of Bαk is ≤ −2, the r-th component of Bαk−1 will be
at least as negative etc. So the only edge labels that occur in the chain αj, . . . , αk are those
that correspond to small components in Bαj and Bαk. We are going to construct a chain
continuation . . . , αj−1, αj using only these edge labels, so we can restrict our attention to these
components of the Bα-vectors.

Let the edge from αk−1 to αk be labelled si. By assumption then, there is an si-labelled edge
from αj to some αj−1. The relevant components of Bαj−1 and Bαk−1 are identical, for both
are Bαj + ciBei, so the chain can be continued by small changes. After j steps, we must reach
a primitive root er and after one more step −er. But here the change is exactly 2, so it is not
small and we have a contradiction. � �

Theorem 78. Let α be a small root connected to a big root β by an edge labelled si, then the
value entering α from β, when node i is played, is negative.

Proof. After playing node i, the root ei certainly carries a positive value. If the value on α
is also positive, a contradiction ensues in the following way. As before, Tα and Si generate a
subgroup, and since ci ≥ 2, it is the infinite dihedral group. Thus, there are infinitely many
roots of the type (TαSi)

k α, and being positive linear combinations of α and ei, they all carry
positive values. But the total number of positive values on positive roots is finite, in fact equal
to the length l(w) of the element w corresponding to p. � �
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Figure 12. Small roots for C̃2 and two states that should be identified.

Remark 79. The constructed automata are not necessarily minimal. For all affine groups except
Ãn−1, there are a few superfluous states. The simplest example is C̃2 (see Figure 12). The two
states shown lead to the same state, after one move.

Theorem 80. The recognizing automaton constructed from the small roots is minimal for Ãn.

Proof. The structure of Ãn−1 is evident in Figure 11. On each level there are n roots, and for
k < n, the roots on level k consist of k ones in consecutive positions with wraparound.

We want to show that if two reduced words, w1 and w2, in Ãn have different statesM1 6=M2,
then there is some continuation si1si2 · · · sin that is legal from one of the states and illegal from
the other. The M-sets consist of small roots that have positive values in the numbers game
position p corresponding to the word w.

Assume that some small root α is inM1 but not inM2. If α is a primitive root ei, then si
is a legal continuation in M2 but not in M1. If α is a root on level two, say α = ei + ei+1

we know that pi + pi+1 < 0 for the numbers game position corresponding to w2, so either si or
si+1 must be legal. If this continuation is illegal for w1, we have found what we are looking for.
Otherwise, w1s and w2s are two new reduced words with states that differ already on level one,
and we covered that case three sentences ago.

In general, for a root on level k + 1, say ei + · · · + ei+k with pi + · · · + pi+k < 0 for w2, at
least one of si, . . . , si+k must be a legal continuation. If this s is either si or si+k, we see that
w1s and w2s have states differing on level k and induction can be applied. If s is one of the
intermediate sj , the continuation leaves the differing values on the same root, so we can go for
some time, choosing a legal s among the si, . . . , si+k etc. But this path corresponds to a finite
subgroup, so this cannot go on for ever. In the end, the values are transferred downstairs and
we can carry on by induction. � �

From the C̃2–example, it is clear that labelled edges in the Coxeter graph produce noninteger
2 cos π

mij
and that these values appear in the roots. From the computational point of view, this is

a major disadvantage. A mathematician with some Coxeter group experience would guess that
the so called crystallographic groups could be handled with integer arithmetic, and this is indeed
the case. In this connection, crystallographic just means that all edge labels are either 3, 4 or 6.
The computer results for B̃n, C̃n, F̃4 and G̃2 were obtained using the following method.

Instead of using the matrix B, with symmetric entries
√

2 and
√

3, we can use either of the
matrices B′, B′′, defined as follows.

Bij = Bji =
√

2 ⇒ B′ij = 1, B′ji = 2, B′′ij = 2, B′′ji = 1

Bij = Bji =
√

3 ⇒ B′ij = 1, B′ji = 3, B′′ij = 3, B′′ji = 1

As proved in [42], B′ or B′′ can replace B as weight matrices for the numbers game and the dual
game. The numbers in the components will change, of course, but the signs of these numbers as
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well as the overall structure will remain intact. The problem is how to define small change and
big change with these other weights. It turns out that the correct definition is the following one.

Definition. Let c′ = B′α′ be the change vector of a root in the dual game using the nonsym-
metric, integer matrix B′ and let c′′ = B′′α′′ be the change vector of the corresponding root
in the dual game using the transposed matrix B′′. Playing node i changes the i-th component
of α′ as well as of α′′, and it is called small change if c′ic

′′
i < 4.

A root is small if it is accessible from a primitive root by a sequence of positive small changes.

Proposition 81. The labelled graph of small roots according to the definition above is isomor-
phic to the graph of small roots as defined in section 15.2, but for crystallograhic groups, its
computation requires integer arithmetic only.

Proof. In one of the parallel dual games we use S′i = I+eie
>
i B
′, in the other one S′′i = I+eie

>
i B
′′.

Thus, α′ = S′ik · · ·S
′
i2
ei1 and α′′ = S′′ik · · ·S

′′
i2
ei1 . Formerly, we had the formula Tα = I + αα>B,

but this is now replaced by Tα′ = I + α′α′′>B. We sketch a proof of this formula by induction.
It is true for α′ = ei, assuming that it holds for some α′, it can be deduced for β′ = S′iα

′, using
Tβ′ = S′iTα′S′i and the relation (B′S′i)

> = B′′S′′i .
We get Tα′ α′ = −α′ , Tα′ ei = ei + c′′i α

′

S′i ei = −ei , S′i α
′ = α′ + c′iei

and as shown in [42], p 32, this is the nonsymmetric dual game of a finite dihedral group if
c′ic
′′
i = 4 cos2 π

m < 4. But we have shown earlier that this finiteness is also equivalent to small
change. � �

16. Normal forms for reduced words

We can now return to the main theme of this chapter — the computational aspects of repre-
senting Coxeter group elements by words in the generators. As in many other areas of computer
algebra, notably the computations with polynomial ideals using Gröbner bases, the key to suc-
cess is finding the optimal normal form of the algebraic object. For any group element w, there
are many reduced words. Which one should represent w in the computer?

As a simple analogy, consider representing rational numbers m
n by a data structure containing

two integers, the second of which must be positive. The pairs (3, 6), (1, 2) and (2, 4) represent the
same rational number, and everyone would pick (1, 2) as the normal form. Most mathematicians
would use relative primeness to define this normal form, possibly with extra rules for the zero
case, but there is a better definition. If we introduce an ordering of all pairs, we can always
choose the first candidate as the normal form. In this case, the backwards lexicographic order
corresponds to the relatively prime normal form.

We are going to define similar orderings of words in the si and show that the corresponding
normal form is well suited for computation, particularly so for the finite groups. There is a large
overlap between our work in this area and the exhaustive investigations of F. du Cloux [37], so
we are going to be very brief.

16.1. Orderings of words in Coxeter groups. Any ordering of the generators si extends to
a lexicographic order on the set of words. Note that this is not a well-ordering of the set of all
words! In fact, no word has a lexicographic predecessor (for bv is preceded by buzzz. . .), so in
computer science the length-then-lex ordering is more common. Since all reduced words for w
have the same length, this is no problem in our case.

For the purpose of ordering words in finitely presented groups, the transposed lex order is often
superior. It is not mentioned by Knuth [61] and we have not been able to find a reference to it,
but, in all probability, it must have been used before. The transposition refers to a matrix Q of
yes/no-questions, question Qij being “Is the i-th letter of the word an sj?”. A comparison of two
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words involves posing these questions, one after the other, until one word answers “yes” and the
other word “no”. The yes-word is then proclaimed greater than the no-word.

Depending on the order in which the questions are put, we get eight different word orderings.
The description is simplified if we assume the alphabetic order s1 > s2 > . . . > sn, as in the
example below.

Q =

c b a
1
2
3

 ? ? ?
? ? ?
? ? ?


The ordinary lex comparison starts in the upper left corner and runs through the rows, one by
one. The reverse lex order starts in the upper right corner, the backward lex order in the lower
left and the backward reverse lex order in the lower right; all proceed row by row. These orders
are all in common use. The transposed lex order starts in the upper left corner and runs through
the columns, one by one, the transposed reverse lex order in the upper right corner etc. In the
face of transposed backward reverse lexicographic order, chaos may seem preferable!

Example. acb < bac in lex order but acb > bac in transposed lex order. That is because acb
will answer yes to Q21 while bac will answer yes to Q12.

It is a trivial but important observation, that the normal forms corresponding to these order-
ings are all hereditary, i.e. any consecutive subword of a normal form is still a normal form.

To the transposed lex normal form is associated a factorization, obtained by making n−1 cuts,
the i-th cut being made after the longest initial segment consisting only of the first i letters of
the alphabet. For instance, ababdbc = a, bab, ∅, dbc. (Empty words may be included, so that
there will always be n factors.) The following property is true for many groups, but we state it
only for Coxeter groups.

Proposition 82. Every element w factors uniquely as w = w1w2 . . . wn, with l(w) = l(w1) +
· · ·+ l(wn) and where the transposed lex normal form of wi is either the empty word or a word
starting with the i-th letter of the alphabet and not containing the (i+ 1)-st or later letters.

Proof. The transposed lex normal form for w gives such a factorization. To prove that it is unique,
we just have to note the characterization of wn as the minimal length element of WJw, where J
is the parabolic subgroup generated by the first n−1 generators, and use induction. � �

As we shall see in the next section, this factorization is useful in describing and recognizing
as well as in computing with normal forms.

Up to now, the setting has been any finitely presented group, but now that we specialize to
Coxeter groups, we are in for a big surprise!

Proposition 83. For reduced words in a Coxeter group, the normal forms corresponding to lex
order and transposed lex order coincide.

Proof. Let w′ be the lex normal form and w′′ the transposed lex normal form of the same group
element w, assume that w′ 6= w′′ and that this is the shortest such counter-example. Let s be
the last alphabet letter occurring in w′ and let w′ = w′1sw

′
2, with s-less w′1. The subword sw′2 is

in lex normal form, so all equivalent reduced words must start with s too. Now, we construct a
numbers game position on the nodes of the Coxeter graph, such that the reduced words for w
correspond exactly to the legal terminating games. An obvious way is to take a terminal position
(positive values on all nodes) and play backwards, following w′, right to left. If, from that start
position, we play w′1, we must reach a position with only node s playable.

Return to the start position, remove node s and start playing. The w′1-game terminates in
l(w′1) moves, and therefore all games terminate after that number of moves. The same thing
can be stated without reference to the numbers game: no reduced word for w can have its first
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s-occurrence later than w′. Therefore, w′′ has its first s in that same position (not earlier, for
w′′ is first in transposed lex order). But we also know that the terminal position is the same for
all play sequences, so if w′′ = w′′1sw

′′
2 , we see that w′1 and w′′1 provide a shorter counter-example.

Too short, maybe, if both are empty, but in that case w′2 and w′′2 will do. The contradiction
proves the proposition. � �

If lex normal form and transposed lex normal form are the same, why all the fuss about
transposed lex order? The point is, of course, that we now have the factorization of Proposition
82, and all the good things that come with it.

16.2. The normal form for finite Coxeter groups. Let us order the generators si in any way
and let the corresponding lexicographic order on words define a normal form for reduced words,
as above. As our first example we take A3: c c cs1 s2 s3 with its natural ordering. The reduced
word s3s1 is not a normal form, for it can be rewritten as s1s3. There are 24 normal forms, one
for each of the 4! elements and these can be displayed in the following way.{

∅
s1

} ∅
s2
s2s1




∅
s3
s3s2
s3s2s1


Pick one alternative from each of the boxes, concatenate them in order, and you have a normal
form! (We use ∅ to denote the empty word.)

Similar constructions can be written down for all finite Coxeter groups and all si-orderings.
The paper by du Cloux lists the factorizations obtained by choosing the best si-ordering for each
group. The bestness criterion is not explicitly stated, but seems to be of aesthetical character.

Assuming that w = w1w2 . . . wn is the factorization of Proposition 82, what can we say about
the normal form of ws, where s is a generator letter? It turns out that only one factor is affected,
and the change is a single deletion or insertion.

Proposition 84. [du Cloux] The normal form for ws is obtained from the normal form for w
by insertion or deletion of one letter.

Proof. The proposition can be proved by repeated application of the exchange condition (see p
9), and this is essentially what du Cloux does in [37]. We shall only indicate the two essential
steps in the proof.

If wns is reducible, it will still be an n-th normal form factor after the reduction, that is to
say, all reduced words will still start with sn. Otherwise we would have wns = s′w′, with s′ 6= sn.
But then wn = s′w′s, contradicting the assumption that all reduced words start with sn.

If wns is reduced, it will either still be an n-th normal form factor or, as above, we have
wns = s′w′. Now l(wn) = l(w′), so s′w′s is a reducible expression for wn. Two letters must be
deleted, and since we know that wn does not begin with s′ and does not end with s, these two
letters are to be deleted. Therefore wns = s′wn, so wn is left intact and passes the extra letter
on to wn−1. � �

The algorithm can be regarded (and programmed) as an array of n automata connected in
series. A letter is input to the wn-automaton, it is either used to change the state of the
automaton, or it is transformed and output while the automaton keeps its state. Note also the
recursive nature of the automata: The wn-automaton consists of a similar array of n automata
etc. The recursion is potentially infinite, but for all the finite groups it ends very quickly.

16.3. The normal form for infinite Coxeter groups. When the group is infinite, the lex
order still gives a normal form, which factorizes as before. The difference is that some brackets
now contain infinitely many words. For the affine groups, all brackets except the last can be
made finite. As a simple example, we take Ã2.
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{
∅
s1

} ∅
s2
s2s1


 ∅

s3α
∗β∗

s3α
∗s1s2γ

∗

 , where

 α = s1s2s1s3
β = s2s1s3
γ = s3s1s2

The star means zero or more repeats. It is understood that initial segments of the two regular
expressions are implicitly listed in the brackets. In this case, it was possible to express an infinite
set of words by a finite set of regular expressions and we state without proof that this will in
fact be the case for every infinite Coxeter group. The construction by Brink and Howlett [17] of
a finite automaton for normal forms is equivalent to this statement, by Kleene’s characterization
of regular languages. Some minor details need to be filled in, but that is all.

Proposition 84 is true for any Coxeter group as well, but not very useful, for everything happens
in the last normal factor. One needs a transition table, listing how regular expressions are
tranformed into each other, and we have not found simple descriptions even for Ãn. The iterated
expressions (α, β, γ in the example) behave differently depending on the iteration exponent (or
rather its residue class modulo n).

He who does not fear complications can attempt to formulate these transition rules. We prefer
to withhold our formulas, considering that F. du Cloux states that he has in preparation a new
paper on the normal forms for infinite groups ([37], p 4).
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Part 2. Games and Coxeter groups
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Chapter 4

Pebblings

17. The pebbling game

The pebbling game of Kontsevich is played on the grid points of the first quadrant. One
starts with a single pebble on the origin and a legal move consists of replacing a pebble with two
pebbles, one above and one to the right of the vanishing pebble: f pp - ffp .

In the original game, only one pebble was allowed on each grid point, but Chung, Graham,
Morrison and Odlyzko [22] introduced a stacking version, where pebbles are allowed to accumu-
late, at least temporarily. The stacking game is equivalent to the original game, in the following
sense. If a position with at most one pebble per point is reachable in the stacking version, then
it is reachable in the original pebbling game.

The original problem, posed by Kontsevich in 1981, was to show that the ten grid-points
closest to the origin, {(i, j) | i + j ≤ 3}, form an unavoidable set, meaning that every game
position has at least one pebble in this set. The intended proof was the following.

To a pebble at (i, j) assign the weight 2−i−j . That makes the total weight of the pebbles equal
to 1 in all positions, for each move splits a pebble into two, half as heavy, and the total weight
was 1 to start with. With at most one pebble on each point, all grid points outside the ten-point
triangle can carry at most

∑
i,j≥0 2−i−j − (1 + 2

2 + 3
4 + 4

8) = 3
4 , so some pebble must be left in

the triangle.
Shortly afterwards, A. Khodulev [58] made the surprising observation, that already the five-

point set s ss s sp is unavoidable. The first complete proof appeared eleven years later in [22],
together with new enumerative results.

The purpose of this paper is to extend these results to the higher dimension analogues of the
pebbling game and to a more general poset version.

18. Pebbling in Zn

The n-dimensional version of the game, suggested by Paul Vaderlind [79], uses the integer
grid points of the first orthant. One starts with a single pebble on the origin and a legal move
replaces a pebble by n pebbles, each one step away in the n coordinate directions.

The weight of a pebble with coordinates (x1, . . . , xn) is n−x1−···−xn and it is obvious that the
total weight of all pebbles is unchanged by a move in the pebbling game. If there were a pebble
on each point in the first orthant, the total weight would be∑

xi≥0
n−x1−x2−··· =

( ∞∑
i=0

n−i

)n
= (1− 1

n
)−n → e when n→∞

Weight calculations can be used to prove that a certain point set is unavoidable, for example
the seven-point set in Z6 consisting of the origin and its six neighbours in the positive orthant.
The total weight that can be carried on all other orthant grid points is

(1− 1

6
)−6 − 1− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
− 1

6
= 0.98598 . . . ,

but the total pebble weight is one.
Dimension six is the lowest dimension in which this kind of proof will work, but in fact the

following is true.
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Proposition 85. The four-point set in Zn, n ≥ 3 consisting of the origin and three neighbour
points is unavoidable.

Proof. Consider the unit cube defined by the four-point set. When the four points have been
emptied, three other points on the cube will have received two pebbles each, one of which must
be sent along to the (1, 1, 1)-point. But in a legal game, no point will receive more than two
pebbles, as shown in the proof of Proposition 88 below. � �

Proofs of this kind are greatly facilitated if several pebbles are allowed to occupy the same
point, at least temporarily. The following result appears as Lemma 3 in [22] in the two-
dimensional case and will be proved in much greater generality in our next section, so let us
just state it as a fact.

Fact 86. If a configuration of pebbles with at most one pebble per point is reachable by moves
which allow stacking of pebbles, then it is also reachable by moves which do not allow stacking.

The level of an orthant point is the sum of its coordinates. Thus, level zero contains the
origin only, level one has n points, level two n(n+ 1)/2 points etc. The following level trimming
procedure for determining whether or not a set of points, X, is unavoidable is given in [22].
Starting at level zero and proceeding one level at a time, perform the moves required to remove
all pebbles from a point in X or all but one pebble from a point not in X. Stacking of pebbles
is allowed.

The following fact is not completely obvious, but again, a much more general statement will
be proved in the next section.

Fact 87. The configuration after trimming levels 0 through k is independent of the order in
which the moves are performed. The set X is unavoidable if and only if the trimming procedure
can go on for ever without running out of pebbles.

Level trimming supplies a polynomial time algorithm to determine whether or not a given set
X is unavoidable, as stated in the next proposition. Let us warn the reader that a much better
result will appear in Theorem 96.

Proposition 88. Let level k be the last one containing a point from X and consider the con-
figurations after trimming levels 1, . . . , k, k + 1, . . . , nk. The set X is unavoidable if and only if
none of these contains a point with three or more pebbles on it at any stage.

Proof. In the one-dimensional case, there are no unavoidable sets and no three pebble points.
The two-dimensional case is a consequence of Theorem 1 in [22], so we can assume n ≥ 3. If there
are three or more pebbles on a point, x = (x1, x2, x3, . . .), at least two of these must propagate to
each of the points (x1 + 1, x2, x3, . . .), (x1, x2 + 1, x3, . . .) and (x1, x2, x3 + 1, . . .) (an equilateral
triangle on the next level). On the next level, each point in the triangle (x1 + 1, x2 + 1, x3, . . .),
(x1, x2 + 1, x3 + 1, . . .) and (x1 + 1, x2, x3 + 1, . . .) receives at least two pebbles from the triangle
below, one of which must be sent on to the point x′ = (x1 + 1, x2 + 1, x3 + 1, . . .). So now there
are at least three pebbles on x′ and the game goes on forever.

Now, assume that there are no three-pebble points on levels k, . . . , nk. This implies that each
point sends at most one pebble to its neighbours on the next level. Level k + 1 intersects the
coordinate axes in n points, none of which can have more than one pebble, so they send no
pebbles to their neighbours. Therefore, on level k + 2 the axis points have zero pebbles and the
axis neighbours at most one pebble. Iterating the argument, we find that on level k + m, all
points with distance less than m from an axis have at most one pebble. The center point on level
nk is k, k, . . . , k and with m = (n − 1)k, we see that all other points have at most one pebble.
Therefore, when level nk has been trimmed, the game is over. � �

A byproduct of the proof is a polynomial bound for the length of the game corresponding to
an avoidable set X. Again, a much better bound will appear in Theorem 96. Let us now consider
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the connection between an avoidable set X and the end position after the game. Points in X
that are never touched by a pebble are of no consequence, but modulo these uninteresting points,
the correspondence is in fact bijective.

Definition. The voidance set of a (finite) pebbling game consists of all points in Zn that at
some stage were pebble points but end up empty.

As defined, the voidance set seems to depend on the particular sequence of moves leading to
the final position, but in our next section, (Proposition 103), we shall show that games leading
to the same position have the same voidance set.

Fact 89. A reachable game position is completely specified by its voidance set.

As combinatorial objects, voidance sets are more tractable than reachable positions, not to
mention pebbling games. A hundred-point voidance set in Z2 might correspond to a position
with a thousand pebbles, which in turn may arise from 10100 games.

It turns out that the points that are played in a two-dimensional pebbling game form a
characteristic configuration bounded by two lattice paths. A corresponding voidance set is the
set of left and lower boundary points on these paths.

Definition. A polyominoid set in Z2 consists of all points on or between two lattice paths
with common start point and common endpoint. As demonstrated in Fig.13, the paths may be
partially or totally coincident, but without loss of generality, we may assume that they are not
strictly crossing. We call (x, y) a left boundary point if (x − 1, y) is not in the polyominoid and
a lower boundary point if (x, y − 1) is not in the polyominoid.

Observation 90. Polyominoid sets correspond bijectively to parallelogram polyominoes in the
sense of M-P.Delest and X.Viennot [35]. If the left path is translated one step upwards, the
lower path one step to the right, and the endpoints are rejoined in the obvious way, we get a
polyomino of the parallelogram type.

s ss ss ss s
s ss ss s
s s sss
ssssss ↔ c c cc sc cs s s
c s ssc s ss s sss s ss
ss ss ss s ss ss s ss ss ss ↔ c cc ssc s c c

c s csc
Figure 13. Two polyominoes with polyominoids and left-lower boundary points.

Not counting the left lower point (the origin of coordinates), a polyominoid set with height h
and width w has h left and w lower boundary points, so the cardinality of the voidance set is
w + h+ 1, one more than the length of each path.

The following enumeration result is classical in the context of polyominoes and noncrossing
lattice paths, see [35] and [47]. Still, for convenience we give the proof in the polyominoid case.

Proposition 91. The number of polyominoid sets with lattice paths of length k, i.e. with k+ 1
left and lower boundary points, is the Catalan number

Ck+1 =
1

k + 2

(
2k + 2

k + 1

)
=

(
2k

k

)
−
(

2k

k − 2

)
Proof. A lattice path of length k can be represented as a binary k-vector. A pair of paths with
common endpoints means two binary vectors, u, v, with the same number of ones. Comple-
menting the second vector and concatenating it to the first vector, one gets a 2k-vector with k
ones, and there are

(
2k
k

)
of these.

The polyominoid (weakly noncrossing) condition is
∑r

1 ui ≤
∑r

1 vi for all 1 ≤ r ≤ k. Other-
wise, let r′ be the first index for which

∑r′

1 ui = 1 +
∑r′

1 vi and let us switch the (k − r′)-tails
65



between u and v. Now, there are two more ones in the first vector, u′, than in the second, v′,
and as for every such pair, r′ can be defined as above, the correspondence is bijective. Finally,
the complemented concatenation trick shows that these nonpolyominoid pairs are

(
2k
k−2
)
. � �

Every pebbling game in Z2 defines a polyominoid, viz. the set of all points that have been
played. In Zn, the play may of course use all n dimensions, but the set of points that have been
played still form a polyominoid set, although folded and meandering through the dimensions.

Definition. A folded polyominoid set in Zn is defined by a consistent labelling of the edges
of a polyominoid set with coordinate directions. Consistency means that for each square in the
polyominoid, adjacent sides have different labels but opposite sides have the same label. Thus,
for a polyominoid with height h and width w, it is sufficient to specify h+w labels, for example
on the left and lower edges.

s ss sss s s s
s s sss

x
x
x

z
z x

yx
y

y y
y y y

z z z

s ss sss s s s
s s sss

x
z

x y

y
y

z u = (y, y, 0, 0, z, 0, 0)

v = (x, 0, z, 0, x, y, 0)

Figure 14. A folded polyominoid with left-lower labels and label vectors.

Labelling of left and lower edges may be seen as distribution of k labels over 2k places,
namely the pair of k-vectors u and v defining the boundary paths. Unlabelled places contain
zeroes. There are of course compatibility restrictions on this distribution and these can be stated
concisely if we introduce the notation |u...r| for the number of labels in the initial r-segment of
u. Thus, moving r steps along the left boundary path, we go |u...r| steps upward and r − |u...r|
steps to the right. And moving r steps along the lower boundary path, we go |v...r| steps to the
right and r − |v...r| steps upwards.

Theorem 92. For pebbling in Zn with n ≥ 3, the following combinatorial objects correspond
bijectively to each other.

(1) Reachable positions with the highest pebble on level k + 1.
(2) Voidance sets of cardinality k + 1.
(3) Folded polyominoids with boundary path lengths k.
(4) Pairs of integer k-vectors, u and v, with a total of k nonzero elements (labels) in
{1, . . . , n}, such that
(a) if for any 0 ≤ r < k, |u...r|+ |v...r| = r then ur+1 ≤ vr+1,
(b) |u...r|+ |v...r| ≥ r for all 1 ≤ r ≤ k,
(c) if the same label occurs in ui and vj , then |u...i|+ |v...j | ≤ max(i, j).

Proof. The folded polyominoid characterization of reachable positions in Zn will emerge as a
corollary of Proposition 110. In dimension three and higher, no node is played twice (this will
be proved in Proposition 107), so the voidance set consists of all left and lower boundary points
of the folded polyominoid, and we have already noted that their cardinality is k + 1.

A folded polyominoid may be unfolded in the xy-plane in at least two ways (xy-reflections),
more if there are intermediate singleton levels, but condition (a) uniquely defines the left and
lower boundary vectors u and v. For both paths reach the same point in r steps if and only if
|u...r|+ |v...r| = r.

Similarly, condition (b) expresses the fact that the left path should keep to the left of the lower
path. (The binary vectors in the proof of Proposition 91 correspond to our vectors in a somewhat
confusing way: the nonzero labels in u mean binary zeroes and zero labels mean binary ones, in
v it is the other way around.)
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Condition (c) means that the horisontal strip to the right of the vertical segment ui must not
intersect the vertical strip above the horizontal segment vj . Either vj is to the left of ui, which
implies |v...j | ≤ i− |u...i|, or ui is below vj , which means |u...i| ≤ j − |v...j |. � �

The beautiful enumeration result for twodimensional polyominoids makes one hope for some
similar formula for folded polyominoids. If one exists, it has eluded this author so far. The
conditions in the theorem makes computer calculations of these numbers easy and we include a
table of them. Note the Catalan numbers in the second column! The row k = 2 is n(3n− 1)/2
and it can be proved that row k is a k-th degree polynomial in n.

fk,n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
k = 0 1 1 1 1 1 1
k = 1 1 2 3 4 5 6
k = 2 1 5 12 22 35 51
k = 3 1 14 57 148 305 546
k = 4 1 42 300 1126 3045 6756
k = 5 1 132 1680 9220 32985 91236

Figure 15. Number of folded polyominoes in Zn with circumference 2k.

The theorem does not apply to the two-dimensional case, for the same polyominoid may
correspond to several voidance sets. The reason is that some points in the polyominoid may
be played twice. Which points? First, they must receive two pebbles, so their left and lower
neighbours are in the polyominoid. Second, their right and upper neighbours must be emptied,
so these must be a left and a lower boundary point. It follows that a twice played point must be
a singleton on its level. The result of the second play is that two old voidance points are replaced

by one new voidance point. ss ss sc c → ss sc ss s . Let us call this configuration a crossing.

Theorem 93. For pebbling in Z2, reachable positions with the highest pebble on level k + 1
correspond bijectively to folded polyominoids with boundary pathlengths k and with any subset
of the crossings marked as voidance points. The generating function for the number of such
reachable positions is

g(x) =
1− 6x+ 4x2 + 4x3 +

√
1− 4x

2(1− 6x+ 8x2 − 4x4)
= 1 + 2x+ 5x2 + 14x3 + 43x4 + 140x5 + · · ·

with asymptotic behaviour gk ∼ const ·Gk, where G = 4.112 . . ..
Voidance sets of cardinality k+1 correspond bijectively to folded polyominoids with boundary

lengths k+ t and with t crossings marked as voidance points, t ≥ 0. The generating function for
the number of such voidance sets is

h(x) =
2− 11x+ 12x2 + x

√
1− 4x

2(1− 7x+ 14x2 − 9x3)
= 1 + 2x+ 5x2 + 15x3 + 51x4 + 187x5 + · · ·

with asymptotic behaviour hk ∼ const ·Gk, where G = 4.147 . . ..

Proof. Knowing that the number of unmarked polyominoids is Ck+1, we can write down a re-
cursion

gk = Ck+1 +
k−2∑
r=2

(Cr+1 − 2Cr)(gk−r − 2 gk−r−1)

with the following interpretation. Let r be the level where the first marked crossing appears.

Then Cr+1−2Cr is the number of unmarked polyominoids ending with a ss ss on level r, for
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we have to subtract polyominoids ending with
ss
or ss . By the same reasoning, the number

of marked polyominoids starting with ss ss and reaching k − r levels is gk−r − 2 gk−r−1.
It is well-known that the Catalan numbers have the generating function (1 +

√
1− 4x)/2x.

Standard manipulations and hard work (thanks, Maple!) produce the expression for g(x).
The recursion for hk is derived analogously, the only difference being that each marked crossing

reduces the number of voidance points and has to be compensated for:

hk = Ck+1 +
k−2∑
r=2

(Cr+1 − 2Cr)(hk−r+2 − 2hk−r+1) .

The roots of the denominators determine the asymptotic exponents (see the chapter by
Odlyzko in [50]) as 1/(smallest root). Exponents greater than four were to be expected, since
Ck ∼ const · 4k. � �

An important part of the paper by Chung, Graham, Morrison and Odlyzko is the enumeration
of minimal unavoidable sets in Z2. The asymptotic expression found is const · γk with γ =
4.147 . . ., exactly our result when counting voidance sets! The agreement is hardly a coincidence,
for in Proposition 104 of next section, we prove that a minimal unavoidable set is a voidance set
with an extra point. The extra point must be chosen such that level trimming becomes infinite
and such that deletion of any other point makes level trimming finite again.

Theorem 94. Every minimal unavoidable set in Z2 can be constructed from the left and lower
boundary points of a marked polyominoid by adding a polyominoid point on the second highest
level.

The generating function for the number of minimal unavoidable sets of cardinality k is

m(x) = x3
(1− 3x+ x2)

√
1− 4x− 1 + 5x− x2 − 6x3

1− 7x+ 14x2 − 9x3
= 4x5+22x6+98x7+412x8+1700x9+· · ·

with asymptotic behaviour mk ∼ const ·Hk, where H = 4.147 . . ..

Proof. Let us look at all possibilities of adding an extra unavoidable point to a marked poly-
ominoid ending like

ss s , i.e. a point that cannot be emptied by further play. Positions outside
the polyominoid can be emptied, for adding such a point means building a larger polyominoid,

e.g.
s ss s c . The corner point can also be emptied by building a new marked crossing s sc ss s.Other polyominoid points, however, really are unavoidable (for emptying them would stack three

pebbles somewhere), but only the corner neighbours produce minimal unavoidable sets. In, for
example,
s sqc s , the last lower boundary point could be deleted.

So either of the corner neighbours in
ss s , produces a minimal unavoidable set together with

the left and lower boundary points. The same reasoning for the special cases
ss c et cetera shows

that the configurations
ss
and
ss always produce one minimal unavoidable set each, and those

are all there are.
Counting marked polyominoids ending in

ss
is a simple matter. There are hk−2 − 2hk−3 of

type
s
and from these we subtract hk−3−hk−4 of type

sc
, so the result is hk−2−3hk−3+hk−4.

The symmetric case gives a factor two and the final expression is mk = 2(hk−2 − 3hk−3 + hk−4).
The generating function m(x) and the asymptotic expression for mk follow immediately from

the corresponding results for h(x). � �

There are four four-point unavoidable sets in Z3. The origin and its three neighbours was

proved unavoidable in Proposition 85. The square cc cc in any coordinate plane is also un-
avoidable, for no point may be fired twice in dimension n ≥ 3. These two examples of minimal
unavoidable sets in Zn are, in fact, generic.
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Theorem 95. Every minimal unavoidable set in Zn can be constructed from the left and lower
boundary points of a folded polyominoid by adding one of the following points.

• The highest point of the folded polyominoid (unless it is already a left or lower boundary
point).
• A point that forms an isoceles triangle with the two corner neighbours (provided that

the folded polyominoid ends with a
s ss ).

Proof. Simpler than the two-dimensional case. One just has to test all positions of an extra
point. � �

Now, at last, we can state the optimal version of Proposition 88.

Theorem 96. Let level k in Zn be the last one containing a point from X and consider the
configurations after trimming levels 1, . . . , k + 1. The set X is unavoidable if no three-pebble
point occurs during this game. If X is avoidable, level trimming will come to an end no later
than after level 2k.

Proof. The truth of the statement for our minimal unavoidable sets can be established easily
enough by a direct check and since each unavoidable set contains a minimal one, the rest is clear.
The analogous method applied to the voidance sets proves the other half of the statement. � �

19. Pebbling a poset

The pebbling game generalizes immediately to any digraph, but to preserve its essential fea-
tures we restrict ourselves to infinite but locally finite posets with 0̂ and without maximal ele-
ments. The game board is the Hasse diagram, one starts with a single pebble on 0̂ and a move
consists of removing a pebble from any node x and adding a pebble to each node covering x.

Following Björner, Lovász and Shor [13], we say that node x is fired. It is illegal to fire a node
unless all of its covering nodes are empty, but we also consider a stacking variant of the game in
which pebbles are allowed to accumulate, at least temporarily.

The shot count is a record of the number of times each node has been fired during a game, so
it is a function from nodes to nonnegative integers.

Proposition 97. Different move sequences lead to the same position if and only if they have
the same shot count.

Proof. A node x that was fired f(x) times has got
∑
f(y)−f(x) pebbles, where the sum is taken

over all nodes y covered by x. � �

The bijective correspondence between reachable positions and shot counts is useful, for shot
counts are less complex combinatorial objects. A simple characterization of shot counts comes
next.

Proposition 98. A finite distribution f of nonnegative integers over the nodes is a shot count
of a legal game if and only if there is a 0 or a 1 on 0̂ and for every other node x, the difference∑
f(y)− f(x) = 0 or 1, where the sum is taken over all nodes y covered by x.

Proof. A game with shot count f is defined by the following rule. Always fire a maximal node
in the subset of nodes x that have a pebble and have not been fired f(x) times yet. Simple
verifications. � �

Proposition 99. If a configuration of pebbles with at most one pebble per node is reachable
by moves which allow stacking of pebbles, then it is also reachable by moves which do not allow
stacking.

Proof. A consequence of the previous proposition. � �
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The last three propositions have the flavour of strong convergence, a concept introduced by
Anders Björner and developed in [42]. A game is strongly convergent if either

• every possible game has the same length and ends in the same terminal position, or
• every game goes on for ever.

Since the posets we are interested in are infinite, there are no terminal positions unless we restrict
legal moves in the following way. Choose an arbitrary subset of nodes X as nodes to be emptied
and call a pebble obstructing if it is in X or (recursive definition!) covers an obstructing pebble.

Proposition 100. With the new rule that only obstructing pebbles may be moved, pebbling is
strongly convergent for every poset and for every set X of nodes to be emptied.

Proof. As shown by Kimmo Eriksson [62], strong convergence of a game is equivalent to the
polygon property, i.e. from any position where two different plays, x and y, are possible, either
there are two play sequences of equal length, one starting with x, the other with y and leading
to the same position, or there are two infinite play sequences, one starting with x and the other
with y.

In a pebbling game position where two nodes, x and y, can be fired, there are two cases.
Either there is a finite play sequence in which both nodes are fired, assume that its shot count is
f . One can play either x or y first, and the algorithm in the proof of Proposition 98 then defines
the rest of a sequence leading to the same position. Or, there is an infinite sequence, for as long
as one of the obstructing pebbles x, y is unplayed, there is certainly some playable node left.
So the pebbling game has the polygon property and is therefore strongly convergent. � �

In the corresponding stacking version of the game, more moves are allowed, but the terminal
position will be the same. A pebble is obstructing if it is stacked or in X or covers an obstructing
pebble.

Proposition 101. The stacking version of the game in which only obstructing pebbles may be
moved is strongly convergent.

Proof. A consequence of the previous three propositions. Note that the shot count determines
the length of the game. � �

To find out whether a set X is unavoidable, one can play the game level after level, allowing
temporary stacking of pebbles. The level of a node x is the length of the shortest path from 0̂
to x. Starting at level zero and proceeding one level at a time, one fires all obstructing pebbles
on that level. This is called level trimming.

Proposition 102. The set X is unavoidable if and only if the level trimming procedure can go
on forever, without running out of obstructing pebbles.

Proof. Suppose that X can be emptied in a finite game with shot count f . It is obvious that the
trimming procedure has a shot count g with g ≤ f , componentwise, and the proposition follows
from this. � �

Definition. The voidance set of a game consists of all points that at some stage were visited
by a pebble but are empty by the end of the game.

Proposition 103. There is a one-to-one-to-one correpondence between reachable positions, shot
counts and voidance sets.

Proof. There is only one small thing left to prove, namely that the shot count f can be recon-
structed from its voidance set. It is evident that level trimming produces one candidate, say f∗,
with only absolutely necessary firings, so f∗ ≤ f componentwise. Suppose that there are nodes
x for which f∗(x) < f(x), and choose such a node on the lowest possible level. Level trimming
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must leave a pebble on x since it can be fired once more, therefore x is not in the voidance set
of f∗, but it is in the voidance set of f , contrary to our assumption. � �

A set X is minimal unavoidable if all strict subsets of X are avoidable. A characterization of
minimal unavoidable sets is easy as soon as all voidance sets are known, for we have the following
result.

Proposition 104. Let X be a minimal unavoidable set and x a node on the highest level in X.
Then X − {x} is a voidance set.

Proof. Because of the minimality, X − {x} is avoidable, so level trimming is a finite procedure.
Any uninteresting point y ∈ X, untouched in this level trimming, would be as uninteresting in
the continued infinite level trimming of X, for the influence of x is noticeable only on higher
levels. Therefore, X − {y} would still be unavoidable, contradicting minimality. � �

In the sequel, we shall concentrate on shot counts, as characterized by Proposition 98. The
support of a shot count is the subposet of nodes that have been fired, i.e. with nonzero shot
count. In the Zn case, this subposet has very nice properties, and the reason for this turns out
to be that the poset of points in the first orthant has V-completion.

Definition. A poset P hasV-completion if whenever y1 and y2 cover x, there is
@ �

�@

x

z

y1 y2a node z covering both y1 and y2. (Birkhoff [7] says that P is upper semimodular.)

Proposition 105. For a poset P with V-completion, the support of any shot count is a ranked
poset (even if P is not) and has a unique maximal element (even though P has not).

Proof. The support supp f also has V-completion, for if x, y1, y2 are in supp f (see illustration
above), by Proposition 98 we get f(z) ≥ f(y1) + f(y2) − 1 ≥ 1, so z is also in the support.
V-completion is the simplest case of the polygon property, so there is strong convergence and
a unique terminal, i.e. maximal node. All paths to this terminal have equal length and this
provides the ranking. � �

Corollary 106. For a pebbling game in Zn, let k be the highest level on which pebbles have
been fired. Then, exactly one firing took place on level k.

Unexpectedly, the characterization of reachable pebble positions is somewhat more difficult in
the plane than in higher dimensions. The reason is that in higher Zn, every node is covered by
at least three nodes.

Such a poset must be infinite, so the triple-cover property never applies to the subset supp f for
any shot count f . However, a more interesting property follows, namely the dual of V-completion.

Definition. A poset P has Λ-completion if whenever z covers y1 and y2, there is
@ �

�@

x

z

y1 y2a node x covered by both y1 and y2. (P is called lower semimodular in [7]).

Proposition 107. If a poset P has V-completion and if every node is covered by at least three
nodes, then f(x) = 1 for any shot count f and any node x in supp f . Further, supp f has
Λ-completion.

Proof. In order to carry out a (finite) induction proof of the statement f(x) = 1, we shall need
a stronger induction assumption.
Q(n): Level n and all higher levels of supp f have f(x) = 1 and contain no tridents �@s s ss

or @�
s s ss , nor any of the following zig-zag shapes: ��@@s s ss s s , ���@@@s s s ss s s s , ����@@@@s s s s ss s s s s , . . .

By Proposition 105, the assumption is true for the very highest level. From Q(n), one can
infer Q(n− 1), as follows. A trident �@s s ss on level n− 1 would mean f(z) ≥ 2 on level n. A
trident @�
s s ss can be V-completed to either ��@@s s ss s ss�@ , a forbidden zig-zag, or �@s s sss�@ , a forbidden

trident.
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A node x on level n − 1 with f(x) ≥ 2 will have at least three covering nodes y1, y2, y3 in P
and since f(yi) ≥ 1, that means a forbiddent trident. Finally, if there is a zig-zag on level n− 1,
V-completion gives either a zig-zag or a trident on level n.

Thus, we have proved Q(0) and the first part of the proposition. We now assume that there is
some Λ-shape that cannot be completed to a quadrangle. Let the shortest completing polygon
have bottom element x. We know that such a polygon exists, for x may be 0̂. Completing the
bottom V we get z, distinct from u1 and v1 in the figure (or there would be a shorter polygon).

s ss�@u0 v0
x

⇒ �@ss ssss�@u1
u0

v1
v0

x

z

⇒
JJ



�@
��BBss ssss
s ss s
�@

u2
u1
u0

v2
v1
v0

x

z′z′′

Now, there are two V-s to be completed and the same argument shows that z′ and z′′ must be
distinct from u2 and v2, but also distinct from each other, for we cannot have a trident �@s s ss .

Iterating, we move up level for level and the final Λ-shape (un = vn) must produce a zig-zag,
contradicting the Q-property just proved. � �

Scrutinizing the proof, one finds that the assumption about triple covers in P is used only to
prove f(x) = 1, which in turn is used only to prove nonexistence of �@s s ss -tridents. Thus, there
is a weaker form of the proposition with the advantage that it can be applied to Z2.

Proposition 108. If a poset P has V-completion and f is a shot count such that supp f has no
�@s s ss -tridents, then supp f has Λ-completion.

Remark 109. The subposets supp f of the last two propositions contain no tridents or zig-zags,
but they may contain the X-shape �@s ss s . By repeated V-completion upwards and Λ-completion

downwards, one finds that an X-shape must be part of a dihedral interval, e.g. this one:

�A
�@
�@
A�

ss ss
s sss

(This is the Bruhat poset of the dihedral group I2(4).) The poset P may continue below
the V and above the Λ, but on the levels in-between there are no nodes outside the dihedral
interval. This is an easy consequence of Proposition 105. Therefore, all dihedral intervals, if any,
may be replaced by quadrangles�@

@�
s sss , while maintaining the shot count properties. Conversely, if

a shot count poset has some level with only two nodes on it, then the quadrangle containg these
nodes may be expanded into a dihedral interval. Therefore, a characterization of shot count
posets may as well assume that there are no X-shapes.

The following characterization is valid for all Zn but its main result is that everything may
be considered as taking place in Z2. The pebbling game may meander through all n dimensions,
but the poset structure of the shot count is planar.

Proposition 110. If a pebbling game is played on a poset P with V-completion and the nodes
that have been fired form a subposet without �@s s ss -tridents or X-shapes �@s ss s , then this subposet
is isomorphic to a polyominoid subset of Z2.

Proof. Assume that the embedding has been constructed for levels zero through k, so the last two
levels look something like � � �@ @s s ss s s . V-completion forces an extension to level k + 1 and Λ-
extension justifies it. Since �@s s ss -tridents cannot occur, everything is specified except whether
the boundary points on level k have single or double covers. In both cases, the embedding is
straight-forward. �

20. Pebbling a Coxeter group

The first orthant of Zn is a poset with the origin as minimal element 0̂, but it is also a
monoid, generated by s1, s2, . . . , sn modulo commutation relations sisj = sjsi. Here, si may be
interpreted as a unit translation in the i-th coordinate direction, and a point with coordinates
(x1, . . . , xn) may be identified with the monoid element sx11 · · · sxnn . As we have seen, a pebbling
position has a shot set (the set of played points) with a unique highest point, w say, and every
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lattice path from the origin to w defines a word in the si or, equivalently, a reduced expression
for w in the monoid. (Reduced means shortest possible, so superfluous 1-factors like in s31s1
are outruled.) Some of these paths visit only nodes that have been played, i.e. points inside the
polyominoid, and we name these paths polyominoid paths. So the left and lower boundary paths
belong to these and all other polyominoid paths interpolate between them.

A more appealing definition of a polyominoid path from the origin to w is the following. Start
with a special blue-coloured pebble on the origin. When the blue pebble is fired, it reappears as
one of the new pebbles on the next level. The first pebble to be fired on each level should be the
blue one. As a consequence of these rules, the blue pebble will always be the only pebble fired on
the highest level – at node w – and the path travelled by the blue pebble will be a polyominoid
path to w.

The left example in Figure 16 is a folded polyominoid with five polyominoid paths, namely
w = yuxz = yxuz = yxzu = xyuz = xyzu. The equivalence of these expressions follows
from three commutation identities, corresponding to the three squares in the polyominoid. Now,
consider the monoid generated by {x, y, z, u} modulo these three relations. In this monoid,
there are exactly five reduced expressions for w, namely the five polyominoid paths. In fact,
the polyominoid is the interval under w in the right factor order on the monoid (where 1 is the
minimal element and α covers β if α = βs for some generator s).

t tt t
tt tt

x
x
x

z
z

y y
u u u ⇒

ux = xu,
uz = zu ,
yx = xy ,

zx 6= xz
uy 6= yu
yz 6= zy t tt t

tt tt
x
x
x

z
z

y y
y y y ⇒ yz = zy ,

yx = xy ,
yz 6= zy
zx 6= xz

Figure 16. The left folded polyominoid defines commutation relations, the right
one does not.

There are two different interpretations of this fact. Either the pebbling took place in Z4, and
afterwards we noted the isomorphism of the polyominoid with the interval under w in a certain
monoid with generators x, y, z, u. Or else the pebbled poset was that of the monoid, all from the
start!

The trouble with the first interpretation is that some folded polyominoids do not define con-
sistent commutation relations. In the right-hand example of Figure 16, the upper right square
shows that y and z commute, but at the same time the nonexistence of a lower right square
indicates that y and z do not commute.

The trouble with the second interpretation, that we are pebbling the monoid poset rather
than Z4, is that the monoid poset does not have the V-completion property. Since x and z do
not commute, the three-move pebbling game in which the origin, x and z are fired does not even
have a unique highest shot point w and so cannot be an interval.

The first difficulty can be taken care of by not allowing repeated labels on the left (or lower)
boundary path. The polyominoid must be folded in every crease, and in a new direction each
time. Our next proposition states that this can always be done, and in n! different ways.

Definition. A pebbling game in Zk is cubic if the highest played point is (1, 1, 1, . . .). The
corresponding folded polyominoid set of fired points is called a cubic polyominoid set.

The cubic polyominoid defines a number of paths from the origin to (1, 1, 1, . . .), and it is obvious
that every such path must consist of exactly k segments, one in each coordinate direction. In
particular, all firings in the cubic game occurred within the unit cube.

Proposition 111. The number of pebbling positions in Zk resulting from cubic games is n!
times the number of polyominoid sets with boundary path lengths k.

Proof. Assign any permutation of the labels s1, s2, . . . , sk to the segments of the left boundary
path. Application of the rule that opposite sides of a square have the same label gives the
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labelling of the lower boundary path, and as there are no repeated labels, consistency of labelling
is automatic. � �

The rule about no repeated labels means that the monoid may as well be replaced by a
Coxeter group. A reduced expression for an element of a Coxeter group certainly never contains
· · · sisi · · · , for all generators are involutions, s2i = 1. The Coxeter graph contains all information
about commutation relations – an edge between two vertices meaning that the corresponding
si and sj do not commute – and it is possible to associate a Coxeter graph to every cubic
polyominoid set. Finally, the concept of a product of all generators in any order is already
established in Coxeter group theory and called a Coxeter element.

Proposition 112. To every cubic polyominoid set in Zk, one can associate an unlabelled Coxeter
graph with vertices s1, s2, . . . , sk and a Coxeter element in the corresponding group, such that
the cubic polyominoid set translates into the lower weak order interval of the Coxeter element.

Proof. Unfold the polyominoid! Any polyominoid path from the origin to (1, 1, 1, . . .) consists of
vertical segments, say s′1, . . . , s′m, and horizontal segments, say s̄1, . . . , s̄p (where m+p = k). The
relative order among the s′i never changes, nor does the relative order between the s̄j . Therefore,
the Coxeter graph construction starts with two paths, one with m nodes labelled by the s′i and
the other with p nodes labelled by the s̄j .

If the polyominoid is an m× p rectangle, the Coxeter graph will be these two disjoint graphs
and the Coxeter element will be s′1, . . . , s′ms̄1, . . . , s̄p, i.e. the expression corresponding to the
left boundary path of the rectangle. The m · p squares of the polyominoid mean that each s′i
commutes with each s̄j , and this is exactly what is signified by the lack of edges between the two
paths in the Coxeter graph.

A nonrectangular polyominoid has got at least one concave corner, and for every such corner,
there should be an edge in the Coxeter graph between the s′i and the s̄j labelling the vertical
and horizontal sides of the concave corner. The polyominoid paths will now trace every reduced
expression of some element in this Coxeter group, for according to Tits’s Word theorem (cf.
Bourbaki [15]), every such expression can be obtained by repeated application of commutation
relations. But an obvious continuity argument proves that a nonpolyominoid path (in the full
rectangle) can be reached only by commuting a concave corner pair of generators, and this is
stopped by an edge in our Coxeter graph. � �

Figure 17 demonstrates the construction for the eight different Coxeter elements of A4. As
proved in the next chapter, Coxeter elements correspond to acyclic edge orientations on the
Coxeter graph, so their number must be 2 · 2 · 2 = 8.

Let us look more closely at the fourth row, that is the element s1s4s3s2 with three reduced
expressions. To construct the polyominoid, we note that s1 and s4 occur in the first position,
therefore the lower left corner must have edges labelled 1 and 4. Our conventions in Theorem
92 assign 1 to the vertical and 4 to the horizontal segment. But s1 also switches position with
s3, so we add a 1,3-square to the right. Finally, we append a 2-segment, for s2 always keeps the
last position. Our conventions make such segments horizontal.

Now that the polyominoid is constructed, the Coxeter graph follows easily. The upper path
consists of the vertical labels, the lower path of the horizontal labels and the edge between them
comes from the only concave corner.

There exist more polyominoids of height four than those occurring in Table 17, all correspond-
ing to Coxeter elements in other groups with graphs of this particular type: two paths with some
connecting edges. The limitation is not as severe as it may seem – it includes all finite, affine,
compact hyperbolic and fifty-two of the fifty-eight noncompact hyperbolic groups. Table 18 gives
examples of other height four polyominoids with groups other than A4.

Remark 113. In general, edges of a Coxeter graph can carry integer labels. These are irrelevant
in reduced expressions for Coxeter elements, which is why we have chosen to ignore them. Table
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Reduced Cubic polyominoid Coxeter graph Acyclic edge
expressions orientation
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Figure 17. Coxeter elements in A4 and their cubic polyominoids

17 could equally well be interpreted as listing Coxeter elements in F4, with the same graph as
A4 except for labels.

Remark 114. For every cubic polyominoid there is a corresponding Coxeter element, but not
the other way around! If a reduced expression can start with three different si, there can be no
corresponding polyominoid.

Let us now turn to the other possibility, which is pebbling the Coxeter group itself,
@ �

�@

x

z

y1 y2considered as a poset. The main objection is that the weak order has no V-completing z
in general – it seems that we need some extra edges. To our help springs the Bruhat order!

Trivially, every V can be completed to a polygon in the weak order, and the Bruhat order
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A�

ss ss
s sss
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Reduced expressions Cubic polyominoid Coxeter graph Name of group
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Figure 18. Other cubic polyominoids of height 4

inserts criss-crossing edges like in our illustration. The definition of y covering x in Bruhat
order is that a reduced expression for x can be obtained by deleting some si from a reduced
expression for y. Deleting s1 from · · · s1s2 we find the lowest criss-crossing Bruhat edge and
the others have analogous explanations. There are other Bruhat edges than these criss-crosses
within a polygon, but as we shall see, they are irrelevant in our pebbling games.

[Our statement above that every V can be completed to a polygon is not correct, for if ss′
has infinite order, the polygon will extend to infinity, never getting a hat. But the criss-crossing
Bruhat edges will still be there.]

There is still one minor impediment to using this poset for pebbling, and that is the possibility
of the group being finite, contrary to our general pebbling assumption that the poset has no
maximal elements. As an ad hoc solution, we add an infinite path above the unique maximal
element wo for the finite groups. These new nodes will never be played anyway.

The main improvement, compared to Zk, is that we are not restricted to Coxeter elements
any more. The only remaining restriction is the no-tridents condition from Proposition 108.

Proposition 115. For any Coxeter group (W,S) and any element w, such that the lower weak
order interval under w has no �@s s ss -tridents even when Bruhat edges are considered, this interval
is the set of played points in some pebbling game on the Bruhat order of (W,S).

Proof. Clearly, a pebbling game can be played in which all points in the interval are fired once
(and no other points are fired) at least if stacking of pebbles is allowed. We have to prove that,
after this play sequence, no point has more than one pebble on it.

Certainly, no point in the interval has more than one pebble, for in that case it must have
received at least three pebbles (one of which was fired away), contradicting the no-tridents
assumption. We must show that no point γ outside the interval can Bruhat-cover two points u, v
within the interval. This will be proved as a separate lemma. � �

Lemma 116. Let γ, u, v, w be Coxeter group elements such that

� @
γ

u v

� �w

• u 6= v,
• u < w and v < w in the weak order,
• γ covers both u and v in the Bruhat order.
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Then γ ≤ w in the weak order.

Proof. By definition of Bruhat order we have γ = ut1 = vt2, where the elements t1 and t2 are
reflections (i.e. of type gsig−1), and our proof splits into three cases, depending on whether any
of them is a simple reflection si.
Both reflections simple: Here we can use Kimmo Eriksson’s notion of a polygon poset (see [42],
sec 9.4). Eriksson characterized lower intervals in the weak order as finite edge labelled posets,
satisfying four conditions, one of which (the “hat property”) states the following. �� @@

γ
s1 s2

@@ ��s2 s1λ

If two edges labelled s1 and s2 go down from an element γ, then this hat can be
completed to a polygon, alternatingly labelled by s1 and s2. Applied to the hat in
[1, γ], this property produces a polygon as in the illustration, the lower part of which also belongs
to the interval [1, w]. Now, the dual property (the “cup property”) can be applied to the two
edges leading up from λ, and we conclude that the whole polygon is in [1, w]. In particular, we
have γ ≤ w. [We could also have referred to the known fact that weak order is a lattice.]
One nonsimple reflection: Here we can use the Strong Exchange Condition

�� @@
γ

t s
u v

@@ ��s t′ sk

sk+1
(see Humphreys [56], p 117). Let v = s1 · · · sk be a reduced expression and
note that u = s1 · · · sk st has length k only. Then, according to the Strong
Exchange Condition, there is an index i, such that u = s1 · · · ŝi · · · sk s (omitting si). Now, let
m be the length of w. Since u < w and v < w, there are expressions w = uu′ = vv′, with u′ and
v′ of length m− k, e.g. u′ = sk+1 · · · sm. Once more, we use the Strong Exchange Condition, but
now in its left-handed version and with the reflexion t′ = sts. Note that v′ = t′s sk+1 · · · sm has
length m− k only, therefore v′ = s sk+1 · · · ŝj · · · sm. Thus, w = vv′ = γsk+1 · · · ŝj · · · sm and we
have proved γ ≤ w.
Two nonsimple reflections: Proof by contradiction! Assume γ chosen as the �

�
@
@

�
�

@
@

γ

λ

t1 t2
u v

s

s s
t′1 t′2

lowest possible counterexample and let γ = s1 · · · sk s be a reduced expression.
As before, we find down-going s-edges from u and v, giving new reflections
t′1 = st1s and t′2 = st2s on the level below. By our assumption then, λ ≤ w. �

�
@
@

γ

u λ

t1 s

But now λ can play the role of v in case two above, and we conclude γ ≤ w.
� �

Remark 117. Lemma 116 is similar to Theorem 3.7 in Björner and Wachs [14], although it can
be shown, that neither implies the other.

Remark 118. It is not true that every pebbling game on the Bruhat order corresponds to a
lower interval in the weak order. For instance, a game with only three firings, 1, s1, s2s1, is legal,
for the last two points are connected by a Bruhat edge. But unless s1 and s2 commute, these
three points do not form a lower weak order interval. It is, however, possible to change the rules
in order to make the correspondence perfect. Just add the rule that a pebble may not be fired
if has arrived to its point along a Bruhat edge that is not a weak order edge!

For pebbling games on posets with V-completion, we know by virtue of proposition 108, that
if the set of fired points has no �@s s ss -tridents, it must consist of polyominoids connected by
dihedral intervals. So we get a corollary that does not involve pebbling at all.

Corollary 119. Let [1, w] be an interval in the weak order of a Coxeter group such that, even
counting Bruhat edges, the interval contains no �@s s ss -tridents. Then the interval structure is
that of polyominoids connected by dihedral intervals.

21. Conclusions

The pebbling game is closely related to the checker jumping game, where a move looks likef f p - p p f , in any direction. The main difference seems to be that pebbling moves create
pebbles while checker jumps annihilate checkers, but that is only a superficial discrepancy. If
checkers were small and empty gridpoints large, a natural interpretation of the move d d v -v v d would be that a black spot is created! Exactly the same invariant weight method can be
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used in both games, but for some reason, it is much more successful in checker jumping. In fact,
the bounds stemming from weight considerations are sharp for the natural reachability problems
solved by the present author and Bernt Lindström [41], but far from sharp in pebbling.

Our interpretation of pebbling as a strongly convergent game demonstrates the similarity with
the chip firing game of Björner, Lovász and Shor [13]. Chips can accumulate on the nodes and
when a node is fired, it sends one chip to each neighbour. Some of the chip firing analysis can
be applied to pebbling, but the most interesting part focuses on recurrent positions, and that
phenomenon cannot occur in pebbling.

No, pebbling has its own special features and most astonishing is the uniform structure of
reachable positions, regardless of whether the game is played on Z3, Z17 or any poset satisfying
a few regularity conditions. In all cases, the same combinatorial object emerges: the folded
polyominoid. In addition to the geometric and game interpretations there are several others.
The set of paths leading from the origin to the highest point of the polyominoid may be seen
as a set of words in an n-letter alphabet and this is often, but not always, an equivalence
class corresponding to some commutation relations (also called a trace or an element of the
commutation monoid according to Cartier and Foata [21]). Of special interest is the Coxeter
group case and as we have seen, many folded polyominoids occur as intervals in the Cayley graph
of the appropriate Coxeter group. Finally, a heap of pieces in the sense of Viennot [80] can be
associated to every folded polyominoid in a number of ways.
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Chapter 5

Chip-firing and Coxeter elements

22. Introduction

For the theory of finite reflection groups, Coxeter elements play an important role. A Coxeter
element is a product w = s1s2 · · · sn of all the generating reflections si, taken in any order. All
Coxeter elements are conjugate and therefore have the same eigenvalues. It turns out that these
eigenvalues immediately determine the exponents of the group, and this is probably the simplest
way of computing these numbers.

For infinite Coxeter groups, much less is known about the Coxeter elements. A’Campo [1]
showed that they have infinite order, Howlett [55] that they have a real eigenvalue ≥ 1. The
affine case has been treated in more detail by Steinberg [74] and Berman, Lee and Moody [5].

Our interest in the matter is the enumerative aspect. Surprisingly, the combinatorics turns
out to be a special case of the chip-firing game by Björner, Lovász and Shor [13]. The connection
is as follows. Given a Coxeter element w = s1s2 · · · sn, we put a certain number of chips on each
vertex si in the Coxeter graph, namely the number of neighbours sj that succeed si in w. Every
Coxeter element gives rise to a well-defined distribution of chips and the legal play sequences
correspond to rotations of the n-letter words. As a second surprise, the reachability relation
partitions these game positions precisely according to conjugacy classes.

23. Edge orientations and chip-firing

Let G be a connected, undirected graph. An acyclic edge orientation is an assignment of
directions to all edges, such that the resulting digraph is acyclic. This is always possible. A
simple observation is that the resulting digraph contains at least one sink, i.e. a vertex with no
out-going edges.

We go on to explain the connection with the chip-firing game of Björner, Lovász and Shor,
introduced in [13]. If each arrow-head is detached and pronounced a chip, we get a distribution
of chips on the vertices. This distribution contains all information, as stated by the following
result.

Proposition 120. An acyclic edge orientation can be retrieved from its distribution of chips,
i.e., the in-degrees determine all edge directions.

Proof. It is well-known that an acyclic digraph must have a sink, so for some vertex, the number
of chips equals the degree. That reveals the orientation of all edges at that vertex. But after
removing these edges and their chips, we still have a distribution corresponding to an acyclic edge
orientation, so the procedure can be continued until all edge orientations have been revealed. �

�

A legal move in the game consists of choosing a vertex with at least as many chips as the
degree and then moving one chip to each neighbour. Translated into edge orientations, a legal
move means choosing a sink and reversing its edges. Since neither sinks nor sources belong to
any cycles, the graph will still be acyclic and contain a sink, so the game goes on forever. The
following fact is crucial.

Proposition 121. Let u and v be two acyclic edge orientations. Then there is a legal game
from u to v if and only if there is a legal game from v to u.



Proof. If a single move can be inverted, so can a sequence of moves. Thus, it is sufficient to
consider the case when v is the result of firing a single vertex in position u. In order to prove
this by induction, we first strengthen the property like this: For every vertex x that can be fired
in position u, there is a continuation in which every other vertex is fired exactly once. Clearly,
such a firing sequence leads back to u.

The statement is true for the case �q q and induction over the number of vertices proves
the proposition: Fire some vertex x, to reach some position u1. Let u1 − x be the acyclic edge
orientation obtained by deleting x and its edges. By the induction assumption, it is clear that
there exists a firing sequence from u1 − x in which all vertices are fired exactly once, and this is
still legal after reinserting x and all its edges, since these edges are directed out from x. � �

Remark 122. According to this result, reachability constitutes an equivalence relation that
partitions acyclic edge orientations into reachability classes.

Remark 123. The proposition is not generally true for chip-firing games. The simplest coun-
terexample is u = s s s2 0 0 and v = s s s1 1 0. The position u can never reappear, although the game
is infinite.

By Theorem 3.3 in [13], the total number of chips in an infinite game must be at least equal
to the total number of edges. The distributions considered by us have exactly one chip for each
edge, so they are minimal among infinite game positions. This minimality, together with the
recurrence property in the last proposition, characterizes these positions.

Definition. A position is recurrent if there is some game in which it occurs twice. It is minimal
recurrent if no chip can be removed without destroying the recurrency.

Proposition 124. Minimal recurrent chip-firing positions are precisely positions corresponding
to acyclic edge orientations.

Proof. By Theorem 4.1 in [12], for any recurrent position u, there is a recurrent game from u to
u such that each vertex is fired exactly once. So along each edge a chip is fired in each direction.
Let us always use the same chip on the return route! After the game, remove all chips that were
not used. The result is a position corresponding to an edge orientation. Further, it must be
acyclic, for all vertices are fired and vertices in a circuit can never be fired. � �

For many graphs, it is now a rather simple matter to enumerate acyclic edge orientations and
reachability classes. Two basic cases are covered by our next proposition.

Proposition 125. For a tree with n nodes, there are 2n−1 acyclic edge orientations but only one
reachability class. For an n-cycle, there are 2n−2 acyclic edge orientations and n−1 reachability
classes of sizes

(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1
)
.

Proof. An n-vertex tree has got n− 1 edges with no restrictions on orientations. The statement
that all are reachable from each other is obvious for a two-vertex tree �q q. Assume that it is
true for all n-vertex trees and consider an (n+ 1)-vertex tree Tn+1 = x Tn (where x is a leaf
vertex) and two acyclic edge orientations on Tn+1, u and v. By assumption, their restrictions
to Tn can be connected by a game and if x is fired whenever possible, this also defines a game
on Tn+1, say from u′ to v′. Now, either u′ = u or u′ is the result of firing x in u. The same
argument for v′ confirms that u and v are in the same reachability class.

For an n-cycle, exactly two orientations are forbidden, namely all n clockwise or all n anti-
clockwise. Consider the

(
n
k

)
orientations with k anti-clockwise edges. Firing a node may be seen

as moving the anti-clockwise arrow one step forward, e.g. � - � �q q q q q to � � - �q q q q q
It is obvious that any position with k anti-clockwise arrows can be reached in this way. � �
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24. Coxeter elements

Let (W,S) be an irreducible Coxeter group, defined by a connected, edge labelled graph G
with vertex set S and labels in {3, 4, . . .}.

A product of all n generators, in any order, is called a Coxeter element. Two permutations of
s1, . . . , sn define the same Coxeter element if and only if one can be transformed into the other
by repeated application of the commutation rule sisj = sjsi for nonconnected vertices. This is
a consequence of Tits’s Word Theorem, see Tits [76], 1969. Because of this, the edge labels are
not so important in our line of investigation. In most cases, we shall not even mention them in
our statements.

Every permutation of s1, . . . , sn induces an acyclic edge orientation on G by directing the edge
si ← sj if si precedes sj . By the above, we have the following simple result.

Proposition 126. There is a bijective correspondence between Coxeter elements and acyclic
edge orientations of the Coxeter graph.

We can choose a slightly different outlook and regard the acyclic edge orientation corresponding
to a certain Coxeter element w as a poset. A specific n-letter word in the si representing w can
be viewed as a linear extension of the partial order and there is of course a wealth of enumerative
results to be applied. We confine ourselves to the following useful observation.

Proposition 127. The sinks of the acyclic edge orientation corresponding to a Coxeter element
w are the si that appear as the first letter of some n-letter word representing w. The number of
such words starting with si can be expressed as(

n− 1

n1 . . . nk

)
e(G1)e(G2) · · · e(Gk),

where the Gj are the components of G − si, nj = |Gj | and e(Gj) denotes the number of linear
extensions of the poset Gj . This formula gives a recursion for the computation of e(G).

Proof. In any n-letter word representing w, each sink si has all its vertex neighbours to the right,
so it can be freely moved to the left end of the word.

The nj letters in component Gj may come in e(Gj) different relative orders. The factor
(
n−1
n1...nk

)
reflects the number of ways that the n− 1 positions after the first letter may be distributed over
the Gj . � �

If the first letter of a Coxeter word is moved last, the correponding vertex obviously changes
from sink to source. Conversely, every sink is a first letter of some Coxeter word corresponding
to the edge orientation and therefore, any chip-firing play corresponds to rotation of the word.

Proposition 128. Rotation of Coxeter words induces an equivalence relation on the set of
Coxeter elements, that corresponds precisely to the reachability relation on the set of acyclic
edge orientations.

If w = s1s2 · · · sn, then s1ws
−1
1 = s2 · · · sns1 so rotation equivalent elements are conjugate.

The converse is also true.

Proposition 129. Coxeter elements belong to the same conjugacy class if and only if they are
rotation equivalent.

Proof. What we have to prove is that acyclic edge orientations in different reachability classes
correspond to nonconjugate elements. According to Proposition 125, there is nothing to be
proved when the graph is a tree. We refer to [40] for a proof in the general case. The principal
idea of this proof appears in the proof of our next proposition. � �
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For an important class of Coxeter groups, including all finite and affine groups, propositions
125, 128 and 129 enumerate conjugacy classes of Coxeter elements. For the tree case, this is an
old result (see [56], 8.4) but the cycle case may be new. Recall that an n-cycle with all edges
labeled by 3 is the graph of the affine group denoted by Ãn−1.

Proposition 130. In Ãn−1 (and in all groups with n-cycle Coxeter graphs) the Coxeter elements
fall into n−1 different conjugacy classes of sizes

(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1
)
. A representative of the k-th

class is wk = s1s2 · · · sksnsn−1 · · · sk+1. A Coxeter element w = si1 · · · sin belongs to class k
if exactly k of the indices precede their numerical successors. The numerical successor of i is
defined as i+ 1, unless i = n in which case it is 1.

Proof. In the proof of Proposition 125, class k is characterized as having k anti-clockwise oriented
edges si ← si+1, and that is also the number of si that precede si+1 in wk. What remains to
be shown is that wk and wk′ are nonconjugate if k 6= k′. Instead of referring to the previous
proposition, we shall give a direct argument.

If two group elements are conjugate, then so are their m-th powers. Let us study elements of
the form siw

m
k si, where m = n! (or at least divisible by 1, 2, . . . , n − 1). When si is a sink or a

source, this is of course a one-step rotation of wmk . We shall prove that in all other cases, it is
equal to wmk itself! Then, we can iterate and draw the conclusion that every conjugate of wmk is
a rotation, whence the statement about wk can be deduced.

In fact, siwk = wksi−1 if 3 ≤ i ≤ k and siwk = wksi+1 if k + 2 ≤ i ≤ n− 1, as can be verified
directly. The double-step relations s2w2

k = w2
ksk and snw

2
k = w2

ksk+2 have more complicated,
but still trivial, verification. We conclude that, unless si is the first or last letter in wk, we have
siw

m
k = wmk si if m is divisible by k and by n− k. The remaining details are easy. � �

Example. Consider Ã5. In the Coxeter element w = s3s5s1s2s4, 1, 3 and 5 precede their
numerical successors, so w is conjugate to w3 = s1s2s3s5s4. In fact, we have uwu−1 = w3 with
u = s4s5s3.

In Ãn−1 (as in all Coxeter groups with n generators), there are n! Coxeter words and one may
ask how many of these that fall into each conjugacy class. We know that rotating the word does
not alter its conjugacy class, so it is enough to consider permutations where n comes last. In
that case, n does not precede its numerical successor, so the conjugacy class number k is (n− 1)
minus the number of inversions among numerically adjacent pairs (1, 2), (2, 3), . . . , (n− 2, n− 1).
Ignoring the n we get a permutation π ∈ Sn−1. Now, r + 1 precedes r in π if and only if r is a
descent in π−1, so we can write k = n− 1− d(π−1). But it is known that the Eulerian numbers
count permutations with given number of descents. The definition is

A(n− 1,m) = |{π ∈ Sn−1 : d(π) = m− 1}|,
see Stanley’s book [73]. Putting m = n− k we get the following formula. Recall that there are
n rotations of every word obtained above.

Proposition 131. In Ãn−1 (and in all groups with n-cycle Coxeter graphs), the n! words repre-
senting Coxeter elements are partitioned by conjugacy into n−1 classes of sizes nA(n−1, n−k)
for k = 1, . . . , n− 1.
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Chapter 6

Stack sorting and flip sequences

25. The flip game and its applications

The flip game is played with an array of n objects. A move consists in reversing a subsegment
of the array — for short, we shall call this a flip. Often, we are going to allow the reversal of
several disjoint segments in one move, a multiflip. Note that total reversal is not considered a
flip!

FLIP : (1 2 3 4 5 6 7 8 9) 7→ (1 6 5 4 3 2 7 8 9)
MULTIFLIP : (1 2 3 4 5 6 7 8 9) 7→ (1 4 3 2 5 7 6 9 8)

NOT A FLIP : (1 2 3 4 5 6 7 8 9) 7→ (9 8 7 6 5 4 3 2 1)
The object of the flip game is to find the shortest sequence leading from one permutation to
another permutation. You can try your skill at this one: How many flips are needed to take you
from (1 2 3 4 5) to (5 4 3 2 1)? How many multiflips? 2

An adjacent transposition is a flip, so obviously you can get from any permutation to any
other permutation in at most n(n− 1)/2 flips (this number is the top-to-bottom distance in the
Hasse diagram of the weak order for Sn). As we shall see, n flips are enough even in the worst
case, which is the top-to-bottom trip. Using multiflips, it is sometimes possible in n− 1 moves.

As any permutation is a product of flips, flip sequences may be used for representing the
group. A rough estimate of the space efficiency of a naïve implementation of this data type
is obtained like this: there are

(
n
2

)
−1 different flips, the maximal length of a sequence is n, so

the representation uses n!/
(
n
2

)n ∼ ( 2
n)n of the available possibilities, as compared to (1e )n for

the usual n-vector representation of permutations. Stated that way, it looks like a devastating
waste of memory space. But remembering that, in calculations with permutations, n is often
a small number, we can state it differently. Say that n = 100 so that the usual representation
takes 100 cells of computer memory. The flip sequence will take exactly the same one hundred
cells (in fact less on the average, if we use linked lists instead of arrays and if the pointer can
be accommodated in the two high bytes of the word!), and the fact that the contents now range
from 1 to 4950 is of no consequence. It is our opinion, that there may well exist interesting
calculations in which the flip sequence is the optimal representation of a permutation.

But there are two other main reasons for studying flip sequences:
• Flip sequences have interesting applications in geometry, computer science and genetics.
• The natural generalization to Coxeter groups has a number of interesting properties.

Before we move on to the combinatorics, a sightseeing tour of the application field leaves straight
away. Please join in!

25.1. Slopes of n points in plane geometry. The problems of this section are concerned
with configurations of n points in the plane, not all on one line. Two such configurations of five
points are shown in the figure. Every pair of points determines a line, and all these lines must
be drawn too. There are five lines in the left picture but six lines in the right picture. On the

2[u]Five flips or four multiflips. (Count ten points for each correct answer!)
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Figure 19. Two configuration of five points and the lines generated by them.
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Figure 20. A counter-clockwise rotating constellation, defining a flip sequence.

other hand, these lines have five different slopes in the left configuration, but only four different
slopes in the right one. Two questions now arise:

(1) What is the minimum number of lines determined by n noncollinear points in the plane?
(2) What is the minimum number of slopes determined by n noncollinear points in the plane?

The first question was posed by by a young Erdös and answered by a middle-aged Erdös. The
answer is n, so the left-hand picture illustrates the extreme case. The second question emanates
from P.Scott [67] (1970), and was accompanied by a conjecture, proved to be true by Peter Ungar
[78] in 1982. The answer is n if n is an even number and also if n = 3, but for n = 5, 7, 9, . . ., the
answer is n− 1. The right-hand figure is the extreme case for these odd numbers — the square
just has to be replaced by a regular hexagon, octagon etc. For an even number of points and for
n = 3, however, nothing can beat the left-hand picture. For an exposition of results of this kind,
see Section 1.11 of Oriented Matroids [11].e

Ungar’s proof uses a technique developed by Goodman and Pollack [49]. They project the
points vertically down onto a horizontal axis and they number the points and their projections
by 1, . . . , n. Now, the point constellation starts to rotate slowly, around its center of gravity, say.
Each time that two or more points happen to have the same x-co-ordinate, a flip takes place in
the permutation of projected points.

Every line in the configuration thus corresponds to a flip in the permutation. Lines with the
same slope correspond to simultaneous flips, i.e. slopes correspond to multiflips.

When the constellation has rotated 180 degrees counter-clockwise, the permutation is the
reverse of the start permutation, for the situation is as if we were to project everything upwards
in the start position. To summarize, a flip sequence transforms 1 . . . n to n . . . 1 and we seek a
lower bound for the number of flips or multiflips needed to perform this transformation. The
transformation is none other than what we have called wo, the longest element of An−1.

Ungar’s proof makes no mention of points or slopes, just permutations and flips. It shows
that when n is even, the number of multiflips needed is at least n, therefore the number of flips
needed is also at least n. The extreme cases of the previous figure prove that the bound is sharp.
The cases n = 5, 7, 9 . . . for multiflips are direct consequences of the bounds for n = 4, 6, 8 . . .
and the known extreme case. The same cases for single flips cannot be derived directly from
Ungar’s result, but will be covered in section 26.2.
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Figure 21. The railway network model of stack sorting.

25.2. Stack sorting in computer science. Anyone who ever opened a textbook in computer
science must have marvelled at the superabundance of sorting methods. Donald Knuth [61]
managed to get the state of the art twenty years ago, into one chapter, 388 pages long, and to
justify its size he quotes an anonymous computer manufacturer’s estimate, that over 25 percent
of the running time on their computers was spent on sorting. Obviously, Knuth felt uneasy about
passing on this highly dubious piece of information, for a few sentences later, he adds: But even
if sorting were almost useless, there would be plenty of rewarding reasons for studying it anyway!
We suggest that the reader make a mental note of this statement, for we are going to discuss
some quite impractical methods.

The railway model of stack sorting was suggested by E. Dijkstra. A train of railroad cars
coming in from the right can be permuted by means of a siding. By definition, this siding is a
stack, for the last car to enter it must be the first car out. The traffic-flow on the main track is
always right to left, so this is a one-pass method. Assuming that the cars are numbered 1, 2, . . . , n
in input order, what output permutations are possible?

Knuth gives a complete analysis of the situation. The only permutations obtainable are those
with no occurrence of the pattern 312. Note that 412 has the same pattern, as has 736 etc,
so all these triples are forbidden. As one might guess, this forbidden pattern occurs in most
permutations. While there is a total of n! permutations, there are only

(
2n
n

)
−
(
2n
n−1
)
that can

be stack-sorted in one pass. (Yes, this is the Catalan number, so often present in enumerative
formulas.)

The analysis of one-pass stack-sorting appeared as Exercise 2.2.1-2 in Vol. 1 of Knuth’s Fun-
damental algorithms series, an exercise on stacks, not on sorting! When the enormous sorting
chapter was published, five years later, many computer scientists had hooked on to the train and
worked on diverse modifications and generalizations of stack sorting. So in Exercise 5.2.4-19,
we are asked to analyze k-pass sorting. We can think of this as a main track with k dead end
sidings, or as a circular main track, permitting the train to pass the same siding k times. The
simplest, but also the most interesting result is the following.

Proposition 132. [Knuth, Tarjan] Any permutation of n elements can be stack-sorted in k
passes if n ≤ 2k.

One natural modification of the stack concept is the all-out stack. All stacks accept their input
item by item. Ordinary stacks also output individual items, but when an all-out stack pops one
item, it pops them all. Some existing hardware stacks have this property, deep containers that
must be emptied by use of gravity. Note that, as in the railway figure, all items must enter the
stack; there is no by-pass.

The workings of an all-out stack is exactly what we have called a multiflip and a k-pass sorting
with an all-out stack performs a sequence of multiflips. Therefore, the flip sequence analysis can
give complexity results for this kind of sorting.

One closely related problem is called pancake flipping. Here, we are only allowed to flip initial
segments of the permutation. For this case too, we can consider the shortest possible expression
for wo as a product of pancake flips. The bounds by Gates and Papadimitriou [49] from 1979
were recently improved by Cohen and Blum [24].
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25.3. Flip mutations in genetics. A DNA-molecule is a linear structure, the significant parts
of which are called genes. As is well-known, DNA has the ability to make a perfect copy of itself.
At some point in this duplication process, the molecule is very sensitive to disturbances and
can break at one or more points. A chemical mending crew steps in and makes prompt repairs.
However, when a segment has broken off, it often happens that it is glued back flipped. Such
flips are now considered to be the most common source of mutations.

The new techniques for DNA-charting enormously improve the possibilities of finding out how
different species are related. The charts of species within the same genus often display the same
gene material, but in slightly different order. If a small number of mutation events can explain
the differences, the species are considered to be closely related. Combinatorially expressed, the
shortest flip sequence leading to the observed permutation has to be computed.

Two computer scientists, V. Bafna and P. Pevzner, recently proved some interesting facts,
relevant to the genetic problem [4].

Proposition 133. [Bafna, Pevzner] If total reversal (wo) is considered a legal flip, then any
permutation can be ordered with at most n−1 flips. Only two permutations need the maximum
number of flips, namely the Gollan cycle (1 3 5 . . . n . . . 4 2) and its inverse.

Note that the Gollan cycle is in cycle notation – not a permutation vector, although it may
look like one.

The most interesting part of Bafna’s and Pevzner’s paper may be the observation that not
permutations but signed permutations provide the most realistic model of the genetic situation.
A gene is a directed fragment of the DNA-molecule, so a mutation of the original order is given
naturally by a signed permutation. There is no mention of Coxeter groups in their work, but
every algebraic combinatorialist must ask herself “Can this be done for any Coxeter group?”. (As
the author became aware of at his first combinatorics conference, this is one standard courtesy
question to all speakers. The other one is “Is there a q-analogue?”.) The answer is, of course,
“Yes”. (And that is as far as you will get, before the chairman interrupts with “Let’s thank the
speaker again!”).

26. Analysis of the flip game

Our intention is to formulate the concepts flip and multiflip in such a way that they make
sense for any Coxeter group. The first observation is that flips and multiflips in An−1 (ordinary
permutations, that is) are determined by the set of adjacent tranpositions involved. As shown
in our example, that amounts to specifying a subset of nodes in the Coxeter graph.

FLIP : (1 6 5 4 3 2 7 8 9) e e e e e e e eu u u u
MULTIFLIP : (1 4 3 2 5 7 6 9 8) e e e e e e e eu u u u

It is clear that a flip involving five values is an internal affair of four adjacent nodes in the Coxeter
graph of An−1. A multiflip is specified by any strict subset of nodes. The connected components
of the corresponding subgraph define flips. So let J ⊂ S be a connected subset of the nodes
(an interval, to be sure) and WJ be the generated subgroup. We know that the longest element
wo(W ) is the total flip (see page 9) and therefore our flip must be wo(WJ).

The subset J defined by a multiflip consists of several disconnected intervals, J1, J2, . . ., and the
flips wo(Ji) are independent, so the multiflip can be written as a product wo(WJ1)wo(WJ2) · · · .
But this product must also be wo(WJ), for the length function of a reducible group is the sum
of the lengths of each component. Anyway, the following definition is justified.
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Definition. Let (W,S) be a Coxeter system with graph G. An element w ∈ W is a multiflip
if w = wo(WJ) for some strict subset J ⊂ S such that WJ is finite. If J is connected (as a
vertexset of G), the multiflip w is a flip.

Without the finiteness condition on WJ , the notation wo(WJ) would be meaningless, for an
infinite group has no longest element. But if W is affine or compact hyperbolic, then all strict
parabolic subgroups (that is what WJ -subgroups are called) are finite.

We already know about flips and multiflips in An−1, but what about the signed permutations
of Bn and Dn? Just as there are two kinds of si-actions in Bn, there are two kinds of flips. If the
special node sn is involved, we flip a symmetric interval −k, . . . , k, if it is not involved, we flip a
positive interval and its negative mirror image. The situation is similar in Dn — if both special
nodes, s1 and sn, are involved, we flip a symmetric interval, otherwise two mirror images.

Comparing this to the situation in the genetic application, we must admit that this flip is not
a good model of the DNA-flips. In a genetic flip, all genes in the interval are both inverted and
flipped. The correct model of a genetic flip would be a sequence of two Bn-flips, first flipping the
symmetric interval −r, . . . , r to invert all genes, then multiflipping −k, . . . , k and (k+1, . . . , r.
As far as we know, there has been no studies in this direction.

26.1. Flip sequences and the Möbius function. The theorem of Peter Ungar states the
minimal number of multiflips necessary to get all the way from e to wo in the symmetric group.
In this section, we are going to prove analogous bounds for all other finite Coxeter groups as
well. However, we want to start with an account of other interesting aspects of these allowable
sequences, as they were named by Goodman and Pollack [49].

Goodman and Pollack noted the fact that every configuration of n points in the plane gives
rise to an allowable sequence from e to wo. A natural question to ask is whether every allowable
sequences emanates from some point configuration. There are, however, allowable sequences
that are not realizable in this way. One has to generalize from point configurations to oriented
matroids to get the right correpondence, see [11], page 35–38.

The allowable sequences of a general Coxeter group has another characterization in terms
of the Möbius function. For any poset, the Möbius function µ(x, y) is defined recursively by
µ(x, x) = 1 and

∑
t µ(x, t) = 0 if the sum is taken over all t in an interval [x, y] (see [73] for a

good introduction to µ). When the poset is the weak order, the following is true ([8], Th. 4).

Proposition 134. [Deodhar [36], 1977] Suppose that x ≤ y, then µ(x, y) 6= 0 if and only if
y = xw, where w is a multiflip.

An allowable sequence is therefore characterized by the fact that the Möbius function is nonzero
over every link in the chain. In fact, it is +1 if l(w) is even and −1 if l(w) is odd. Closely related
to this is the following topological property. It is to be understood in the context of the simplicial
order complex, that can be defined for every interval [x, y] of any poset. The simplices of the
order complex are the chains x < x1 < x2 < . . . < y, so the faces are maximal chains, where the
length increases by one in each link.

Proposition 135. [Björner [8], 1984] All weak order intervals, except multiflips, are contractible
complexes.

A multiflip interval is always homotopy equivalent to some sphere, but we must not go further
in this direction. If we have already strayed too far, the purpose was to emphasize that multiflip
sequences is not just a stupid way of sorting railway cars!

26.2. Ungarian theorems for finite Coxeter groups. The main theorem extends from the
symmetric group to all other finite Coxeter groups the lower bound for the length of an allowable
sequence from e to wo.

Theorem 136. For the groups Bn, Dn, E6, E7, E8, F4, H3, H4, I2(p), the shortest possible allow-
able sequence has length 2

n l(wo), where n is the number of nodes in the Coxeter graph and l(wo)
is tabulated on page 10.
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Conjecture 137. The number of shortest possible allowable sequences is 2n − 2.

Proof. Before endeavouring a general proof, let us see what the theorem and the conjecture mean
in the simplest case, I2(p). There are two generators, a and b and a relation ababa . . . = babab . . ..
The only multiflips are a and b themselves, so it is evident that the shortest allowable sequences
are ababa . . . and babab . . .. In this case, the formulas correctly state that 2

2p = p and 22− 2 = 2.
The computer was kind enough to check the formulas for the sporadic groups (E,F,H-types),

and could confirm the formulas. (But for E8 only after several weeks of continuous computing!)
Anyway, we now feel entitled to concentrate our efforts on Bn and Dn.

Bn: We want to prove that the shortest multiflip sequence from −n . . . n has 2n links. Two
pages ago, we found out what the multiflips look like, and it is clear that they can be
regarded as multiflips on S2n+1, for −n, . . . , n are 2n+1 symbols to be permuted. The e
and the wo are also the same in both groups, so an allowable sequence for Bn is also an
allowable sequence for S2n+1. And so, by Ungar’s theorem, it has at least 2n links.

An example of an allowable sequence for Bn of the minimal length 2n is the following.
The first link leaves only −n and n fixed and flips the whole interval between them. The
next n−1 links move −n and n towards the origin, one unit step at a time. The next link
switches these two numbers and the last n−1 moves take them to their final destination.

Dn: We have to carry through a rather complicated argument, adapted from Ungar’s original
method. We designate positions -2,-1,1,2 as the middle and note that 2(n − 1) values
have to cross the middle in the course of the game. The only fliptype in which numbers
cross the midddle are the central symmetric flips −k . . . k bringing 2k−4 numbers across.
There are also the flips involving one of the special nodes s1 and sn, these do not bring
anything across, but they take two numbers into the middle and bring two numbers out
of the middle. Two such flips may co-operate to take two numbers across, three may
co-operate to take four numbers across etc.

The idea is to show that, on the average, no more than one crossing per move is
possible, therefore at least 2(n− 1) moves are needed to perform 2(n− 1) crossings. For
the central flips, we can take Peter Ungar’s argument verbatim. After the flip, leading to
k . . .− k, nothing more can happen in the middle for some time, for the numbers are in
decreasing order. The next k− 2 moves must be noncrossing and each move can shorten
the decreasing run by at most one unit at both ends. Also, the central k-flip must have
been preceded by a step-wise building up of this long increasing run (unless it is the first
crossing move and can use the original increasing order). This accounts for another k−3
noncrossing flips. The total is 2k − 4 moves needed to achieve 2k − 4 crossings.

Flips bringing two values into the middle and taking two other values out of the middle
can never attain even an average of one crossing per move, so these never occur in the
optimal allowable sequences.

There is only one disturbing fact left to take care of. Our move-counting arguments
did not apply to the very first and very last flip. But there is really nothing special about
them, as can be seen like this. Let u1u2 . . . uk = wo be the sequence. The total flip wo
evidently commutes with everything else, so we can rotate the sequence freely, making
u1 and uk lose their special status. �

�

The conjectured expression 2n − 2 for the number of optimal sequences has a reasonable
explanation. The greedy strategy in the flip game is to choose the set J ⊂ S, used to compute
the multiflip wo(WJ), as large as possible. That is to say, when at some point we have reached
w, we use every playable node for the next multiflip, i.e. choose J = S − D(w). Ungar [78]
proved that the greedy strategy will take you from any w to wo in at most n − 1 moves. The
conjecture is based upon the assumption that the greedy strategy is the only strategy that will
produce optimal flip sequences from e to wo. The strategy cannot be applied for the first move
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as it would choose an illegal move, the total flip. But there are 2n− 2 legal subsets of S and any
of these may be chose for the first move. From then on, everything is completely determined by
the greedy strategy.

The status of the conjecture is that nobody seems to be able to prove it even for the symmetric
group. On the other hand, the other groups are probably simpler, so once a proof for An appears,
the other questions will most likely have been settled within a week or two.
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