On the Approximability of the
Maximum Common Subgraph Problem

Viggo Kann

Department of Numerical Analysis and Computing Science
Royal Institute of Technology
S-100 44 Stockholm
Sweden
viggo@nada.kth.se

Abstract

Some versions of the maximum common subgraph problem are studied and approximation
algorithms are given. The maximum bounded common induced subgraph problem is shown
to be MAX SNP-hard and the maximum unbounded common induced subgraph problem
is shown to be as hard to approximate as the maximum independent set problem. The
maximum common induced connected subgraph problem is still harder to approximate and
is shown to be NPO PB-complete, i.e. complete in the class of optimization problems with
optimal value bounded by a polynomial.

Key words: Approximation, graph problems, computational complexity.

AMS(MOS) subject classification: 68R10, 68Q25, 41A99.

Abbreviated title: Approximability of the Max Common Subgraph Problem

1 Introduction

The SUBGRAPH ISOMORPHISM problem is a famous NP-complete problem. It is one of the first
problems mentioned in Computers and Intractability by Garey and Johnson [11]. Given two
graphs the problem is to decide whether the second graph is isomorphic to any subgraph of the
first graph. The problem is shown to be NP-complete by the following simple reduction from
the CLIQUE problem. Let the first input graph to SUBGRAPH ISOMORPHISM be the input graph
to CLIQUE and let the second input graph be a K-clique where K is the bound in the CLIQUE
problem. Now the K-clique is isomorphic to a subgraph of the first graph if and only if there is
a clique of size K or more in the graph.

A related optimization problem is called MAXIMUM COMMON SUBGRAPH. In this problem
we are given two graphs and we want to find the largest subgraphs which are isomorphic. The
corresponding decision problem was shown to be NP-complete by Garey and Johnson using the
same reduction as above [11]. The approximation properties of various versions of this problem
are studied in this paper.

NP problems, like MAXIMUM COMMON SUBGRAPH, which are in fact optimization problems
are called NPO problems (NP optimization problems). Provided that P # NP there is no algo-
rithm which finds the optimal solution to an NP-complete optimization problem in polynomial
time. Still there can exist polynomial time approrimation algorithms for the problem. However
the approximability of different NPO problems differs enormously.

2 Definitions

For example the TSP (Travelling Salesperson Problem) with triangular inequality can be
solved approximately within a factor 3/2, i.e. one can in polynomial time find a trip of length
at most 3/2 times the shortest trip possible [8]. The general TSP cannot be approximated
within any constant factor if P # NP [11]. Another example is the knapsack problem, which is
NP-complete but can be approximated within every constant in polynomial time [12]. Such a
scheme for approximating within every constant is called a PTAS (polynomial time approximation
scheme).

In 1988 Papadimitriou and Yannakakis defined, using Fagin’s logical classification of NP [10],
the classes MAX NP and MAX SNP together with a concept of reduction, called L-reduction,
which preserves approximability within constants [23]. All problems in MAX NP and MAx SNP
can be approximated within a constant in polynomial time. Several maximization problems were
shown to be complete in MAX SNP under L-reductions, for example maximum 3-satisfiability,
maximum cut and maximum 3-set packing in a graph with bounded degree [4, 5, 14, 17, 16, 23, 24].
Minimization problems can also be placed in MAX SNP through L-reductions to maximization
problems.

All attempts to construct a PTAS for a MAX SNP-complete problem have failed and hence it
seems reasonable to conjecture that no such scheme exists, in particular since if one problem had
a PTAS then every problem in MAX SNP would admit a PTAS. Recently Arora, Lund, Motwani,
Sudan and Szegedy confirmed this conjection using proof verification in interactive proofs [1].
Thus showing a problem to be MAX SNP-complete describes the approximability of the problem
very well: it can be approximated within a constant, but it cannot be approximated within every
constant.

The last years more work has been done on logical definability of NPO problems [19, 18, 22].
New classes over MAX SNP and MAaXx NP and analogous minimization classes have been defined.
Not many of these classes seem to capture approximation properties, however. The value of
classifying problems using logical definability can be discussed because the same problem may
or may not be included in a class depending on how it is formulated [15].

Krentel has defined a class of optimization problems called OPTP[logn], which consists of all
NPO problems which are polynomially bounded, that is all problems satisfying opt(I) < p(|/])
for all problem instances I, where p is a polynomial [20]. In this paper we shall call this class
NPO PB. Some problems, for example the LONGEST INDUCED PATH problem, are NPO PB-
complete under L-reductions [3]. An NPO PB-complete problem cannot be approximated within
O(n) for any £ > 0, unless P = NP. Note that this is a different reduction from the one Krentel
used when he defined OPTP[logn]-complete problems.

Several other attempts have been made to find a theory explaining why a problem enjoys
particular approximation properties. See [7] and [16] for surveys of the field.

2 Definitions

Definition 1 [9] An NPO problem (over an alphabet X) is a tuple F' = (Zp, Sp, mp, opty)
where

e 7Tr C X" is the space of input instances. It is recognizable in polynomial time.

e Sp(x) C X* is the space of feasible solutions on input x € Zp. The only requirement on Sp is
that there exist a polynomial ¢ and a polynomial time computable predicate 7 such that for
all x in Zp, Sp can be expressed as Sp(z) = {y : ly| < q(|z|) A 7(x,y)} where ¢ and 7 only
depend on F'.

Definitions 3

e mp:IpxY* — N, the objective function, is a polynomial time computable function. mp(x,y)
is defined only when y € Sg(x).

e opty € {max, min} tells if F' is a mazimization or a minimization problem.

Solving an optimization problem F' given the input x € Zr means finding a y € Sp(r) such
that mpg(z,y) is optimum, that is as big as possible if optp, = max and as small as possible
if opty = min. Let optp(z) denote this optimal value of mp. Approximating an optimization
problem F given the input € Zp means finding any ¢’ € Sp(x). How good the approximation
is depends on the relation between mp(x,y’) and opty(z).

Definition 2 The relative error of a feasible solution with respect to the optimum of an NPO
problem F'is defined as
, optp(x) — mp(z,y
1 (0. g) Pt () — mr(a.y)
optp(z)

where y € Sp(x).

Definition 3 We say that a maximization problem F' can be approximated within p if there
exists a polynomial time algorithm A such that for all instances I € Zp, A(I) € Sp(I) A

optp(I)/mr(A(I)) < p.

Definition 4 [23] Given two NPO problems F' and G and a polynomial time transformation
f:Zr — Zg. fis an L-reduction from F' to G if there are positive constants « and [such that
for every instance I € Ip

i) opta(f(I)) < a-optp(l),

ii) for every solution of f(I) with measure ¢, we can in polynomial time find a solution of I
with measure ¢; such that |optp(I) — 1| < B |opta(f(I)) — cal.

Papadimitriou and Yannakakis have shown that the composition of L-reductions is an L-
reduction and that if F' L-reduces to G with constants o and 3 and there is a polynomial time
approximation algorithm for G with worst-case relative error ¢, then there is a polynomial time
approximation algorithm for F with worst-case relative error afe [23]. Thus the L-reduction
preserves approximability within constants.

When analyzing approximation algorithms for problems which cannot be approximated within
a constant one usually specifies the approximability using a one variable function where the
parameter concerns the size of the input instance. For example the maximum independent set
problem can be approximated within O (n/(logn)?) where the parameter n is the number of
nodes in the input graph [6]. When reducing between two such problems, say from F' to G, the
L-reduction is not perfect. The trouble is that it may transform an input instance of F' to a much
larger input instance of G. One purpose of a reduction is to be able to use an approximation
algorithm for G to construct an equally good (within a constant) approximation algorithm for
F'. Because of the size amplification the constructed algorithm will not be as good as the original
algorithm.

In order to tell how the approximability, when given as a function, will be changed by a
reduction, we have to specify how the size of the input instance will be amplified. For the
problems in this article we will use the number of nodes as the measure of input size. We say
that an L-reduction has node amplification f(n) if it transforms a graph with n nodes into a graph
with f(n) nodes. If the node amplification is O(n), i.e. if the size of the constructed structure

4 Definitions

is a constant times the size of the original structure, we say that the reduction is without node
amplification.

We can see that for constant and polylogarithmic approximable problems the L-reduction pre-
serves approximability within a constant for any polynomial node amplification, since ¢log” (nP) =
pheloghn = O(log]“c n). For n® approximable problems the L-reduction preserves approximability
within a constant just for node amplification O(n), i.e. without node amplification.

Definition 5 Definition of the problems mentioned in the text.

Max CIS Mazimum common induced subgraph.
I ={G1 = (Wi, E1),Go = (V3, E») graphs}
S({G1,Gs)) = {Vi € Vi, Vo' C Vo, f : Vi’ — V4 bijective function such that
G |y and Gy |y, are f-isomorphic, that is
Vv, vg € Vi, (v, v2) € B & (f(v1), f(v2)) € Ea}
m((G1, Gz), (W1, V7)) = [V'| = [1]
opt = max
We say that v is matched with f(v) and that f(v) is matched with v.
Max CES Mazimum common edge subgraph.
T ={G, =W, E),Gy = (Vy, Ey) graphs}
S({(Gy,Gs)) = {F\ C E,Ey' C Ey, f : Vi' = V5 bijective function from the
nodes in the subgraph G |g,” to the nodes in Gy |g, suchthatGy |g, and Gy |g,
are f-isomorphic, that is Yoy, vy € V', (v1,v2) € Ey' & (f(v1), f(v2)) € Ey'}
m((G1,G2) . (EY, E2')) = |EY'| = |EY|
opt = max
Max CIS —B Mazimum bounded common induced subgraph. This is the same problem as MAX
CIS but the degree of the graphs G'; and G5 is bounded by the constant B.
Max CES —B Mazimum bounded common edge subgraph. This is the same problem as MAX
CES but the degree of the graphs Gy and G5 is bounded by the constant B.
Max CICS Mazimum common induced connected subgraph. This is the same problem as
Max CIS but the only valid solutions are connected subgraphs.
MAX 3SAT —B Maximum bounded 3-satisfiability.
T = {U set of variables, C' set of disjunctive clauses, each involving at most
three literals (a variable or a negated variable) and such that the total number
of occurrences of each variable is bounded by the constant B}
S((U,C)) = {C" C C : there is a truth assignment for U such that every clause
in C" is satisfied }
m(({U,C),C") = ||
opt = max
MAX CLIQUE Mazimum clique in a graph.
I={G=(V,E):G is a graph}
S(V,E)) ={V'CV :v,v € VI Avy # vy = (v1,09) € E}
m((V, E), V') = [V
opt = max
LIP Longest induced path in a graph.
IT={G=(V,E):G is agraph}
S(V,E)) ={V'CV :G|y is asimple path}
m((V, E), V') = [V

opt = max

Approximation algorithms 5

3 Approximation algorithms

Theorem 1 Mazimum bounded common induced subgraph (MAX CIS —B) can be approzimated
within B + 1.

ProOOF We use that independent sets of the same size are always isomorphic. The following
trivial algorithm finds an independent set V' in the graph G = (Vi, E}).

o V/+ 1
e Pick nodes from V; in any order and add each node to V} if none of its neighbours
are already added to V.

This algorithm will create a set of size |V/| > |Vi| /(B + 1) because for each node in V; either
the node itself or one of its at most B neighbour nodes must be in V/.

Applying the algorithm to G; and G5 gives us two independent sets V/ and V. If they are of
different size, remove nodes from the largest set until they have got the same size. These sets are
a legal solution of the problem of size at least min(|V}|, |V3])/(B +1). Since the optimal solution
has size at most min(|V;],|V2|) the algorithm approximates the problem within the constant
B+1. O

Lemma 2 A mazimum matching of a graph G = (V, E) with degree at most B contains at least
|E| /(B +1) edges.

PRrROOF Let v be the number of edges in the maximum matching and p be the number of nodes
in the graph. If there exists a perfect matching, then p = 2v and

B _pB2_p
B+1~ B+1 2

If p > 2v + 1 the inequality |E| < (B + 1)v follows from [21, theorem 3.4.6]. O

Theorem 3 Mazimum bounded common edge subgraph (MAX CES —B) can be approzimated
within B + 1.

PROOF We use the same idea as in the proof of Theorem 1, but create an independent set of
edges instead. In polynomial time we can find a maximum matching of the graphs. The size of
the smallest maximum matching is by Lemma 2 at least min(|E}|, |E>|)/(B + 1) and the size of
the optimal solution is at most min(|F;|, |Es|), so we can approximate this problem too within
the constant B+ 1. O

4 Reductions between the problems

Theorem 4 There is a reduction from MAX CIS to MAX CLIQUE which is an L-reduction with
node amplification n?.

6 Reductions between the problems

Figure 1: An example of the transformation from MaxCIS to MaxClique in Theorem 4. The mazimum,
size cliques in the right graph have size three, e.g. (A1,B3,C2) which corresponds to a common subgraph
matching between node A and 1, B and 3, C and 2 in the left graphs.

PROOF From the input graphs G; and G5 we form a derived graph G = (V, E) in the following
way (due to Barrow and Burstall [2]).

Let V =1] x V, and call V" a set of pairs. Call two pairs (vy,ve) and (wq, wy) compatible if
vy # wy and vy # ws and if they preserve the edge relation, that is there is an edge between v,
and w, if and only if there is an edge between vy and ws. Let E be the set of compatible pairs.
See Figure 1.

A k-clique in the derived graph G can be interpreted as a matching between two induced
k-node subgraphs. The subgraphs are isomorphic since the compatible pairs preserve the edge
relation.

Thus, if we have a polynomial time approximation algorithm for the MAX CLIQUE problem
which finds a solution within p we can apply it to the derived graph and use the answer to get an
approximate solution for the MAX CIS problem of exactly the same size. Since the maximum
clique corresponds to the maximum common induced subgraph this yields a solution within p
for the MAX CIS problem and we have an L-reduction from MAX CIS to MAX CLIQUE with
a=/p=1.

For example we can use the MAX CLIQUE approximation algorithm by Boppana and Hall-
dérsson [6]. This algorithm will, for a graph of size n, find a clique of size at least O((logn)?/n)
times the size of the maximum clique.

Note that in spite of the size of the optimal solution being preserved by the reduction, the size
of the problem instance is increased. If the two input graphs of the MAX CIS problem contain
my and my nodes respectively, the constructed graph will contain m;msy nodes and the algorithm
will only guarantee a common induced subgraph of size O((logmims)?/(mimy)) times the size
of the maximum common induced subgraph.

Thus the reduction is an L-reduction with node amplification n?. O

Theorem 5 There is a reduction from MAX CES to MAX CLIQUE which is an L-reduction
with node amplification n?.

PROOF We use the same idea as in the preceding proof but the pairs are now pairs of directed
edges instead of pairs of nodes. Let V = A; x Ay, where A; consists of two directed edges, € and
@, for each edge e € E;. We say that two pairs (mf, m3) and (7], n3) are compatible if m] # 71,
mi # hi, mb # nj, imb # Mz and they preserve the node relation, that is m{ and n{ are incident

Reductions between the problems 7

o
al

Figure 2: The digraphs resulting from a triangle and a 3-star in Theorem 5.

to the same node if and only if 3 and 73 are incident to the same node in the same way. For

example, in Figure 2 (@, ?} is compatible with (7, @), (7,?), ((F, €) and ((F 7> but not
: — 5

with e.g. (b, @) or (b,%€).

A k-clique in the derived graph can be interpreted as a matching between two edge subgraphs
with £ edges in each subgraph. The subgraphs are isomorphic since the compatible pairs preserve
the node relation.

Thus we get an L-reduction from MAX CES to MAX CLIQUE with o = # = 1 which we
can use to transform a MAX CLIQUE approximation algorithm to a MAX CES approximation
algorithm. As in Theorem 4 the reduction has node amplification n?. O

Y

Theorem 6 MAX CIS —B is MAX SNP-hard when B > 25.

PrROOF The problem MAX 3SAT —6, where each variable is in at most six clauses is known
to be MAX SNP-complete [23]. We assume that each variable z; occurs both as z; in some
clause and as T; in some other clause, that no clause is trivially satisfied (e.g. x; VZ;) and that
there are more clauses than variables. The problem is still MAX SNP-complete under these
assumptions. We will show that there is an L-reduction f; from this problem to Max CIS —B.
Let U = {xy,23,...,2,} be the variables and C' = {¢1,¢a,...,¢,} be the clauses of the input
instance.

f1 takes the sets U and C' and constructs a MAx CIS —B instance (the graphs G; and G3)
in the following way. G and G4 are similar and consist of 6n literal nodes (six for each variable),
18m clique nodes (18 for each clause) and a number of clause nodes. G; has Tm clause nodes
(seven for each clause) and G2 has m clause nodes (one for each clause). The clique nodes are
connected in 18-cliques (m in each graph). In both graphs the six literal nodes for a variable z;
are connected in two 3-cliques — one 3-clique we call the x; clique and the other 3-clique we call
the T; clique.

In G5 each clause node is connected with one of the clique nodes in the corresponding 18-clique
and with all the literal nodes corresponding to the at most three literals which are contained in
the corresponding clause in the MAX 3SAT —6 problem. This completes the description of graph
Go. G has edges between each pair of literal nodes which corresponds to the same variable (i.e.
building a 6-clique). Finally there are some edges from the clause nodes to the clique nodes and
literal nodes in GG;. Number the seven clause nodes of clause ¢; from 1 to 7 and the 18 clique
nodes in the corresponding clique from 1 to 18. Now add edges between clause node i and clique
node ¢ for ¢ from 1 to 7. Call the three literal 3-cliques corresponding to the three literals in ¢;
A, B and C. Add edges between clause node 1 and each node in A, 2 and B, 3 and A, 3 and B,
4 and C, 5 and A, 5 and C, 6 and B, 6 and C, 7 and A, 7 and B, 7 and C. If ¢; only has two

8 Reductions between the problems

18-clique g

X X0
VaVis

S
Il W
g || /B

18-clique @ 18-clique ¢

18-clique g 18—clique g

N~ W

Figure 3: The constructed instance of the MAX CIS —B problem for the MAX 3SAT —6 input U =
{z1,29,23,24},C = {(£1 VT2V x3), (r2VI3Vx4),(T3VT4s), (T4)}. One of the possible mazimum common
subgraphs is formed by including the shaded nodes.

literals just add the edges from clause nodes 1, 2 and 3. If ¢; only has one literal just add three
edges, between node 1 and the literal 3-clique. See Figure 3 for an example.

The idea is that a truth assignment shall be encoded in the subgraph problem by including
the corresponding literal 3-cliques in the subgraphs. For example, if z, is true then the literal
3-clique x4 is in the subgraphs, and if x4 is false then the literal 3-clique T, is in the subgraphs.
The included literal 3-cliques of G; and G5 are matched with each other. A clause node in graph
G, is included in the subgraph iff it is satisfied by the truth assignment. If a clause node in G,
is included then it is matched with one of the corresponding seven clause nodes in (G5, namely
with the node which is connected with exactly those literals in the clause which are true in the
truth assignment. All the clique nodes are included in the subgraphs and are matched with each
other clause-wise.

Reductions between the problems 9

A solution of the MAX 3SAT —6 problem with £ satisfied clauses will be encoded as two
subgraphs (of G| and Gs), each with k clause nodes, 3n literal nodes and 18m clique nodes.
Since a literal can be contained in at most five clauses at the same time, a literal node in the
graph GG; has degree at most 5-4+5 = 25, a clause node has degree at most 4 and a clique node
has degree 17 or 18. In (G5 a literal node has degree at most 7, a clause node at most 4 and a
clique node at most 18. Thus B > 25.

We will now prove that the maximum solution of the MAX 3SAT —6 problem will be encoded
as a maximum solution of the MAx CIS —B problem, and that given a solution of the MAX
CIS —B problem we can in polynomial time find an at least as good solution which is a legal
encoding of a MAX 3SAT —6 solution.

Suppose we have any solution of the MAX CIS —B problem, that is an induced subgraph of
(G1, an induced subgraph of G5 and a matching between each node in the GGy subgraph and the
corresponding node in the isomorphic GGy subgraph.

e First we would like to include all clique nodes in the subgraphs and match each 18-clique in
the first graph with some 18-clique in the second. Observe that, besides the clique nodes,
no node in the graph G, is in a clique of size five or more. This means that if five or more
clique nodes in the same 18-clique are included in the subgraph of G, then they must be
matched with clique nodes in the other subgraph. In the same way we see that besides
the clique nodes, no node in the graph (G; is in a clique of size seven or more, so if seven
or more clique nodes in the same 18-clique are included in the subgraph of G5, then they
must be matched with clique nodes in the subgraph of G.

In each 18-clique in G; which has 5 < p < 18 nodes included in the subgraph, we add the
rest of the 18-clique to the subgraph and remove every clause node which is connected to
an added clique node. We have added 18 — p clique nodes and removed at most the same
number of clause nodes.

The matched 18-clique in G5 must also have p clique nodes in the subgraph. Add the
remaining 18 — p clique nodes and remove the nodes which are matched with the removed
clause nodes in G;. It is easy to see that we now can match the two 18-cliques with each
other without problems.

Perform the same operation for each 18-clique in (G; which has at least five but not all
nodes included in the subgraph. The resulting subgraphs are at least as large as the
original subgraphs, and they are still isomorphic.

Now every 18-clique in G either has all nodes in the subgraph or at most four nodes in
the subgraph. For each 18-clique in G; with 0 < p < 4 nodes we do the following.

We add 18 — p clique nodes to the subgraph of G; and remove every clause node which
is connected to a clique node in the current 18-clique. We have added 18 — p nodes and
removed at most 7. In G5 we choose one 18-clique with 0 < ¢ < 6 nodes in the subgraph
and add the remaining 18 — ¢ clique nodes. We remove the p nodes which are matched with
the old clique nodes in the first subgraph and the at most 7 nodes which are matched with
the removed nodes in the first subgraph. Furthermore we have to remove the ¢ nodes in GGy
which are matched with the ¢ old clique nodes in Gy. If the clause node in Gy (which is a
neighbour to the current 18-clique in Gs) is included in the second subgraph we remove it
and its matched node in G;. We have now added 18 — p > 14 nodes to the first subgraph
and removed at most 7+ ¢ + 1 < 14. We have added 18 — ¢ > 12 nodes to the second
subgraph and removed at most 7+ p 4+ 1 < 12. As before, since the 18-cliques are now
separate connected components we can match them with each other without problems.

10

Reductions between the problems

Gli GQ:
b C

Figure 4: The structure in case 1.

The two subgraphs are still isomorphic, and thus a solution of the problem. They are at
least as large as before, but now all clique nodes are included in the subgraphs and are
matched with each other (but they are not necessarily matched in order yet).

e We observe that in each 7-group of clause nodes in G; at most one node is in the sub-
graph. The explanation is that every clause node is in contact with an 18-clique, which is
completely in the subgraph, but in the subgraph of G5 only one node can be in contact
with each 18-clique (namely the corresponding clause node). Hence a structure with two
or more nodes connected to an 18-clique cannot be isomorphic with any structure in Gs.
Furthermore we can see that clause nodes in one of the subgraphs can only be matched
with clause nodes in the other subgraph and, since all clique nodes are matched with clique
nodes, literal nodes must be matched with literal nodes.

e We would like to change the subgraphs so that each literal 3-clique is either totally included
in a subgraph or is not included at all. Furthermore at most one of the two literal 3-cliques
in GG corresponding to the same variable may be included in the subgraph. Suppose that
there is (at least) one node in the literal 3-clique x which is included in the subgraph of
GG1. Let y be the literal node in the subgraph of G5 with which this node is matched. We
examine two cases.

Case 1.

Case 2.

At least one of the clause nodes connected to x is included in the subgraph of Gj.
Let b be one of these clause nodes and let ¢ be the clause node in GGy with which b
is matched. See Figure 4. First we shall see that no node in the 7 literal 3-clique
can be in the subgraph. This is because the nodes in the T clique are connected to
the nodes in the x clique but not to b (since we have assumed that x and T cannot
be in the same clause), but in G there are no literal nodes which are connected to y
but not to c¢. Since all three nodes in the x clique have the same connections to the
environment in (G; and all three nodes in the literal 3-clique containing y have the
same environment in G5 we still have isomorphic subgraphs if we include the whole z
3-clique in the subgraph of G; and the whole 3-clique containing y in the subgraph of
GQ.

None of the clause nodes connected to x are in the subgraph of G;. If one or more
nodes in T are in the subgraph of G; then none of the clause nodes which are connected
to T can be in the subgraph, since we in that case would be in case 1 with the clause
node as b and T as . Thus we have a separate k-clique (with 1 < k < 6) of literal
nodes which by the above must be matched with a separate k-clique of literal nodes
in G'5. In (G5 the largest possible clique of literal nodes is of size 3. Therefore the only
possible cases are 1 < k < 3. We remove those k£ nodes and instead include the whole

Reductions between the problems 11

x 3-clique in the subgraph of G; and the whole 3-clique containing one of the matched
nodes in the subgraph of Gb.

In both cases we get a subgraph of GGy where each literal 3-clique is either totally included
in a subgraph or is not included at all and where both of the literal 3-cliques corresponding
to the same variable are never included in the subgraph of G; at the same time.

e We now forget about the subgraph of G5 and concentrate on the subgraph of G;. It contains
all clique nodes, at most one of each 7-group of clause nodes and at most one of each pair
of literal 3-cliques. First we will include literal nodes so that every pair of literal 3-cliques
has exactly one of the 3-cliques in the subgraph. We will have to remove some of the clause
nodes, but the subgraph should contain at least as many nodes as before. Then we reorder
the clause nodes to form a legal encoding of a MAX 3SAT —6 solution.

1. Suppose there are k variables which do not have any of their literal 3-cliques in the
subgraph and that there are j clauses which contain these variables. We know that
each variable can occur in at most six clauses, thus j < 6k. Using a simple algorithm
(see for example [13]) we can give values to the k variables so that at least half of
the j clauses are satisfied. We first remove all of the j clause nodes which are in
the subgraph from the subgraph and then include one clause node for each clause
which was satisfied by the algorithm and the literal 3-cliques corresponding to the &
variable values. We will then have removed at most 7 nodes and included at least
3k+3j/2>j/24 j/2 = j nodes.

2. In order to create a subgraph of G; which is a legal encoding of a MAX 3SAT —6
solution we may have to substitute some clause nodes in the subgraph for other clause
nodes in the same 7-groups. Every clause node in the resulting subgraph should have
connections to exactly those literal 3-cliques which are included in the subgraph of
(G1 and correspond to literals in the corresponding clause. It is easy to see that this
operation is always possible.

e As the subgraph of (G5 choose nodes as shown in the description of the encoding above.
This is possible since the subgraph of GGy is a legal encoding of a MAX 3SAT —6 solution.
The isomorphic matching is then trivial.

We have now shown that every solution of the MAX CIS —B problem can be transformed
to an at least as large solution which is a legal encoding of a MAX 3SAT —6 solution. Moreover
this transformation can be done in polynomial time.

If the optimal number of satisfied clauses is r and we do not have more variables than clauses
then the optimal number of nodes in a subgraph is 3n+18m-+r < (3+18)m+r < 21-2r+r = 43r,
since we can always satisfy at least half of the clauses. Thus the transformation f; of a MAX
3SAT —6 problem to a MAX CIS —B problem, where B > 25, is an L-reduction with o« = 43
and g =1. O

Theorem 7 There is a reduction from MAX CLIQUE to MAX CIS which is an L-reduction
without node amplification.

PROOF The reduction is the same as the one Garey and Johnson used to prove that SUBGRAPH
ISOMORPHISM is NP-complete. The MAX CLIQUE input is given as a graph G. Let the first of
the Max CIS graphs GG be this graph. Let G5 be a |Vi|-clique, that is a complete graph with

12 Reductions between the problems

the same number of nodes as GG;. The constructed graphs have the same number of nodes as the
input graph.

Every induced subgraph in G5 is a clique. Thus each common induced subgraph is a clique.
The optimal solution of the MAX CLIQUE problem is a clique of size at most |V|, and this clique
is also the largest clique in G; and is therefore the largest common induced subgraph.

In order to prove that this is an L-reduction we also have to show that given a solution of
the MAx CIS problem we in polynomial time can find an at least as good solution of the MAX
CLIQUE problem. But since every common subgraph is a clique we can directly use the subgraph
as a solution to the MAX CLIQUE problem. The solutions have the same size. O

The MAX CLIQUE problem is hard to approximate. Recently Arora, Lund, Motwani, Sudan
and Szegedy showed that for some constant ¢ > 0 it is impossible to approximate MAx CLIQUE
within n¢ [1]. Theorem 7 shows that this result is valid for the unbounded Max CIS problem
as well.

When we gave an approximation algorithm for the MAX CIS —B problem in Theorem 1 we
constructed a maximal independent set to use as the common subgraph. Somehow this feels like
cheating, because an independent set of nodes is usually not the type of common subgraph we
want. Perhaps we would rather like to find a big common connected subgraph. Unfortunately the
MAx CIS problem, where we demand that the common subgraph is connected, is provably hard to
approximate. We will prove that this problem is NPO PB-complete under L-reductions, which
means that every NPO problem with polynomially bounded optimal value can be L-reduced to
it.

In general, for similar graph problems, the demand that the solution subgraph is connected
seems to lead to harder problems [25].

Theorem 8 MAXIMUM COMMON INDUCED CONNECTED SUBGRAPH (MAXx CICS) is NPO PB-
complete under L-reductions.

ProorF NPO PB consists of all NPO problems which are polynomially bounded, that is all
problems F' satisfying optp(I) < p(|I|) for all problem instances I € Zr where p is a polynomial.
It is obvious that MAX CICS satisfies this and therefore is in NPO PB.

We know that LONGEST INDUCED PATH in a graph G is NPO PB-complete under L-
reductions [3] so we will L-reduce this problem to MAX CICS in order to show that the latter
problem is NPO PB-complete.

Choose G as the first graph G and choose a simple path with |V'| nodes as the second graph
G,. We observe that every induced connected subgraph in G5 must be a simple path. The
maximum induced connected subgraph is the longest induced path that can be found in GGy, that
is the optimal solution of the LIP problem with input G. Since every non-optimal solution of size
¢ immediately gives a solution of the LIP problem of size ¢ the transformation is an L-reduction
with @ = § = 1 and without node amplification. O

Finally we return to the edge subgraph problem and show that if the degrees of the graphs
are bounded then the MAX CIS problem is at least as hard to approximate as the MAX CES
problem.

Theorem 9 There is an L-reduction from Max CES —B to Max CIS—(2B + 3).

PrROOF Let f3 be the following transformation from Max CES —B to Max CIS —(2B + 3).
An input instance {G17, Go¥} of MAx CES — B shall be transformed to an instance {G,’, Gy}

Reductions between the problems 13

<J L

Figure 5: An example of the transformation g in Theorem 9.

of MAX CIS —(2B + 3). Let G1" = ¢(G\”) and G5’ = g(G,”) where g transforms each node
with degree greater than zero to a (2B + 3)-clique and each edge to two edges connected with
an edge node. The two edges are connected to one node in each of the two (2B + 3)-cliques
corresponding to the end points of the edge in the original graph. This shall be done so that
every clique node is connected to at most one edge node. The constructed graphs have degree
2B + 3. See Figure 5.

Solutions {E,', Ey'} to the Max CES —B problem is encoded as solutions {V;', 15} to the
Max CIS problem where an edge node is in V; iff the corresponding edge is in E! and where
min(|V]|,|V3]) (2B +3)-cliques, among them all cliques corresponding to nodes adjacent to edges
in F and E), are included in each subgraph.

In the same way as in the proof of Theorem 6 we will show that given a solution of the MAX
CIS problem, which is d smaller than the optimal solution, we can in polynomial time find a
solution of the MAXx CES —B problem which is at most d smaller than the optimal solution.

Given solutions V] and Vj we first modify them so that all clique nodes are included. Observe
that cliques of size three or more only can be found in the (2B + 3)-cliques in G;’ and G5’ and
thus that a (2B 4 3)-clique in G,’ with &k nodes (k > 3) in V/ only can be matched with a
(2B + 3)-clique in G," with exactly & nodes in Vj (and vice versa). For each (2B + 3)-clique in
G1" with k nodes (3 < k < 2B+3) in V/ we can add the remaining 2B +3 — k nodes if we remove
all edge nodes in V| which are connected to added nodes and perform the same operations on
the matched clique in the other graph.

Now every clique either has all nodes in the subgraph or at most two nodes in the subgraph.
For each clique in GII, with 0 < p < 2 nodes we do the following (until there are no nonfull
cliques left in one of the subgraphs).

We add 2B + 3 — p clique nodes to the subgraph of G;’ and remove every edge node which is
connected to a clique node in the current clique (at most B nodes). In G5’ we choose one clique
with 0 < ¢ < p nodes in the subgraph. If one of the p nodes in the first subgraph is matched
with a clique node in the second subgraph (which is always the case if p = 2 because two edge
nodes never are connected) we choose this clique. We add the remaining 2B + 3 — ¢ clique nodes
and remove every edge node which is connected to a clique node in the current clique (at most
B nodes).

If one of the ¢ nodes in the second subgraph is matched with an edge node in the first
subgraph we have to remove this edge node from the first subgraph. If one of the p nodes in the
first subgraph is matched with an edge node in the second subgraph we have to remove this edge

14 Discussion

Max 3SAT —B < MAX CLIQUE < LIP

A\ AV AV
Max CIS —B < Max CIS < Max CICS
V V

MaAax CES —B < MaAx CES

Figure 6: Summary of how the common subgraph problems are related. Here Py < P means that there
1s an L-reduction from problem Py to problem P,.

node from the second subgraph.

Furthermore we have to remove the at most B nodes in the first subgraph which are matched
with edge nodes which are connected with nodes in the current clique in the second subgraph.
And symmetrically we have to remove the at most B nodes in the second subgraph which are
matched with edge nodes which are connected with nodes in the current clique in the first
subgraph.

We have now added 2B +3 —p > 2B + 1 nodes to the first subgraph and 2B+3—¢q¢ > 2B+1
nodes from the second subgraph and removed at most B +1+ B = 2B + 1 nodes from the first
subgraph and B+ 1+ B = 2B + 1 nodes from the second. If we match the cliques with each
other the two subgraphs are still isomorphic.

Now every clique node in at least one of the graphs, say in G1”, is included in the corresponding
subgraph and are matched with clique nodes in the other subgraph. Therefore the edge nodes in
the second subgraph must be matched with edge nodes in the first subgraph. Every edge node
in the first subgraph must be matched with an edge node in the second subgraph, because it is
adjacent to a (2B + 3)-clique in the first subgraph, and no clique node in the second subgraph is
adjacent to a (2B + 3)-clique. Thus we have subgraphs which are an encoding of a Max CES
—B solution, where an edge node is in the MAX CIS subgraph if and only if the corresponding
edge is in the MAxX CES —B subgraph.

If the subgraphs in an optimal solution of the MAx CES —B problem contain k£ edges then
the number of nodes in the subgraphs in the optimal solution to the Max CIS problem is

k+ (2B +3)-2-min (|B,"

BP|) <k+(2B+3)-2- (B+1)k = (4B*+10B + 1)k

Y

Thus the reduction f3 is an L-reduction with o = 4B%2 +10B+7 and f=1. O

5 Discussion

We have studied the approximability of some maximum common subgraph problems. Figure 6
illustrates the situation.

Yannakakis observed in [26] that problems on edges tend to be easier to solve than their
node-analogues. We have seen that this is valid for the approximability of the maximum common
subgraph problem as well.

Acknowledgements

I would like to thank my advisor Johan Hastad for valuable support.

References 15

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness
of approximation problems. In Proc. 33rd Ann. IEEE Symp. on Foundations of Comput.
Sci., pages 14-23. IEEE Computer Society, 1992.

[2] H. Barrow and R. Burstall. Subgraph isomorphism, matching relational structures and
maximal cliques. Inform. Process. Lett., 4:83-84, 1976.

(3] P. Berman and G. Schnitger. On the complexity of approximating the independent set
problem. In Proc. 6th Ann. Symp. on Theoretical Aspects of Comput. Sci., pages 256—268.
Springer-Verlag, 1989. Lecture Notes in Comput. Sci. 349.

[4] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Inform. Process.
Lett., 32:171-176, 1989.

[5] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of shortest
superstrings. In Proc. Twenty third Ann. ACM Symp. on Theory of Comp., pages 328-336.
ACM, 1991.

(6] R. Boppana and M. M. Halldérsson. Approximating maximum independent sets by excluding
subgraphs. Bit, 32(2):180-196, 1992.

[7] D. Bruschi, D. Joseph, and P. Young. A structural overview of NP optimization problems. In
Proc. Optimal Algorithms, pages 205-231. Springer-Verlag, 1989. Lecture Notes in Comput.
Sci. 401.

[8] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, 1976.

9] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Inform. and Com-
put., 93(2):241-262, 1991.

[10] R. Fagin. Generalized first-order spectra, and polynomial-time recognizable sets. In R. Karp,
editor, Complexity and Computations. AMS, 1974.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to the theory of
NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

[12] O. H. Ibarra and C. E. Kim. Fast approximation for the knapsack and sum of subset
problems. J. ACM, 22(4):463-468, 1975.

[13] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System
Sci., 9:256-278, 1974.

[14] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inform.
Process. Lett., 37:27-35, 1991.

[15] V. Kann. Which definition of MAX SNP is the best? Manuscript, 1991.

[16] V. Kann. On the Approzimability of NP-complete Optimization Problems. PhD thesis,
Department of Numerical Analysis and Computer Science, Royal Institute of Technology,
Stockholm, 1992. NADA report TRITA-NA-9206.

16

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

References

V. Kann. Maximum bounded H-matching is MAX SNP-complete. Inform. Process. Lett.,
49:309-318, 1994.

P. G. Kolaitis and M. N. Thakur. Approximation properties of NP minimization classes. In
Proc. 6th Ann. Conf. on Structures in Computer Science, pages 353-366, 1991.

P. G. Kolaitis and M. N. Thakur. Logical definability of NP optimization problems. Tech-
nical Report UCSC-CRIL-93-10, Board of Studies in Computer and Information Sciences,
University of California at Santa Cruz, 1993.

M. W. Krentel. The complexity of optimization problems. J. Comput. System Sci., 36:490—
509, 1988.

L. Lovasz and M. D. Plummer. Matching Theory, volume 29 of Annals of Discrete Mathe-
matics, page 114. Elsevier science publishing company, Amsterdam, 1986.

A. Panconesi and D. Ranjan. Quantifiers and approximation. In Proc. Twenty second Ann.
ACM Symp. on Theory of Comp., pages 446-456. ACM, 1990.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. J. Comput. System Sci., 43:425-440, 1991.

C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances
one and two. Math. Oper. Res., 1992. To appear.

M. Yannakakis. The effect of a connectivity requirement on the complexity of maximum
subgraph problems. J. ACM, 26:618-630, 1979.

M. Yannakakis. Edge deletion problems. SIAM J. Computing, 10:297-309, 1981.

