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Summary. The study of the approximability properties of NP-hard optimization problems

has recently made great advances mainly due to the results obtained in the �eld of proof

checking. The last important breakthrough shows the APX-completeness of several impor-

tant optimization problems is proved and thus reconciles `two distinct views of approximation

classes: syntactic and computational '. In this paper we obtain new results on the structure of

several computationally-de�ned approximation classes. In particular, after de�ning a new ap-

proximation preserving reducibility to be used for as many approximation classes as possible,

we give the �rst examples of natural NPO-complete problems and the �rst examples of natural

APX-intermediate problems. Moreover, we state new connections between the approximability

properties and the query complexity of NPO problems.
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1. Introduction

In his pioneering paper on the approximation of combinatorial optimization problems [20],

David Johnson formally introduced the notion of approximable problem, proposed approxi-

mation algorithms for several problems, and suggested a possible classi�cation of optimization

problems on grounds of their approximability properties. Since then it was clear that, even

though the decision versions of most NP-hard optimization problems are many-one polynomial-

time reducible to each other, they do not share the same approximability properties. The main

reason of this fact is that many-one reductions not always preserve the objective function and,

even if this happens, they rarely preserve the quality of the solutions. It is then clear that a

stronger kind of reducibility has to be used. Indeed, an approximation preserving reduction not

only has to map instances of a problem A to instances of a problem B, but it also has to be

?

An extended abstract of this paper has been presented at the 1st Annual International Computing and

Combinatorics Conference.
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able to come back from \good" solutions for B to \good" solutions for A. Surprisingly, the �rst

de�nition of this kind of reducibility [33] was given as long as 13 years after Johnson's paper

and, after that, at least seven di�erent approximation preserving reducibilities appeared in the

literature (see Fig. 1). These reducibilities are identical with respect to the overall scheme but

di�er essentially in the way they preserve approximability: they range from the Strict reducibil-

ity in which the error cannot increase to the PTAS-reducibility in which there are basically no

restrictions (see also Chapter 3 of [23]).

PTAS-reducibility [14]

P-reducibility [33]

6

L-reducibility [36] E-reducibility [26]

Strict reducibility [33]
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Continuous reducibility [39]
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Figure 1. The taxonomy of approximation preserving reducibilities

By means of these reducibilities, several notions of completeness in approximation classes

have been introduced and, basically, two di�erent approaches were followed. On the one hand,

the attention was focused on computationally de�ned classes of problems, such as NPO (i.e.,

the class of optimization problems whose underlying decision problem is in NP) and APX (i.e.,

the class of constant-factor approximable NPO problems): along this line of research, however,

almost all completeness results dealt either with arti�cial optimization problems or with prob-

lems for which lower bounds on the quality of the approximation were easily obtainable [12, 33].

On the other hand, researchers focused on the logical de�nability of optimization problems and

introduced several syntactically de�ned classes for which natural completeness results were ob-

tained [27, 34, 36]: unfortunately, the approximability properties of the problems in these latter

classes were not related to standard complexity-theoretic conjectures. A �rst step towards the

reconciling of these two approaches consisted of proving lower bounds (modulo P 6= NP or some

other likely condition) on the approximability of complete problems for syntactically de�ned

classes [1, 31]. More recently, another step has been performed since the closure of syntactically

de�ned classes with respect to an approximation preserving reducibility has been proved to be

equal to the more familiar computationally de�ned classes [26].

In spite of this important achievement, beyond APX we are still forced to distinguish be-

tween maximization and minimization problems as long as we are interested in completeness

proofs. Indeed, a result of [27] states that it is not possible to rewrite every NP maximization

problem as an NP minimization problem unless NP=co-NP. A natural question is thus whether

this duality extends to approximation preserving reductions.

Finally, even though the existence of \intermediate" arti�cial problems, that is, problems

for which lower bounds on their approximation are not obtainable by completeness results

was proved in [12], a natural question arises: do natural intermediate problems exist? Observe

that this question is also open in the �eld of decision problems: for example, it is known that

the graph isomorphism problem cannot be NP-complete unless the polynomial-time hierarchy
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collapses [38], but no result has ever been obtained giving evidence that the problem does not

belong to P.

The �rst goal of this paper is to de�ne an approximation preserving reducibility that can

be used for as many approximation classes as possible and such that all reductions that have

appeared in the literature still hold. In spite of the fact that the L-reducibility has been the

most widely used so far, we will give strong evidence that it cannot be used to obtain com-

pleteness results in \computationally de�ned" classes such as APX, log-APX (that is, the class

of problems approximable within a logarithmic factor), and poly-APX (that is, the class of

problems approximable within a polynomial factor). Indeed, on the one hand in [14] it has

been shown that the L-reducibility is too strict and does not allow to reduce some problems

which are known to be easy to approximate to problems which are known to be hard to

approximate. On the other hand in this paper we show that it is too weak and is not approxi-

mation preserving (unless P = NP \ co-NP). The weakness of the L-reducibility is, essentially,

shared by all reducibilities of Fig. 1 but the Strict reducibility and the E-reducibility, while

the strictness of the L-reducibility is shared by all of them (unless P

NP

� P

NP[O(logn)]

) but the

PTAS-reducibility. The reducibility we propose is a combination of the E-reducibility and of the

PTAS-reducibility and, as far as we know, it is the strictest reducibility that allows to obtain all

approximation completeness results that have appeared in the literature, such as, for example,

the APX-completeness of Maximum Satisfiability [14, 26] and the poly-APX-completeness

of Maximum Clique [26].

The second group of results refers to the existence of natural complete problems for NPO.

Indeed, both [33] and [12] provide examples of natural complete problems for the class of

minimization and maximization NP problems, respectively. In Sect. 3 we will show the existence

of both maximization and minimization NPO-complete natural problems. In particular, we prove

thatMaximum 0�1 Programming and Minimum 0�1 Programming are NPO-complete.

This result shows that making use of a natural approximation preserving reducibility is enough

powerful to encompass the \duality" problem raised in [27] (indeed, in [26] it was shown

that this duality does not arise in APX, log-APX, poly-APX, and other subclasses of NPO).

Moreover, the same result can also be obtained when restricting ourselves to the class NPO PB

(i.e., the class of polynomially bounded NPO problems). In particular, we prove thatMaximum

PB 0� 1 Programming and Minimum PB 0� 1 Programming are NPO PB-complete.

The third group of results refers to the existence of natural APX-intermediate problems.

In Sect. 4, we will prove that Minimum Bin Packing (and other natural NPO problems)

cannot be APX-complete unless the polynomial-time hierarchy collapses. Since it is well-known

[32] that this problem belongs to APX and that it does not belong to PTAS (that is, the

class of NPO problems with polynomial-time approximation schemes) unless P=NP, our result

yields the �rst example of a natural APX-intermediate problem (under a natural complexity-

theoretic conjecture). Roughly speaking, the proof of our result is structured into two main

steps. In the �rst step, we show that if Minimum Bin Packing were APX-complete then the

problem of answering any set of k non-adaptive queries to an NP-complete problem could be

reduced to the problem of approximating an instance ofMinimum Bin Packing within a ratio

depending on k. In the second step, we show that the problem of approximating an instance

of Minimum Bin Packing within a given performance ratio can be solved in polynomial-time

by means of a constant number of non-adaptive queries to an NP-complete problem. These

two steps will imply the collapse of the query hierarchy which in turn implies the collapse of

the polynomial-time hierarchy. As a side e�ect of our proof, we will show that if a problem is

APX-complete, then it does not admit an asymptotic approximation scheme.
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The previous results are consequences of new connections between the approximability prop-

erties and the query complexity of NP-hard optimization problems. In several recent papers

the notion of query complexity (that is, the number of queries to an NP oracle needed to solve

a given problem) has been shown to be a very useful tool for understanding the complexity of

approximation problems. In [7, 9] upper and lower bounds have been proved on the number

of queries needed to approximate certain optimization problems (such as Maximum Satisfi-

ability and Maximum Clique): these results deal with the complexity of approximating the

value of the optimum solution and not with the complexity of computing approximate solu-

tions. In this paper, instead, the complexity of \constructive" approximation will be addressed

by considering the languages that can be recognized by polynomial-time machines which have

a function oracle that solves the approximation problem. In particular, after proving the ex-

istence of natural APX-intermediate problems, in Sect. 4.1 we will be able to solve an open

question of [7] proving that �nding the vertices of the largest clique is more di�cult than merely

�nding the vertices of a 2-approximate clique unless the polynomial-time hierarchy collapses.

The results of [7, 9] show that the query complexity is a good measure to study approxima-

bility properties of optimization problems. The last group of our results show that completeness

in approximation classes implies lower bounds on the query complexity. Indeed, in Sect. 5 we

show that the two approaches are basically equivalent by giving su�cient and necessary condi-

tions for approximation completeness in terms of query-complexity hardness and combinatorial

properties. The importance of these results is twofold: they give new insights into the struc-

ture of complete problems for approximation classes and they reconcile the approach based

on standard computation models with the approach based on the computation model for ap-

proximation proposed in [8]. As a �nal observation, our results can be seen as extensions of a

result of [26] in which general su�cient (but not necessary) conditions for APX-completeness

are proved.

1.1. Preliminaries

We assume the reader to be familiar with the basic concepts of computational complexity

theory. For the de�nitions of most of the complexity classes used in the paper we refer the

reader to one of the books on the subject (see, for example, [2, 5, 16, 35]).

We now give some standard de�nitions in the �eld of optimization and approximation theory.

De�nition 1. An NP optimization problem A is a fourtuple (I; sol;m; type) such that

1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. These solutions are

short, that is, a polynomial p exists such that, for any y 2 sol(x), jyj � p(jxj). Moreover, for

any x and for any y with jyj � p(jxj), it is decidable in polynomial time whether y 2 sol(x).

3. Given an instance x and a feasible solution y of x, m(x; y) denotes the positive integer

measure of y (often also called the value of y). The function m is computable in polynomial

time and is also called the objective function.

4. type 2 fmax;ming.

The goal of an NP optimization problem with respect to an instance x is to �nd an optimum

solution, that is, a feasible solution y such that m(x; y) = typefm(x; y

0

) : y

0

2 sol(x)g. In the

following opt will denote the function mapping an instance x to the measure of an optimum

solution.
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The class NPO is the set of all NP optimization problems. Max NPO is the set of maxi-

mization NPO problems and Min NPO is the set of minimization NPO problems.

An NPO problem is said to be polynomially bounded if a polynomial q exists such that, for

any instance x and for any solution y of x, m(x; y) � q(jxj). The class NPO PB is the set of

all polynomially bounded NPO problems. Max PB is the set of all maximization problems in

NPO PB and Min PB is the set of all minimization problems in NPO PB.

De�nition 2. Let A be an NPO problem. Given an instance x and a feasible solution y of x,

we de�ne the performance ratio of y with respect to x as

R(x; y) = max

�

m(x; y)

opt(x)

;

opt(x)

m(x; y)

�

and the relative error of y with respect to x as

E(x; y) =

jopt(x)�m(x; y)j

opt(x)

:

The performance ratio (respectively, relative error) is always a number greater than or equal

to 1 (respectively, 0) and is as close to 1 (respectively, 0) as the value of the feasible solution

is close to the optimum value. It is easy to see that, for any instance x and for any feasible

solution y of x,

E(x; y) � R(x; y)� 1:

De�nition 3. Let A be an NPO problem and let T be an algorithm that, for any instance

x of A such that sol(x) 6= ;, returns a feasible solution T (x) in polynomial time. Given an

arbitrary function r : N ! [1;1), we say that T is an r(n)-approximate algorithm for A if the

performance ratio of the feasible solution T (x) with respect to x veri�es the following inequality:

R(x; T (x)) � r(jxj):

De�nition 4. Given a class of functions F , an NPO problem A belongs to the class F -APX

if an r(n)-approximate algorithm T for A exists, for some function r 2 F .

In particular, APX, log-APX, poly-APX, and exp-APX will denote the classes F -APX with

F equal to the set O(1), to the set O(log n), to the set O(n

O(1)

), and to the set O(2

n

O(1)

),

respectively. One could object that there is no di�erence between NPO and exp-APX since the

polynomial bound on the computation time of the objective function implies that any NPO

problem is h2

n

k

-approximable for some h and k. This is not true, since NPO problems exist

for which it is even hard to �nd a feasible solution. We will see examples of such problems in

Sect. 3 (e.g. Maximum Weighted Satisfiability).

De�nition 5. An NPO problem A belongs to the class PTAS if an algorithm T exists such

that, for any �xed rational r > 1, T (�; r) is an r-approximate algorithm for A.

Clearly, the following inclusions hold:

PTAS � APX � log-APX � poly-APX � exp-APX � NPO:

It is also easy to see that these inclusions are strict if and only if P 6= NP.
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1.2. A list of NPO problems

We here de�ne the NP optimization problems that will be used in the paper. For a much larger

list of NPO problems we refer to [11].

Maximum Clique

Instance: Graph G = (V;E).

Solution: A clique in G, i.e. a subset V

0

� V such that every two vertices in V

0

are joined

by an edge in E.

Measure: Cardinality of the clique, i.e., jV

0

j.

Maximum Weighted Satisfiability and Minimum Weighted Satisfiability

Instance: Set of variables X, boolean quanti�er-free �rst-order formula � over the variables

in X, and a weight function w : X ! N .

Solution: Truth assignment that satis�es �.

Measure: The sum of the weights of the true variables.

Maximum PB 0� 1 Programming and Minimum PB 0� 1 Programming

Instance: Integer m� n-matrix A, integer m-vector b, binary n-vector c.

Solution: A binary n-vector x such that Ax � b.

Measure: 1 +

n

X

i=1

c

i

x

i

.

Maximum Satisfiability

Instance: Set of variables X and Boolean CNF formula � over the variables in X.

Solution: Truth assignment to the variables in X.

Measure: The number of satis�ed clauses.

Minimum Bin Packing

Instance: Finite set U of items, and a size s(u) 2 Q \ (0; 1] for each u 2 U .

Solution: A partition of U into disjoint sets U

1

; U

2

; : : : ; U

m

such that the sum of the sizes of

the items in each U

i

is at most 1.

Measure: The number of used bins, i.e., the number m of disjoint sets.

Minimum Ordered Bin Packing

Instance: Finite set U of items, a size s(u) 2 Q\ (0; 1] for each u 2 U , and a partial order �

on U .

Solution: A partition of U into disjoint sets U

1

; U

2

; : : : ; U

m

such that the sum of the sizes of

the items in each U

i

is at most 1 and if u 2 U

i

and u

0

2 U

j

with u � u

0

, then i � j.

Measure: The number of used bins, i.e., the number m of disjoint sets.
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Minimum Degree Spanning Tree

Instance: Graph G = (V;E).

Solution: A spanning tree for G.

Measure: The maximum degree of the spanning tree.

Minimum Edge Coloring

Instance: Graph G = (V;E).

Solution: A coloring of E, i.e., a partition of E into disjoint sets E

1

; E

2

; : : : ; E

k

such that,

for 1 � i � k, no two edges in E

i

share a common endpoint in G.

Measure: Cardinality of the coloring, i.e., the number k of disjoint sets.

2. A new approximation preserving reducibility

The goal of this section is to de�ne a new approximation preserving reducibility that can be

used for as many approximation classes as possible and such that all reductions that have

appeared in the literature still hold. We will justify the de�nition of this new reducibility by

emphasizing the disadvantages of previously known ones. In the following, we will assume that,

for any reducibility, an instance x such that sol(x) 6= ; is mapped into an instance x

0

such that

sol(x

0

) 6= ;.

2.1. The L-reducibility

The �rst reducibility we shall consider is the L-reducibility (for linear reducibility) [36] which is

often most practical to use in order to show that a problem is at least as hard to approximate

as another.

De�nition 6. Let A and B be two NPO problems. A is said to be L-reducible to B, in symbols

A �

L

B, if two functions f and g and two positive constants � and � exist such that:

1. For any x 2 I

A

, f(x) 2 I

B

is computable in polynomial time.

2. For any x 2 I

A

and for any y 2 sol

B

(f(x)), g(x; y) 2 sol

A

(x) is computable in polynomial

time.

3. For any x 2 I

A

, opt

B

(f(x))� �opt

A

(x).

4. For any x 2 I

A

and for any y 2 sol

B

(f(x)),

jopt

A

(x)�m

A

(x; g(x; y))j � �jopt

B

(f(x))�m

B

(f(x); y)j

The fourtuple (f; g; �; �) is said to be an L-reduction from A to B.

Clearly, the L-reducibility preserves membership in PTAS. Indeed, if (f; g; �; �) is an L-

reduction from A to B then, for any x 2 I

A

and for any y 2 sol

B

(f(x)), we have that

E

A

(x; g(x; y))� ��E

B

(f(x); y);

so that if B 2 PTAS then A 2 PTAS [36]. The above inequality also implies that if A is a

minimization problem and an r-approximate algorithm for B exists, then a (1 + ��(r � 1))-

approximate algorithm for A exists. In other words, L-reductions from minimization problems

to optimization problems preserve membership in APX. The next result gives a strong evidence

that, in general, this is not true whenever the starting problem is a maximization one.
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Theorem 1. The following statements are equivalent:

1. Two problems A 2 Max NPO and B 2 Min NPO exist such that A 62 APX, B 2 APX, and

A �

L

B.

2. Two Max NPO problems A and B exist such that A 62 APX, B 2 APX, and A �

L

B.

3. A polynomial-time recognizable set of satis�able Boolean formulas exists for which no

polynomial-time algorithm can compute a satisfying assignment for each of them.

Proof. (1)) (2). In this case, it su�ces to L-reduce B to a maximization problem C in APX

[26].

(2) ) (3). Assume that for any polynomial-time recognizable set of satis�able Boolean

formulas there is a polynomial-time algorithm computing a satisfying assignment for each

formula in the set. Suppose that (f; g; �; �) is an L-reduction from a maximization problem

A to a maximization problem B and that B is r-approximable for some r > 1. Let x be an

instance of A and let y be a solution of f(x) such that opt

B

(f(x))=m

B

(f(x); y) � r. For the

sake of convenience, let opt

A

= opt

A

(x), m

A

= m

A

(x; g(x; y)), opt

B

= opt

B

(f(x)), and m

B

=

m

B

(f(x); y). Let also m

x

= maxfm

A

;m

B

=�g. Since m

A

� opt

A

and m

B

=� � opt

B

=� � opt

A

,

we have that m

x

� opt

A

. We now show that opt

A

=m

x

� 1 + ��(r � 1), that is, m

x

is a

non-constructive approximation of opt

A

. Let 
 =

�r

1+��(r�1)

. There are two cases.

1. opt

B

� 
opt

A

. By the de�nition of the L-reducibility, opt

A

� m

A

� �(opt

B

� m

B

). Since

opt

B

� 
opt

A

and opt

B

=m

B

� r, we have that

opt

A

�m

A

opt

A

� 
�

opt

B

�m

B

opt

B

� 
�(1� 1=r):

Hence,

opt

A

m

x

�

opt

A

m

A

�

1

1� 
�

r�1

r

= 1 + ��(r � 1)

where the last equality is due to the de�nition of 
.

2. opt

B

> 
opt

A

. It holds that

opt

A

m

x

�

opt

A

m

B

=�

<

�(opt

B

=
)

m

B

(since opt

A

< opt

B

=
)

�

�(opt

B

=
)

(opt

B

=r)

(since m

B

� opt

B

=r)

=

�r




= 1 + ��(r � 1):

Let us now consider the following non-deterministic polynomial-time algorithm.

begin finput: x 2 I

A

g

compute m

x

by using the r-approximate algorithm for B and the L-reduction from A to B;

guess y 2 sol

A

(x);

if m

A

(x; y) � m

x

then accept else reject;

end;



Structure in Approximation Classes 9

By applying Cook's reduction [10] to the above algorithm, it easily follows that, for any

x 2 I

A

, a satis�able Boolean formula �

x

can be constructed in polynomial time in the length

of x so that any satisfying assignment for �

x

encodes a solution of x whose measure is at least

m

x

. Moreover, the set f�

x

: x 2 I

A

g is recognizable in polynomial time. By assumption, it

is then possible to compute in polynomial time a satisfying assignment for �

x

and thus an

approximate solution for x.

(3) ) (1). Assume that a polynomial-time recognizable set S of satis�able Boolean for-

mulas exists for which no polynomial-time algorithm can compute a satisfying assignment

for each of them. Consider the following two NPO problems A = (I

A

; sol

A

;m

A

;max) and

B = (I

B

; sol

B

;m

B

;min) where I

A

= I

B

= S, sol

A

(x) = sol

B

(x) = fy : y is a truth assignment

to the variables of xg,

m

A

(x; y) =

(

jxj if y is a satisfying assignment for x,

1 otherwise,

and

m

B

(x; y) =

(

jxj if y is a satisfying assignment for x,

2jxj otherwise.

Clearly, problem B is in APX, while if A is in APX then there is a polynomial-time algorithm

that computes a satisfying assignment for each formula in S, contradicting the assumption.

Moreover, it is easy to see that A L-reduces to B via f � �x:x, g � �x�y:y, � = 1, and

� = 1. ut

Observe that in [30] it is shown that the third statement of the above theorem holds if

and only if the 
-reducibility is di�erent from the many-one reducibility. Moreover, in [19]

it is shown that the latter hypothesis is somewhat intermediate between P 6= NP \ co-NP

and P 6= NP. In other words, there is strong evidence that, even though the L-reducibility is

suitable for proving completeness results within classes contained in APX (such as Max SNP

[36]), this reducibility cannot be used to de�ne the notion of completeness for classes beyond

APX. Moreover, it cannot be blindly used to obtain positive results, that is, to prove the

existence of approximation algorithms via reductions. Finally, it is possible to L-reduce the

maximization problem B de�ned in the last part of the proof of the previous theorem to

Maximum 3-Satisfiability: this implies that the closure of Max SNP with respect to the

L-reducibility is not included in APX, contrary to what is commonly believed (e.g. see [35],

page 314).

2.2. The E-reducibility

The drawbacks of the L-reducibility are mainly due to the fact that the relation between the

performance ratios is set by two separate linear constraints on both the optimum values and

the absolute errors. The E-reducibility (for error reducibility) [26], instead, imposes a linear

relation directly between the performance ratios.

De�nition 7. Let A and B be two NPO problems. A is said to be E-reducible to B, in symbols

A �

E

B, if two functions f and g and a positive constant � exist such that:

1. For any x 2 I

A

, f(x) 2 I

B

is computable in polynomial time.
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2. For any x 2 I

A

and for any y 2 sol

B

(f(x)), g(x; y) 2 sol

A

(x) is computable in polynomial

time.

3. For any x 2 I

A

and for any y 2 sol

B

(f(x)),

R

A

(x; g(x; y))� 1 + �(R

B

(f(x); y)� 1):

The triple (f; g; �) is said to be an E-reduction from A to B.

Observe that, for any function r, an E-reduction maps r(n)-approximate solutions into

(1+�(r(n

h

)�1))-approximate solutions where h is a constant depending only on the reduction.

Hence, the E-reducibility not only preserves membership in PTAS but also membership in exp-

APX, poly-APX, log-APX, and APX. As a consequence of this observation and of the results

of the previous section, we have that NPO problems should exist which are L-reducible to each

other but not E-reducible. However, the following result shows that within the class APX the

E-reducibility is just a generalization of the L-reducibility.

Proposition 1. For any two NPO problems A and B, if A �

L

B and A 2 APX, then A �

E

B.

Proof. Let T be an r-approximate algorithm for A with r constant and let (f

L

; g

L

; �

L

; �

L

) be an

L-reduction from A to B. Then, for any x 2 I

A

and for any y 2 sol

B

(f

L

(x)), E

A

(x; g

L

(x; y)) �

�

L

�

L

E

B

(f

L

(x); y). If A is a minimization problem then, for any x 2 I

A

and for any y 2

sol

B

(f

L

(x)),

R

A

(x; g

L

(x; y)) = 1 + E

A

(x; g

L

(x; y))

� 1 + �

L

�

L

E

B

(f

L

(x); y)

� 1 + �

L

�

L

(R

B

(f

L

(x); y)� 1);

and thus (f

L

; g

L

; �

L

�

L

) is an E-reduction from A to B. Otherwise (that is, A is a maximization

problem) we distinguish the following two cases.

1. E

B

(f

L

(x); y) �

1

2�

L

�

L

: in this case we have that

R

A

(x; g

L

(x; y))� 1 =

E

A

(x; g

L

(x; y))

1� E

A

(x; g

L

(x; y))

�

�

L

�

L

E

B

(f

L

(x); y)

1� �

L

�

L

E

B

(f

L

(x); y)

� 2�

L

�

L

(R

B

(f

L

(x); y)� 1):

2. E

B

(f

L

(x); y) >

1

2�

L

�

L

: in this case we have that R

B

(f

L

(x); y)� 1 �

1

2�

L

�

L

so that

R

A

(x; T (x))� 1 � r � 1 � 2�

L

�

L

(r � 1)(R

B

(f

L

(x); y)� 1)

where the �rst inequality is due to the fact that T is an r-approximation algorithm for A.

We can thus de�ne a triple (f

E

; g

E

; �

E

) as follows:

1. For any x 2 I

A

, f

E

(x) = f

L

(x).

2. For any x 2 I

A

and for any y 2 sol

B

(f

E

(x)),

g

E

(x; y) =

(

g

L

(x; y) if m

A

(x; g

L

(x; y)) � m

A

(x; T (x)),

T (x) otherwise.
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3. �

E

= maxf2�

L

�

L

; 2�

L

�

L

(r � 1)g.

From the above discussion it follows that (f

E

; g

E

; �

E

) is an E-reduction from A to B. ut

Clearly, the converse of the above result does not hold since no problem in NPO�NPO PB

can be L-reduced to a problem in NPO PB while any problem in PO can be E-reduced to any

NPO problem. Moreover, in [26] it is shown that Maximum 3-Satisfiability is (NPO PB \

APX)-complete with respect to the E-reducibility. This result is not obtainable by means of

the L-reducibility: indeed, it is easy to prove that Minimum Bin Packing is not L-reducible

to Maximum 3-Satisfiability unless P = NP (see, for example, [6]).

The E-reducibility is still somewhat too strict. Indeed, in [14] it has been shown that nat-

ural PTAS problems exist, such as Maximum Knapsack, which are not E-reducible to poly-

nomially bounded APX problems, such as Maximum 3-Satisfiability (unless a logarithmic

number of queries to an NP oracle is as powerful as a polynomial number of queries).

2.3. The AP-reducibility

The above mentioned drawback of the E-reducibility is mainly due to the fact that an E-

reduction preserves optimum values (see [14]). Indeed, the linear relation between the perfor-

mance ratios seems to be too restrictive. According to the de�nition of approximation preserving

reducibilities given in [12], we could overcome this problem by expressing this relation by means

of an implication. However, this is not su�cient: intuitively, since the function g does not know

which approximation is required, it must still map optimum solutions into optimum solutions.

The �nal step thus consists of letting the functions f and g depend on the performance ratio

1

.

This implies that di�erent constraints have to be put on the computation time of f and g:

on the one hand, we still want to preserve membership in PTAS, on the other we want the

reduction to be e�cient even when poor performance ratios are required. These constraints are

formally imposed in the following de�nition of approximation preserving reducibility (which is

a restriction of the PTAS-reducibility introduced in [14]).

De�nition 8. Let A and B be two NPO problems. A is said to be AP-reducible to B, in

symbols A �

AP

B, if two functions f and g and a positive constant � exist such that:

1. For any x 2 I

A

and for any r > 1, f(x; r) 2 I

B

is computable in time t

f

(jxj; r).

2. For any x 2 I

A

, for any r > 1, and for any y 2 sol

B

(f(x; r)), g(x; y; r) 2 sol

A

(x) is

computable in time t

g

(jxj; jyj; r).

3. For any �xed r, both t

f

(�; r) and t

g

(�; �; r) are bounded by a polynomial.

4. For any �xed n, both t

f

(n; �) and t

g

(n; n; �) are non-increasing functions.

5. For any x 2 I

A

, for any r > 1, and for any y 2 sol

B

(f(x; r)),

R

B

(f(x; r); y)� r implies R

A

(x; g(x; y; r))� 1 + �(r � 1):

The triple (f; g; �) is said to be an AP-reduction from A to B.

According to the above de�nition, functions like 2

1=(r�1)

n

h

or n

1=(r�1)

are admissible bounds

on the computation time of f and g, while this is not true for functions like n

r

or 2

n

.

1

We also let the function f depend on the performance ratio because this feature will turn out to be useful

in order to prove interesting characterizations of complete problems for approximation classes.
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Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility. Moreover,

it is easy to see that, contrary to the E-reducibility, any PTAS problem is AP-reducible to any

NPO problem.

As far as we know, this reducibility is the strictest one appearing in the literature that allows

to obtain natural APX-completeness results (for instance, the APX-completeness ofMaximum

Satisfiability [14, 26]).

3. NPO-complete problems

We will in this section prove that there are natural problems that are complete for the classes

NPO and NPO PB. Previously, completeness results have been obtained just for Max NPO,

Min NPO, Max PB, and Min PB [12, 33, 4, 24]. One example of such a result is the following

theorem.

Theorem 2. Minimum Weighted Satisfiability is Min NPO-complete and Maximum

Weighted Satisfiability is Max NPO-complete, even if only a subset fv

1

; : : : ; v

s

g of the

variables has nonzero weight w(v

i

) = 2

s�i

and any truth assignment satisfying the instance

gives the value true to at least one v

i

.

We will construct AP-reductions from maximization problems to minimization problems

and vice versa. Using these reductions we will show that a problem that is Max NPO-complete

or Min NPO-complete in fact is complete for the whole of NPO, and that a problem that is

Max PB-complete or Min PB-complete is complete for the whole of NPO PB.

Theorem 3. Minimum Weighted Satisfiability andMaximum Weighted Satisfiabil-

ity are NPO-complete.

Proof. In order to establish the NPO-completeness of Minimum Weighted Satisfiability

we just have to show that there is an AP-reduction from a Max NPO-complete problem to

Minimum Weighted Satisfiability. As the Max NPO-complete problem we will use the

restricted version of Maximum Weighted Satisfiability from Theorem 2.

Let x be an instance of Maximum Weighted Satisfiability, i.e. a formula � over vari-

ables v

1

; : : : ; v

s

with weights w(v

i

) = 2

s�i

and some variables with weight zero. We will �rst

give a simple reduction that preserves the approximability within the factor 2, and then adjust

it to obtain an AP-reduction.

Let f(x) be the formula � ^ �

1

^ � � � ^ �

s

where �

i

is the conjunctive normal form of

(z

i

� (v

1

^ � � � ^ v

i�1

^ v

i

)), where z

1

; : : : ; z

s

are new variables with weights w(z

i

) = 2

i

and

where all other variables (even the v-variables) have zero weight. If y is a satisfying assignment

of f(x), let g(x; y) be the restriction of the assignment to the variables that occur in �. This

assignment clearly satis�es �.

Note that exactly one of the z-variables is true in any satisfying assignment of f(x). Indeed,

if all z-variables were false, then all v-variables would be false and � would not be satis�ed. On

the other hand, if both z

i

and z

j

were true with j > i, then v

i

would be both true and false

which is a contradiction. Hence,

m(f(x); y) = 2

i

, z

i

= 1

, v

1

= v

2

= � � � = v

i�1

= 0; v

i

= 1

, 2

s�i

� m(x; g(x; y)) < 2 � 2

s�i
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,

2

s

m(f(x); y)

� m(x; g(x; y)) < 2

2

s

m(f(x); y)

:

In particular this holds for the optimum solution. Thus the performance ratio forMaximum

Weighted Satisfiability is

R(x; g(x; y)) =

opt(x)

m(x; g(x; y))

<

2

2

s

opt(f(x))

2

s

m(f(x); y)

= 2

m(f(x); y)

opt(f(x))

= 2R(f(x); y);

which means that the reduction preserves the approximability within 2.

Let us now extend the construction in order to obtain R(x; g(x; y)) � (1 + 2

�k

)R(f

k

(x); y)

for every nonnegative integer k. The reduction described above corresponds to k = 0.

For any i 2 f1; : : : ; sg and for any (b

1

; : : : ; b

k(i)

) 2 f0; 1g

k(i)

where k(i) = minfs � i; kg, we

have a variable z

i;b

1

;:::;b

k(i)

. Let

f

k

(x) = � ^

^

i2f1;:::;sg

(

b

1

;:::;b

k(i)

)

2f0;1g

k(i)

�

i;b

1

;:::;b

k(i)

;

where �

i;b

1

;:::;b

k(i)

is the conjuctive normal form of

�

z

i;b

1

;:::;b

k(i)

�

�

v

1

^ � � � ^ v

i�1

^ v

i

^ (v

i+1

= b

1

) ^ � � � ^ (v

i+k(i)

= b

k(i)

)

��

:

De�ne g(x; y) as above. Finally, de�ne

w(z

i;b

1

;:::;b

k(i)

) =

2

6

6

6

K � 2

s

w(v

i

) +

P

k(i)

j=1

b

j

w(v

i+j

)

3

7

7

7

=

2

6

6

6

K � 2

i

1 +

P

k(i)

j=1

b

j

2

�j

3

7

7

7

(by choosing K greater than 2

k

we can disregard the e�ect of the ceiling operation in the

following computations).

As in the previous reduction exactly one of the z-variables is true in any satisfying as-

signment of f

k

(x). If, in a solution y of f

k

(x), z

i;b

1

;:::;b

k(i)

= 1, then we have m(f

k

(x); y) =

w(z

i;b

1

;:::;b

k(i)

) and we know that

m(x; g(x; y))� w(v

i

) +

k(i)

X

j=1

b

j

w(v

i+j

) = 2

s�i

(1 +

k(i)

X

j=1

b

j

2

�j

):

On the other hand, if k(i) = s� i then m(x; g(x; y)) = 2

s�i

(1 +

P

k(i)

j=1

b

j

2

�j

), otherwise

m(x; g(x; y)) � w(v

i

) +

k

X

j=1

b

j

w(v

i+j

) +

s

X

j=k+i+1

w(v

j

) < 2

s�i

(1 +

k

X

j=1

b

j

2

�j

)(1 + 2

�k

):

In both cases, we thus get

K � 2

s

m(f

k

(x); y)

� m(x; g(x; y)) <

K � 2

s

m(f

k

(x); y)

(1 + 2

�k

)
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and therefore R(x; g(x; y)) < (1 + 2

�k

)R(f

k

(x); y). Given any r > 1, if we choose k such that

2

�k

� (r � 1)=r, e.g. k = dlog r � log(r � 1)e, then R(f

k

(x); y) � r implies R(x; g(x; y)) <

(1 + 2

�k

)R(f

k

(x); y) � r + r2

�k

� r+ r� 1 = 1+ 2(r� 1). This is obviously an AP-reduction

with � = 2.

A very similar proof can be used to show that Maximum Weighted Satisfiability is

NPO-complete. ut

Corollary 1. Any Min NPO-complete problem is NPO-complete and any Max NPO-complete

problem is NPO-complete.

As an application of the above corollary, we have that the Minimum 0 � 1 Programming

problem is NPO-complete.

We can also show that there are natural complete problems for the class of polynomially

bounded NPO problems.

Theorem 4. Maximum PB 0� 1 Programming and Minimum PB 0 � 1 Programming

are NPO PB-complete.

Proof. Maximum PB 0�1 Programming is known to be Max PB-complete [4] andMinimum

PB 0 � 1 Programming is known to be Min PB-complete [24]. Thus we just have to show

that there are AP-reductions from Minimum PB 0 � 1 Programming to Maximum PB

0� 1 Programming and from Maximum PB 0� 1 Programming to Minimum PB 0� 1

Programming.

Both reductions use exactly the same construction. Given a satisfying variable assignment,

we de�ne the one-variables to be the variables occurring in the objective function that have

the value one. The objective value is the number of one-variables plus 1.

The objective value of a solution is encoded by introducing an order of the one-variables.

The order is encoded by a squared number of 0� 1 variables, see Fig. 2. The idea is to invert

the objective values, so that a solution without one-variables corresponds to an objective value

of n of the constructed problem, and, in general, a solution with p one-variables corresponds

to an objective value of

j

n

p+1

k

.

-

6

i

j

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

6

?

size of

solution

solution: � � � � � �

6

?

one 1 in each row

6

?

only zeros in upper part

Figure 2. The idea of the reduction from Minimum/Maximum PB 0 � 1 Programming to Maxi-

mum/Minimum PB 0� 1 Programming. The variable x

j

i

= 1 if and only if v

i

is the jth one-variable

in the solution. There is at most one 1 in each column and in each row.

The reductions are constructed as follows. Given an instance of Minimum PB 0� 1 Pro-

gramming or Maximum PB 0� 1 Programming, i.e. an objective function 1+

P

m

k=1

v

k

and

some inequalities over variables V = fv

1

; : : : ; v

m

g[U , construct m

2

variables x

j

i

, 1 � i; j � m,

and the following inequalities:
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8i 2 [1::m]

m

P

j=1

x

j

i

� 1 (at most one 1 in each column) (1)

8j 2 [1::m]

m

P

i=1

x

j

i

� 1 (at most one 1 in each row) (2)

8j 2 [1::m� 1]

m

P

i=1

x

j

i

�

m

P

i=1

x

j+1

i

� 0 (only zeros in upper part) (3)

Besides these inequalities we include all inequalities from the original problem, but we substitute

each variable v

i

with the sum

P

m

k=1

x

k

i

. The variables in U (that do not occur in the objective

function) are left intact.

The objective function is de�ned as

n�

m

X

p=1

��

n

p

�

�

�

n

p+ 1

��

m

X

i=1

x

p

i

: (4)

In order to express the objective function with only binary coe�cients we have to introduce n

new variables y

1

; : : : ; y

n

where y

j

= 1 �

P

m

i=1

x

p

i

for bn=(p + 1)c < j � bn=pc and y

j

= 1 for

j � bn=(m + 1)c. The objective function then is

P

n

j=1

y

j

. One can now verify that a solution

of the original problem instance with s one-variables (i.e. with an objective value of s + 1)

will exactly correspond to a solution of the constructed problem instance with objective value

bn=(s+ 1)c and vice versa.

Suppose that the optimum solution to the original problem instance has M one-variables,

then the performance ratio (s+ 1)=(M + 1) will correspond to the performance ratio

�

n

M + 1

�

�

n

s+ 1

�

=

s+ 1

M + 1

�

1�

m

n

�

for the constructed problem, where

m

n

is the relative error due to the 
oor operation. By

choosing n large enough the relative error can be made arbitrarily small. Thus it is easy to see

that the reduction is an AP-reduction. ut

Corollary 2. Any Min PB-complete problem is NPO PB-complete and any Max PB-complete

problem is NPO PB-complete.

4. Query complexity and APX-intermediate problems

The existence of APX-intermediate problems (that is, problems in APX which are not APX-

complete) has already been shown in [12] where an arti�cial such problem is obtained by

diagonalization techniques similar to those developed to prove the existence of NP-intermediate

problems [29]. In this section, we prove that \natural" APX-intermediate problems exist: for

instance, we will show that Minimum Bin Packing is APX-intermediate. In order to prove

this result, we will establish new connections between the approximability properties and the

query complexity of NP-hard optimization problems. To this aim, let us �rst recall the following

de�nition.

De�nition 9. A language L belongs to the class P

NP[f(n)]

if it is decidable by a polynomial-

time oracle Turing machine which asks at most f(n) queries to an NP-complete oracle, where

n is the input size. The class QH is equal to the union

S

k>1

P

NP[k]

.
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Similarly, we can de�ne the class of functions FP

NP[f(n)]

[28]. The following result has been

proved in [21, 22].

Theorem 5. If a constant k exists such that

QH = P

NP[k]

;

then the polynomial-time hierarchy collapses.

The query-complexity of the \non-constructive" approximation of several NP-hard opti-

mization problems has been studied by using hardness results with respect to classes of func-

tions FP

NP[�]

[7, 9]. However, this approach cannot be applied to analyze the complexity of

\constructing" approximate solutions. To overcome this limitation, we use a novel approach

that basically consists of considering how helpful is an approximation algorithm for a given

optimization problem to solve decision problems.

De�nition 10. Given an NPO problem A and a rational r � 1, A

r

is a multi-valued partial

function that, given an instance x of A, returns the set of feasible solutions y of x such that

R(x; y) � r.

De�nition 11. Given an NPO problem A and a rational r � 1, a language L belongs to P

A

r

if two polynomial-time computable functions f and g exist such that, for any x, f(x) is an

instance of A with sol(f(x)) 6= ;, and, for any y 2 A

r

(f(x)), g(x; y) = 1 if and only if x 2 L.

The class AQH(A) is equal to the union

S

r>1

P

A

r

.

The following result states that an approximation problem does not help more than a

constant number of queries to an NP-complete problem. It is worth observing that, in general,

an approximate solution, even though not very helpful, requires more than a logarithmic number

of queries to be computed [8].

Proposition 2. For any problem A in APX, AQH(A) � QH.

Proof. Assume that A is a maximization problem (the proof for minimization problems is

similar). Let T be an r-approximate algorithm for A, for some r > 1, and let L 2 P

A

�

for some

� > 1. Two polynomial-time computable functions f and g then exist witnessing this latter

fact. For any x, let m = m(f(x); T (f(x))), so that m � opt(f(x))� rm. We can then partition

the interval [m; rm] into blog

�

rc+ 1 subintervals

[m; �m); [�m; �

2

m); : : : ; [�

blog

�

rc�1

m; �

blog

�

rc

m]; [�

blog

�

rc

m; rm];

and start looking for the subinterval containing the optimum value (a similar technique has

been used in [7, 9]). This can clearly be done using blog

�

rc + 1 queries to an NP-complete

oracle. One more query is su�cient to know whether a feasible solution y exists whose value

lies in that interval and such that g(x; y) = 1. Since y is �-approximate, it follows that L can

be decided using blog

�

rc+ 2 queries, that is, L 2 QH. ut

Recall that an NPO problem admits an asymptotic polynomial-time approximation scheme

if an algorithm T exists such that, for any x and for any r > 1, R(x; T (x; r)) � r + k=opt(x)

with k constant and the time complexity of T (x; r) is polynomial with respect to jxj. The

class of problems that admit an asymptotic polynomial-time approximation scheme is usually

denoted by PTAS

1

. The following result shows that, for this class, the previous fact can be

strengthened.



Structure in Approximation Classes 17

Proposition 3. Let A 2 PTAS

1

. Then a constant h exists such that AQH(A) � P

NP[h]

.

Proof. Let A be a minimization problem in PTAS

1

(the proof for maximization problem is

very similar). By de�nition, a constant k and an algorithm T exist such that, for any instance

x and for any rational r > 1,

m(x; T (x; r)) � r � opt(x) + k:

We will now prove that a constant h exists such that, for any r > 1, a function l

r

2 FP

NP[h�1]

exists such that, for any instance x of the problem A,

opt(x) � l

r

(x) � r � opt(x):

Intuitively, functions l

r

form a non-constructive approximation scheme that is computable by

a constant number of queries to an NP-complete oracle. Given an instance x, we can check

whether sol(x) = ; by means of a single query to an NP oracle, so that we can restrict ourselves

to instances such that sol(x) 6= ; (and thus opt(x) � 1). Note that, for these instances, T (�; 2)

is a (k + 2)-approximate algorithm for A. Let us �x an r > 1, let " = r � 1, y = T (x; 1 + "=2)

and a = m(x; T (x; 2)). We have to distinguish two cases.

1. a � 2k(k+ 2)=": in this case, opt(x) � 2k=", that is, opt(x)"=2 � k. Then

m(x; y) � opt(x)(1 + "=2) + k

� opt(x)(1 + "=2) + opt(x)"=2

= opt(x)(1 + ") = ropt(x);

that is, y is an r-approximate solution for x, and we can set l

r

(x) = m(x; y) (in this case l

r

has been computed by only one query).

2. a < 2k(k+ 2)=": in this case, opt(x) < 2k(k + 2)=". Then,

opt(x) � m(x; y) � opt(x) + opt(x)"=2 + k < opt(x) + k(k+ 2) + k:

Clearly, dlog k(k + 3)e queries to NP are su�cient to �nd the optimum value opt(x) by

means of a binary search technique: in this case l

r

(x) = opt(x) has been computed by

dlog k(k+ 3)e+ 1 queries.

Let now L be a language in AQH(A), then L 2 P

A

r

for some r > 1. Let f and g be the

functions witnessing that L 2 P

A

r

. Observe that, for any x, x 2 L if and only if a solution

y for f(x) exists such that m(f(x); y) � l

r

(f(x)) and g(f(x); y) = 1: that is, given l

r

(f(x)),

deciding whether x 2 L is an NP problem. Since l

r

(f(x)) is computable by means of at most

dlog k(k+ 3)e+ 1 queries to NP, we have that L 2 P

NP[h]

where h = dlog k(k+ 3)e+ 2. ut

The next proposition, instead, states that any language L in the query hierarchy can be

decided using just one query to A

r

where A is APX-complete and r depends on the level of

the query hierarchy L belongs to. In order to prove this proposition, we need the following

technical result

2

.

2

Recall that the NP-complete problem Partition is de�ned as follows: given a set U of items and a size

function s : U ! Q \ (0; 1], does there exists a subset U

0

� U such that

X

u2U

0

s(u) =

X

u62U

0

s(u)?
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Lemma 1. For any APX-complete problem A and for any k, two polynomial-time computable

functions f and g and a constant r exist such that, for any k-tuple (x

1

; : : : ; x

k

) of instances of

Partition, x = f(x

1

; : : : ; x

k

) is an instance of A and if y is a solution of x whose performance

ratio is smaller than r then g(x; y) = (b

1

; : : : ; b

k

) where b

i

2 f0; 1g and b

i

= 1 if and only if x

i

is a yes-instance.

Proof. Let x

i

= (U

i

; s

i

) be an instance of Partition for i = 1; : : : ; k. Without loss of generality,

we can assume that the U

i

s are pairwise disjoint and that, for any i,

P

u2U

i

s

i

(u) = 2. Let

w = (U; s;�) be an instance of Minimum Ordered Bin Packing de�ned as follows (a

similar construction has been used in [37]).

1. U =

S

k

i=1

U

i

[ fv

1

; : : : ; v

k�1

g where the v

i

s are new items.

2. For any u 2 U

i

, s(u) = s

i

(u) and s(v

i

) = 1 for i = 1; : : : ; k � 1.

3. For any i < j � k, for any u 2 U

i

, and for any u

0

2 U

j

, u � v

i

� u

0

.

Any solution of w must be formed by a sequence of packings of U

1

; : : : ; U

k

such that, for

any i, the bins used for U

i

are separated by the bins used for U

i+1

by means of one bin which

is completely �lled by v

i

. In particular, the packings of the U

i

s in any optimum solution must

use either two or three bins: two bins are used if and only if x

i

is a yes-instance. The optimum

measure thus is at most 4k � 1 so that any (1 + 1=(4k))-approximate solution is an optimum

solution.

Since Minimum Ordered Bin Packing belongs to APX [41] and A is APX-complete,

then an AP-reduction (f

1

; g

1

; �) exists from Minimum Ordered Bin Packing to A. We can

then de�ne x = f(x

1

; : : : ; x

k

) = f

1

(w; 1+1=(4�k)) and r = 1+1=(4�k). For any r-approximate

solution y of x, the fourth property of the AP-reducibility implies that z = g

1

(x; y; 1+1=(4�k))

is a (1 + 1=(4k))-approximate solution of w and thus an optimum solution of w. From z, we

can easily derive the right answers to the k queries x

1

; : : : ; x

k

. ut

We are now able to prove the following result.

Proposition 4. For any APX-complete problem A, QH � AQH(A).

Proof. Let L 2 QH, then L 2 P

NP[h]

for some h. It is well known (see, for instance, [3])

that L can be reduced to the problem of answering k = 2

h�1

non-adaptive queries to NP.

More formally, two polynomial-time computable functions t

1

and t

2

exist such that, for any x,

t

1

(x) = (x

1

; : : : ; x

k

), where x

1

; : : : ; x

k

are k instances of the Partition problem, and for any

(b

1

; : : : ; b

k

) 2 f0; 1g

k

, t

2

(x; b

1

; : : : ; b

k

) 2 f0; 1g. Moreover, if, for any j, b

j

= 1 if and only if x

j

is a yes-instance, then t

2

(x; b

1

; : : : ; b

k

) = 1 if and only if x 2 L.

Let now f , g and r be the two functions and the constant of Lemma 1 applied to problem A

and constant k. For any x, x

0

= f(t

1

(x)) is an instance of A such that if y is an r-approximate

solution for x

0

, then t

2

(g(x

0

; y)) = 1 if and only if x 2 L. Thus, L 2 P

A

r

. ut

By combining Propositions 2 and 4, we thus have the following theorem that characterizes

the approximation query hierarchy of the hardest problems in APX.

Theorem 6. For any APX-complete problem A, AQH(A) = QH.

Finally, we have the following result that states the existence of natural intermediate prob-

lems in APX.

Theorem 7. If the polynomial-time hierarchy does not collapse, thenMinimum Bin Packing,

Minimum Degree Spanning Tree, and Minimum Edge Coloring are APX-intermediate.
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Proof. From Proposition 3 and from the fact thatMinimum Bin Packing is in PTAS

1

[25], it

follows that AQH(Minimum Bin Packing) � P

NP[h]

for a given h. IfMinimum Bin Packing

is APX-complete, then from Proposition 4 it follows that QH � P

NP[h]

. From Theorem 5 we

thus have the collapse of the polynomial-time hierarchy. The proofs for Minimum Degree

Spanning Tree and Minimum Edge Coloring are identical and use the results of [18, 15].

ut

Observe that the previous result does not seem to be obtainable by using the hypothesis

P 6= NP, as shown by the following theorem.

Theorem 8. If NP = co-NP then Minimum Bin Packing is APX-complete.

Proof. Assume NP = co-NP, we will present an AP reduction fromMaximum Satisfiability

to Minimum Bin Packing. Since NP = co-NP a nondeterministic polynomial time Turing

machine M exists that, given in input an instance � of Maximum Satisfiability, has an

accepting computation and all accepting computations halt with an optimum solution for �

written on the tape. Indeed,M guesses an integer k, an assigment � such that m(�; �) = k and

a proof of the fact that opt(�) � k. From the proof of Cook's theorem it follows that, given �, we

can �nd in polynomial time a formula �

0

such that �

0

is satis�able and that given any satisfying

assignment for �

0

we can �nd in polynomial time an optimum solution for �. By combining

this construction with the NP-completeness proof of theMinimum Bin Packing problem, we

obtain two polynomial-time computable functions t

1

and t

2

such that, for any instance � of

Maximum Satisfiability, t

1

(�) = x

�

is an instance of Minimum Bin Packing such that

opt(x

�

) = 2 and, for any optimum solution y of x

�

, t

2

(x

�

; y) is an optimum solution of �.

Observe that, by construction, an r-approximate solution for x

�

is indeed an optimum solution

provided that r < 3=2. Let T be a 4/3-approximate algorithm for Maximum Satisfiability

[42, 17]. The reduction from Maximum Satisfiability to Minimum Bin Packing is de�ned

as follows: f(�; r) = t

1

(�);

g(�; y; r) =

(

T (�) if r � 4=3;

t

2

(t

1

(�); y) otherwise.

It is immediate to verify that the above is an AP-reduction with � = 1. ut

Finally, note that the above result can be extended to any APX problem which is NP-hard

to approximate within a given performance ratio.

4.1. A remark on Maximum Clique

The following lemma is the analogoue of Proposition 2 within NPO PB and can be proved

similarly by binary search techniques.

Lemma 2. For any NPO PB problem A and for any r > 1, P

A

r

� P

NP[log logn+O(1)]

.

From this lemma, from the fact that P

NP[logn]

is contained in P

MC

1

where MC stands for

Maximum Clique [28], and from the fact that if a constant k exists such that

P

NP[log logn+k]

= P

NP[logn]

;

then the polynomial-time hierarchy collapses [40], it follows the next result that solves an open

question posed in [7]. Informally, this result states that it is not possible to reduce the problem

of �nding a maximum clique to the problem of �nding a 2-approximate clique (unless the

polynomial-time hierarchy collapses).

Theorem 9. If P

MC

1

� P

MC

2

then the polynomial-time hierarchy collapses.
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5. Query complexity and completeness in approximation classes

In this �nal section, we shall give a full characterization of problems complete for poly-APX

and for APX, respectively, in terms of hardness of the corresponding approximation prob-

lems with respect to classes of partial multi-valued functions and in terms of suitably de�ned

combinatorial properties.

The classes of functions we will refer to have been introduced in [8] as follows.

De�nition 12. FNP

NP[q(n)]

is the class of partial multi-valued functions computable by non-

deterministic polynomial-time Turing machines which ask at most q(n) queries to an NP oracle

in the entire computation tree.

3

In order to talk about hardness with respect to these classes we will use the following

reducibility which is an extension of both metric reducibility [28] and one-query reducibility

[13] and has been introduced in [8].

De�nition 13. Let F and G be two partial multi-valued functions. We say that F many-one

reduces to G (in symbols, F�

mv

G) if two polynomial-time algorithms t

1

and t

2

exist such

that, for any x in the domain of F , t

1

(x) is in the domain of G and, for any y 2 G(t

1

(x)),

t

2

(x; y) 2 F (x).

The combinatorial property used to characterize poly-APX-complete problems is the well-

known self-improvability (see, for instance, [34]).

De�nition 14. A problem A is self-improvable if two algorithms t

1

and t

2

exist such that, for

any instance x of A and for any two rationals r

1

; r

2

> 1, x

0

= t

1

(x; r

1

; r

2

) is an instance of A

and, for any y

0

2 A

r

2

(x

0

), y = t

2

(x; y

0

; r

1

; r

2

) 2 A

r

1

(x). Moreover, for any �xed r

1

and r

2

, the

running time of t

1

and t

2

is polynomial.

We are now ready to state the �rst result of this section.

Theorem 10. A poly-APX problem A is poly-APX-complete if and only if it is self-improvable

and A

r

0

is FNP

NP[log logn+O(1)]

-hard for some r

0

> 1.

Proof. Let A be a poly-APX-complete problem. Since Maximum Clique is self-improvable

[16] and poly-APX-complete [26] and since the equivalence with respect to the AP-reducibility

preserves the self-improvability property (see [34]), we have that A is self-improvable. It is then

su�cient to prove that A

2

is hard for FNP

NP[log logn+O(1)]

.

From the poly-APX-completeness of A we have that Maximum Clique �

AP

A: let �

be the constant of this reduction. From Theorem 12 of [8] we have that any function F in

FNP

NP[log logn+O(1)]

many-one reduces to Maximum Clique

1+�

. From the de�nition of AP-

reducibility, we also have that Maximum Clique

1+�

�

mv

A

2

so that F many-one reduces to

A

2

.

Conversely, let A be a poly-APX self-improvable problem such that, for some r

0

, A

r

0

is FNP

NP[log logn+O(1)]

-hard. We will show that, for any problem B in poly-APX, B is

AP-reducible to A. To this aim, we introduce the following partial multi-valued function

multisat: given in input a sequence (�

1

; : : : ; �

m

) of instances of the satis�ability problem with

m � log j(�

1

; : : : ; �

m

)j and such that, for any i, if �

i+1

is satis�able then �

i

is satis�able, a pos-

sible output is a satisfying truth-assignment for �

i

�

where i

�

= maxfi : �

i

is satis�ableg. From

the proof of Theorem 12 of [8] it follows that this function is FNP

NP[log logn+O(1)]

-complete.

3

We say that a multi-valued partial function F is computable by a nondeterministic Turing machine N if,

for any x in the domain of F , an halting computation path of N(x) exists and any halting computation path of

N(x) outputs a value of F (x).



Structure in Approximation Classes 21

By making use of techniques similar to those of the proof of Proposition 2, it is easy to see

that, since B is in poly-APX, two algorithms t

B

1

and t

B

2

exist such that, for any �xed r > 1,

t

B

1

(�; r) and t

B

2

(�; �; r) form a many-one reduction from B

r

to multisat. Moreover, since A

r

0

is

FNP

NP[log logn+O(1)]

-hard, then a many-one reduction (t

M

1

; t

M

2

) exists from multisat to A

r

0

.

Finally, let t

A

1

and t

A

2

be the functions witnessing the self-improvability of A.

The AP-reduction from B to A can then be derived as follows:

x; r

t

B

1

(x;r)

�����������! x

0

t

M

1

(x

0

)

�����������! x

00

t

A

1

(x

00

;r

0

;r)

�����������! x

000

#

y

t

B

2

(x;y

0

;r)

 ����������� y

0

t

M

2

(x

0

;y

00

)

 ����������� y

00

t

A

2

(x

00

;y

000

;r

0

;r)

 ����������� y

000

It is easy to see that if y

000

is an r-approximate solution for the instance x

000

of A, then y is an

r-approximate solution of the instance x of B. That is, B is AP-reducible to A with � = 1. ut

The above theorem cannot be proved without the dependency of both f and g on r in the

de�nition of AP-reducibility. Indeed, it is possible to prove that if only g has this property

then, unless the polynomial-time hierarchy collapses, a self-improvable problem A exists such

that A

2

is FNP

NP[log logn+O(1)]

-hard and A is not poly-APX-complete.

In order to characterize APX-complete problems, we have to de�ne a di�erent combinatorial

property. Intuitively, this property states that it is possible to merge several instances into one

instance in an approximation preserving fashion.

De�nition 15. An NPO problem A is linearly additive if a constant � and two algorithms

t

1

and t

2

exist such that, for any rational r > 1 and for any sequence x

1

; : : : ; x

k

of in-

stances of A, x

0

= t

1

(x

1

; : : : ; x

k

; r) is an instance of A and, for any y

0

2 A

1+(r�1)�=k

(x

0

),

t

2

(x

1

; : : : ; x

k

; y

0

; r) = y

1

; : : : ; y

k

where each y

i

is an r-approximate solution of x

i

. Moreover, the

running time of t

1

and t

2

is polynomial for every �xed r.

Theorem 11. An APX problem A is APX-complete if and only if it is linearly additive and

a constant r

0

exists such that A

r

0

is FNP

NP[1]

-hard.

Proof. Let A be an r

A

-approximable APX-complete problem. From the proof of Proposition 4 a

constant r

0

exists such that A

r

0

is hard for FNP

NP[1]

. In order to prove the linear additivity, �x

any r > 1 and let x

1

; : : : ; x

k

be instances of A. Without loss of generality, we can assume r < r

A

(otherwise the k instances can be r-approximated by using the r

A

-approximate algorithm).

For any i = 1; : : : ; k the problem of �nding an r-approximate solution y

i

for x

i

is reducible

to the problem of constructively solving a set of dlog

r

r

A

e instances of Partition. Observe

that dlog

r

r

A

e � c=(r� 1) for a certain constant c depending on r

A

. Moreover, we claim that a

constant 
 exists such that constructively solving kc=(r�1) instances of Partition is reducible

to (1+ 
(r� 1)=kc)-approximating a single instance of A (indeed, this can be shown along the

lines of the proof of Proposition 4). That is, A is linearly additive with � = 
=c.

Conversely, let A be a linearly additive APX problem such that A

r

0

is FNP

NP[1]

-hard for

some r

0

and let B be an r

B

-approximable problem. Given an instance x of B, for any r >

1 we can reduce the problem of �nding an r-approximate solution for x to the problem of

constructively solving c=(r� 1) instances of Partition, for a proper constant c not depending

on r. Each of these questions is reducible to A

r

0

, since any NP problem can be constructively

solved by an FNP

NP[1]

function. From linear additivity, it follows that r

0

-approximating c=(r�1)

instances of A is reducible to (1 + �(r

0

� 1)(r � 1)=c)-approximating a single instance of A.

This is an AP-reduction from B to A with � = c=(�(r

0

� 1)). ut
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Note that linear additivity plays for APX more or less the same role of self-improvability for

poly-APX. These two properties are, in a certain sense, one the opposite of the other: while the

usefulness of APX-complete approximation problems to solve decision problems depends on the

performance ratio and does not depend on the size of the instance, the usefulness of poly-APX-

complete approximation problems depends on the size of the instance and does not depend

on the performance ratio. Indeed, it is possible to prove that no APX-complete problem can

be self-improvable (unless P = NP) and that no poly-APX-complete problem can be linearly

additive (unless the polynomial-time hierarchy collapses).

It is now an interesting question to �nd a characterizing combinatorial property of log-APX-

complete problems. Indeed, we have not been able to establish this characterization: at present,

we can only state that it cannot be based on the self-improvability property as shown by the

following result.

Theorem 12. No log-APX-complete problem can be self-improvable unless the polynomial-time

hierarchy collapses.

Proof. Let us consider the optimization problem Max Number of Satisfiable Formulas

(in short, MNSF) de�ned as follows.

Instance: Set of m boolean formulas �

1

; : : : ; �

m

in 3CNF, such that �

1

is a tautology and

m � log n, where n is the size of the input instance.

Solution: Truth assignment � to the variables of �

1

; : : : ; �

m

.

Measure: The number of satis�ed formulas, i.e., jfi : �

i

is satis�ed by �gj.

Clearly, MNSF is in log-APX, since the measure of any assignment � is at least 1, and the

optimum value is always smaller than log n, where n is the size of the input. We will show that,

for any r < 2, MNSF

r

is hard for FNP

NP[log log logn�1]

.

Given log log n queries to an NP-complete language (of size polynomial in n) x

1

; : : : ; x

log logn

,

we can construct an instance � = �

1

; : : : ; �

m

of MNSF where �

1

is a tautology and, for i � 1,

the formulas �

2

i
= : : : = �

2

i+1

�1

are satis�able if and only if at least i instances among

x

1

; : : : ; x

log logn

are yes-instances (these formulas can be easily constructed using the standard

proof of Cook's theorem). Note that m = 2

log logn+1

�1 and, by adding dummy clauses to some

formulas, we can achieve the bound m � log j�

1

; : : : ; �

m

j. Moreover, from an r-approximate

solution for � we can decide how many instances in x

1

; : : : ; x

log logn

are yes-instances, and we

can also recover solutions for such instances. That is, any function in FNP

NP[log log logn�1]

is

many-one reducible to MNSF

r

.

Let A be a self-improvable log-APX-complete problem. Then, for any function F 2

FNP

NP[log log logn�1]

, F�

mv

MNSF

1:5

�

mv

A

1+�=2

�

mv

A

2

16
where � is the constant in the AP-

reduction from MNSF to A and where the last reduction is due to the self-improvability of

A. Thus, for any x, computing F (x) is reducible to �nding a 2

16

-approximate solution for an

instance x

0

with jx

0

j � jxj

c

for a certain constant c. Since A 2 log-APX, it is possible to �nd

in polynomial time a (k log jx

0

j)-approximate solution y for x

0

where k is a constant. From

y, by means of binary search techniques, we can �nd a 2

16

-approximate solution for x

0

using

dlogdlog

2

16

(k log jx

0

j)ee � logdlog log jxj

kc

e�3 � log log log jxj�2 adaptive queries to NP where

the last inequality surely holds for su�ciently large jxj. Thus,

FNP

NP[log log logn�1]

� FNP

NP[log log logn�2]

which implies the collapse of the polynomial-time hierarchy [40]. ut

As a consequence of the above theorem and of the results of [26], we conjecture that the

minimum set cover problem is not self-improvable.
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