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Summary. The study of the approximability properties of NP-hard optimization problems
has recently made great advances mainly due to the results obtained in the field of proof
checking. The last important breakthrough shows the APX-completeness of several impor-
tant optimization problems is proved and thus reconciles ‘two distinct views of approximation
classes: syntactic and computational’. In this paper we obtain new results on the structure of
several computationally-defined approximation classes. In particular, after defining a new ap-
proximation preserving reducibility to be used for as many approximation classes as possible,
we give the first examples of natural NPO-complete problems and the first examples of natural
APX-intermediate problems. Moreover, we state new connections between the approximability
properties and the query complexity of NPO problems.
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1. Introduction

In his pioneering paper on the approximation of combinatorial optimization problems [20],
David Johnson formally introduced the notion of approximable problem, proposed approxi-
mation algorithms for several problems, and suggested a possible classification of optimization
problems on grounds of their approximability properties. Since then it was clear that, even
though the decision versions of most NP-hard optimization problems are many-one polynomial-
time reducible to each other, they do not share the same approximability properties. The main
reason of this fact is that many-one reductions not always preserve the objective function and,
even if this happens, they rarely preserve the quality of the solutions. It is then clear that a
stronger kind of reducibility has to be used. Indeed, an approximation preserving reduction not
only has to map instances of a problem A to instances of a problem B, but it also has to be

* An extended abstract of this paper has been presented at the Ist Annual International Computing and
Combinatorics Conference.
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able to come back from “good” solutions for B to “good” solutions for A. Surprisingly, the first
definition of this kind of reducibility [33] was given as long as 13 years after Johnson’s paper
and, after that, at least seven different approximation preserving reducibilities appeared in the
literature (see Fig. 1). These reducibilities are identical with respect to the overall scheme but
differ essentially in the way they preserve approximability: they range from the Strict reducibil-
ity in which the error cannot increase to the PTAS-reducibility in which there are basically no
restrictions (see also Chapter 3 of [23]).

PTAS-reducibility [14]

T

P-reducibility [33]  A-veducibility [33]

/’\/"\

L-reducibility [36] E-reducibility [26]Continuous reducibility [39]

!

Strict reducibility [33]

Figure 1. The taxonomy of approximation preserving reducibilities

By means of these reducibilities, several notions of completeness in approximation classes
have been introduced and, basically, two different approaches were followed. On the one hand,
the attention was focused on computationally defined classes of problems, such as NPO (i.e.,
the class of optimization problems whose underlying decision problem is in NP) and APX (i.e.,
the class of constant-factor approximable NPO problems): along this line of research, however,
almost all completeness results dealt either with artificial optimization problems or with prob-
lems for which lower bounds on the quality of the approximation were easily obtainable [12, 33].
On the other hand, researchers focused on the logical definability of optimization problems and
introduced several syntactically defined classes for which natural completeness results were ob-
tained [27, 34, 36]: unfortunately, the approximability properties of the problems in these latter
classes were not related to standard complexity-theoretic conjectures. A first step towards the
reconciling of these two approaches consisted of proving lower bounds (modulo P # NP or some
other likely condition) on the approximability of complete problems for syntactically defined
classes [1, 31]. More recently, another step has been performed since the closure of syntactically
defined classes with respect to an approximation preserving reducibility has been proved to be
equal to the more familiar computationally defined classes [26].

In spite of this important achievement, beyond APX we are still forced to distinguish be-
tween maximization and minimization problems as long as we are interested in completeness
proofs. Indeed, a result of [27] states that it is not possible to rewrite every NP maximization
problem as an NP minimization problem unless NP=co-NP. A natural question is thus whether
this duality extends to approximation preserving reductions.

Finally, even though the existence of “intermediate” artificial problems, that is, problems
for which lower bounds on their approximation are not obtainable by completeness results
was proved in [12], a natural question arises: do natural intermediate problems exist? Observe
that this question is also open in the field of decision problems: for example, it is known that
the graph isomorphism problem cannot be NP-complete unless the polynomial-time hierarchy
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collapses [38], but no result has ever been obtained giving evidence that the problem does not
belong to P.

The first goal of this paper is to define an approximation preserving reducibility that can
be used for as many approximation classes as possible and such that all reductions that have
appeared in the literature still hold. In spite of the fact that the L-reducibility has been the
most widely used so far, we will give strong evidence that it cannot be used to obtain com-
pleteness results in “computationally defined” classes such as APX, log-APX (that is, the class
of problems approximable within a logarithmic factor), and poly-APX (that is, the class of
problems approximable within a polynomial factor). Indeed, on the one hand in [14] it has
been shown that the L-reducibility is too strict and does not allow to reduce some problems
which are known to be easy to approximate to problems which are known to be hard to
approximate. On the other hand in this paper we show that it is too weak and is not approxi-
mation preserving (unless P = NP N co-NP). The weakness of the L-reducibility is, essentially,
shared by all reducibilities of Fig. 1 but the Strict reducibility and the E-reducibility, while
the strictness of the L-reducibility is shared by all of them (unless PNP € PNPIOUozn)]y byt the
PTAS-reducibility. The reducibility we propose is a combination of the E-reducibility and of the
PTAS-reducibility and, as far as we know, it is the strictest reducibility that allows to obtain all
approximation completeness results that have appeared in the literature, such as, for example,
the APX-completeness of MAXIMUM SATISFIABILITY [14, 26] and the poly-APX-completeness
of MaximumMm CLIQUE [26].

The second group of results refers to the existence of natural complete problems for NPO.
Indeed, both [33] and [12] provide examples of natural complete problems for the class of
minimization and maximization NP problems, respectively. In Sect. 3 we will show the existence
of both maximization and minimization NPO-complete natural problems. In particular, we prove
that MAXIMUM 0—1 PROGRAMMING and MINIMUM 0 —1 PROGRAMMING are NPO-complete.
This result shows that making use of a natural approximation preserving reducibility is enough
powerful to encompass the “duality” problem raised in [27] (indeed, in [26] it was shown
that this duality does not arise in APX, log-APX, poly-APX, and other subclasses of NPO).
Moreover, the same result can also be obtained when restricting ourselves to the class NPO PB
(i.e., the class of polynomially bounded NPO problems). In particular, we prove that MAXIMUM
PB 0—1 PROGRAMMING and MINIMUM PB 0 —1 PROGRAMMING are NPO PB-complete.

The third group of results refers to the existence of natural APX-intermediate problems.
In Sect. 4, we will prove that MINIMUM BIN PACKING (and other natural NPO problems)
cannot be APX-complete unless the polynomial-time hierarchy collapses. Since it is well-known
[32] that this problem belongs to APX and that it does not belong to PTAS (that is, the
class of NPO problems with polynomial-time approximation schemes) unless P=NP, our result
yields the first example of a natural APX-intermediate problem (under a natural complexity-
theoretic conjecture). Roughly speaking, the proof of our result is structured into two main
steps. In the first step, we show that if MINIMUM BIN PACKING were APX-complete then the
problem of answering any set of k non-adaptive queries to an NP-complete problem could be
reduced to the problem of approximating an instance of MINIMUM BIN PACKING within a ratio
depending on k. In the second step, we show that the problem of approximating an instance
of MINIMUM BIN PACKING within a given performance ratio can be solved in polynomial-time
by means of a constant number of non-adaptive queries to an NP-complete problem. These
two steps will imply the collapse of the query hierarchy which in turn implies the collapse of
the polynomial-time hierarchy. As a side effect of our proof, we will show that if a problem us
APX-complete, then it does not admit an asymptotic approrimation scheme.
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The previous results are consequences of new connections between the approximability prop-
erties and the query complexity of NP-hard optimization problems. In several recent papers
the notion of query complexity (that is, the number of queries to an NP oracle needed to solve
a given problem) has been shown to be a very useful tool for understanding the complexity of
approximation problems. In [7, 9] upper and lower bounds have been proved on the number
of queries needed to approximate certain optimization problems (such as MAXIMUM SATISFI-
ABILITY and MAXIMUM CLIQUE): these results deal with the complexity of approximating the
value of the optimum solution and not with the complexity of computing approximate solu-
tions. In this paper, instead, the complexity of “constructive” approximation will be addressed
by considering the languages that can be recognized by polynomial-time machines which have
a function oracle that solves the approximation problem. In particular, after proving the ex-
istence of natural APX-intermediate problems, in Sect. 4.1 we will be able to solve an open
question of [7] proving that finding the vertices of the largest clique is more difficult than merely
finding the vertices of a 2-approzimate clique unless the polynomial-time hierarchy collapses.

The results of [7, 9] show that the query complexity is a good measure to study approxima-
bility properties of optimization problems. The last group of our results show that completeness
in approximation classes implies lower bounds on the query complexity. Indeed, in Sect. 5 we
show that the two approaches are basically equivalent by giving sufficient and necessary condi-
tions for approzimation completeness in terms of query-complexity hardness and combinatorial
properties. The importance of these results is twofold: they give new insights into the struc-
ture of complete problems for approximation classes and they reconcile the approach based
on standard computation models with the approach based on the computation model for ap-
proximation proposed in [8]. As a final observation, our results can be seen as extensions of a
result of [26] in which general sufficient (but not necessary) conditions for APX-completeness
are proved.

1.1. Preliminaries

We assume the reader to be familiar with the basic concepts of computational complexity
theory. For the definitions of most of the complexity classes used in the paper we refer the
reader to one of the books on the subject (see, for example, [2, 5, 16, 35]).

We now give some standard definitions in the field of optimization and approximation theory.

Definition 1. An NP optimization problem A is a fourtuple (I, sol, m,type) such that

1. I 1s the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. These solutions are
short, that is, a polynomial p exists such that, for anyy € sol(z), |y| < p(|x|). Moreover, for
any = and for any y with |y| < p(|x|), it is decidable in polynomial time whether y € sol(x).

3. Given an instance x and a feasible solution y of x, m(x,y) denotes the positive integer
measure of y (often also called the value of y). The function m is computable in polynomial
time and s also called the objective function.

4. type € {max, min}.

The goal of an NP optimization problem with respect to an instance z is to find an optemum
solution, that is, a feasible solution y such that m(z,y) = type{m(x,y’) : 3 € sol(x)}. In the
following opt will denote the function mapping an instance z to the measure of an optimum
solution.
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The class NPO is the set of all NP optimization problems. Max NPO is the set of maxi-
mization NPO problems and Min NPO is the set of minimization NPO problems.

An NPO problem is said to be polynomially bounded if a polynomial ¢ exists such that, for
any instance z and for any solution y of =, m(z,y) < q(|z|). The class NPO PB is the set of
all polynomially bounded NPO problems. Max PB is the set of all maximization problems in
NPO PB and Min PB is the set of all minimization problems in NPO PB.

Definition 2. Let A be an NPO problem. Given an instance x and a feastble solution y of x,
we define the performance ratio of y with respect to = as

R(x,y) = ImX{?ﬂ(ﬂW/) opt(z) }

opt(z) "m(x,y)
and the relative error of y with respect to = as

The performance ratio (respectively, relative error) is always a number greater than or equal
to 1 (respectively, 0) and is as close to 1 (respectively, 0) as the value of the feasible solution
is close to the optimum value. It is easy to see that, for any instance x and for any feasible
solution y of =,

Definition 3. Let A be an NPO problem and let T' be an algorithm that, for any instance
x of A such that sol(x) # 0, returns a feasible solution T(x) in polynomial time. Given an
arbitrary function v : N — [1,00), we say that T is an r(n)-approximate algorithm for A if the
performance ratio of the feasible solution T (x) with respect to x verifies the following inequality:

R(z,T(x)) < r(|z]).

Definition 4. Given o class of functions F', an NPO problem A belongs to the class F-APX
if an r(n)-approzimate algorithm T for A exists, for some functionr € F.

In particular, APX, log-APX, poly-APX, and exp-APX will denote the classes F-APX with
F equal to the set O(1), to the set O(logn), to the set O(n®M), and to the set ()(2"0(1)),
respectively. One could object that there is no difference between NPO and exp-APX since the
polynomial bound on the computation time of the objective function implies that any NPO
problem is h2"‘k—approximable for some h and k. This is not true, since NPO problems exist
for which it is even hard to find a feasible solution. We will see examples of such problems in
Sect. 3 (e.g. MAXIMUM WEIGHTED SATISFIABILITY).

Definition 5. An NPO problem A belongs to the class PTAS if an algorithm T exists such
that, for any fized rational v > 1, T'(-,r) is an r-approximate algorithm for A.

Clearly, the following inclusions hold:
PTAS C APX C log-APX C poly-APX C exp-APX C NPO.

It is also easy to see that these inclusions are strict if and only if P # NP.
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1.2. A list of NPO problems

We here define the NP optimization problems that will be used in the paper. For a much larger
list of NPO problems we refer to [11].

MaxiMuM CLIQUE

INSTANCE: Graph G = (V| E).

SOLUTION: A clique in G, i.e. a subset V/ C V such that every two vertices in V’ are joined
by an edge in E.

MEeASURE: Cardinality of the clique, i.e., |V’|.

MAXiMUM WEIGHTED SATISFIABILITY and MINIMUM WEIGHTED SATISFIABILITY

INSTANCE: Set of variables X, boolean quantifier-free first-order formula ¢ over the variables
in X, and a weight function w : X — N.

SOLUTION: Truth assignment that satisfies ¢.

MEASURE: The sum of the weights of the true variables.

MaxiMuM PB 0 —1 PROGRAMMING and MINIMUM PB 0 — 1 PROGRAMMING

INSTANCE: Integer m X n-matrix A, integer m-vector b, binary n-vector c.
SOLUTION: A binary n-vector = such that Az > b.

n
MEASURE: 1+ ) ;.
=1

MAXIMUM SATISFIABILITY

INSTANCE: Set of variables X and Boolean CNF formula ¢ over the variables in X.
SOLUTION: Truth assignment to the variables in X.
MEASURE: The number of satisfied clauses.

MiINIMUM BIN PACKING

INSTANCE: Finite set U of items, and a size s(u) € Q N (0,1] for each v € U.

SOLUTION: A partition of U into disjoint sets Uy, Us, ..., U, such that the sum of the sizes of
the items in each U; is at most 1.

MEASURE: The number of used bins, i.e., the number m of disjoint sets.

MINIMUM ORDERED BIN PACKING

INSTANCE: Finite set U of items, a size s(u) € Q N (0, 1] for each v € U, and a partial order <
on U.
SOLUTION: A partition of U into disjoint sets Uy, Us, ..., U, such that the sum of the sizes of

the items in each U; is at most 1 and if u € U; and o' € U; with u < «/, then 7 < j.
MEASURE: The number of used bins, i.e., the number m of disjoint sets.
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MINIMUM DEGREE SPANNING TREE

INSTANCE: Graph G = (V| E).
SOLUTION: A spanning tree for G.
MEASURE: The maximum degree of the spanning tree.

MINIMUM EDGE COLORING

INSTANCE: Graph G = (V| E).

SOLUTION: A coloring of E, i.e.; a partition of F into disjoint sets Ky, Fo, ..., Ey such that,
for 1 <17 <k, no two edges in E; share a common endpoint in G.

MEASURE: Cardinality of the coloring, i.e., the number £ of disjoint sets.

2. A new approximation preserving reducibility

The goal of this section is to define a new approximation preserving reducibility that can be
used for as many approximation classes as possible and such that all reductions that have
appeared in the literature still hold. We will justify the definition of this new reducibility by
emphasizing the disadvantages of previously known ones. In the following, we will assume that,
for any reducibility, an instance x such that sol(x) # ) is mapped into an instance z’ such that

sol (@) # 0.

2.1. The L-reducibility

The first reducibility we shall consider is the L-reducibility (for linear reducibility) [36] which is
often most practical to use in order to show that a problem is at least as hard to approximate
as another.

Definition 6. Let A and B be two NPO problems. A is said to be L-reducible to B, in symbols

A <1, B, if two functions f and g and two positiwe constants o and 3 exist such that:

1. For any x € L4, f(x) € Ip is computable in polynomial time.

2. For any x € 14 and for any y € solp(f(x)), glx,y) € sols(x) is computable in polynomial
tume.

3. For any x € I4, optp(f(x)) < aopty(z).

4. For any x € I4 and for any y € solp(f(x)),

Jopt 4 () — ma(a, g, y))| < Blopty(F()) — mp(F(x), )]

The fourtuple (f,g,c, 3) is said to be an L-reduction from A to B.

Clearly, the L-reducibility preserves membership in PTAS. Indeed, if (f,g,«, ) is an L-
reduction from A to B then, for any = € I4 and for any y € solg(f(x)), we have that

E4(:r,g(a"y)) < aﬁEB(f(T)ay)ﬂ
so that if B € PTAS then A € PTAS [36]. The above inequality also implies that if A is a

minimization problem and an r-approximate algorithm for B exists, then a (1 4+ af(r — 1))-
approximate algorithm for A exists. In other words, L-reductions from minimization problems
to optimization problems preserve membership in APX. The next result gives a strong evidence
that, in general, this is not true whenever the starting problem is a maximization one.
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Theorem 1. The following statements are equivalent:

1. Two problems A € Max NPO and B € Min NPO exist such that A ¢ APX, B € APX, and
A<y B.

2. Two Max NPO problems A and B exist such that A € APX, B € APX, and A <;, B.

3. A polynomial-time recognizable set of satisfiable Boolean formulas exists for which no
polynomaal-time algorithm can compute a satisfying assignment for each of them.

Proof. (1) = (2). In this case, it suffices to L-reduce B to a maximization problem C' in APX
[26].

(2) = (3). Assume that for any polynomial-time recognizable set of satisfiable Boolean
formulas there is a polynomial-time algorithm computing a satisfying assignment for each
formula in the set. Suppose that (f, g, @, ) is an L-reduction from a maximization problem
A to a maximization problem B and that B is r-approximable for some r > 1. Let z be an
instance of A and let y be a solution of f(x) such that opty(f(z))/mp(f(x),y) < r. For the
sake of convenience, let opty = opt,(x), ma = ma(x,g(z,y)), opty = optg(f(x)), and mp =
mp(f(x),y). Let also m, = max{ma,mp/a}. Since my < opty and mp/a < optg/a < opty,,
we have that m, < opt,. We now show that opt,/m, < 1+ af(r — 1), that is, m, is a
non-constructive approximation of opt 4. Let v = ﬁ There are two cases.

1. opty < vyopt 4. By the definition of the L-reducibility, opt , — m4 < B(opty — mp). Since
opty < yopt, and opty/mp < r, we have that

opty, —mgy < opty —m

B <qyp1—1/r).

opty optp
Hence,
L% W7 S P T
My ma 1-— 7/}’%

where the last equality is due to the definition of ~.
2. optg > yopt,. It holds that

L !

m, — mp/a
t
< alopty/7) (since opt 4 < optg/7)
mp
alopty/v) .
< ———=—= (since mp > opty/r)
(optp/r)
_ar
Y
= 14+ap(r—1).

Let us now consider the following non-deterministic polynomial-time algorithm.

begin {input: z € I}
compute m, by using the r-approximate algorithm for B and the L-reduction from A to B;
guess y € sol 4(x);
if m4(x,y) > m, then accept else reject;

end;



Structure in Approximation Classes 9

By applying Cook’s reduction [10] to the above algorithm, it easily follows that, for any
x € 14, a satisfiable Boolean formula ¢, can be constructed in polynomial time in the length
of = so that any satisfying assignment for ¢, encodes a solution of z whose measure is at least
m,. Moreover, the set {¢, : © € I4} is recognizable in polynomial time. By assumption, it
is then possible to compute in polynomial time a satisfying assignment for ¢, and thus an
approximate solution for .

(3) = (1). Assume that a polynomial-time recognizable set S of satisfiable Boolean for-
mulas exists for which no polynomial-time algorithm can compute a satisfying assignment
for each of them. Consider the following two NPO problems A = ([4,sol4,m4, max) and
B = (Ip, solp,mp,min) where I4 = Ip = S, sols(z) = solp(x) = {y : y is a truth assignment
to the variables of z},

|z| if y is a satisfying assignment for x,
malz,y) = 1 otherwise

and

|z| if y is a satisfying assignment for x,
mp(z,y) = .
2|z| otherwise.

Clearly, problem B is in APX, while if A is in APX then there is a polynomial-time algorithm
that computes a satisfying assignment for each formula in S, contradicting the assumption.
Moreover, it is easy to see that A L-reduces to B via f = Az.z, g = Az y.y, a« = 1, and
=1 O

Observe that in [30] it is shown that the third statement of the above theorem holds if
and only if the y-reducibility is different from the many-one reducibility. Moreover, in [19]
it is shown that the latter hypothesis is somewhat intermediate between P # NP N co-NP
and P # NP. In other words, there is strong evidence that, even though the L-reducibility is
suitable for proving completeness results within classes contained in APX (such as Max SNP
[36]), this reducibility cannot be used to define the notion of completeness for classes beyond
APX. Moreover, it cannot be blindly used to obtain positive results, that is, to prove the
existence of approximation algorithms via reductions. Finally, it is possible to L-reduce the
maximization problem B defined in the last part of the proof of the previous theorem to
MAXIMUM 3-SATISFIABILITY: this implies that the closure of Max SNP with respect to the
L-reducibility is not included in APX, contrary to what is commonly believed (e.g. see [35],
page 314).

2.2. The E-reducibility

The drawbacks of the L-reducibility are mainly due to the fact that the relation between the
performance ratios is set by two separate linear constraints on both the optimum values and
the absolute errors. The E-reducibility (for error reducibility) [26], instead, imposes a linear
relation directly between the performance ratios.

Definition 7. Let A and B be two NPO problems. A is said to be E-reducible to B, in symbols
A <g B, if two functions f and g and a positive constant a exist such that:

1. For any x € 14, f(x) € Ip is computable in polynomial time.
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2. For any x € 14 and for any y € solp(f(x)), g(x,y) € sols(x) is computable in polynomial
time.
3. For any x € 14 and for any y € solg(f(x)),

Ra(w.g(x,y)) <1+ a(Rp(f(z),y) —1).
The triple (f,g.«) is said to be an E-reduction from A to B.

Observe that, for any function r, an E-reduction maps r(n)-approximate solutions into
(1+a(r(n”)—1))-approximate solutions where % is a constant depending only on the reduction.
Hence, the E-reducibility not only preserves membership in PTAS but also membership in exp-
APX, poly-APX, log-APX, and APX. As a consequence of this observation and of the results
of the previous section, we have that NPO problems should exist which are L-reducible to each
other but not E-reducible. However, the following result shows that within the class APX the
E-reducibility is just a generalization of the L-reducibility.

Proposition 1. For any two NPO problems A and B, if A <, B and A € APX, then A <g B.
Proof. Let T be an r-approximate algorithm for A with » constant and let (fr, g, «r,Br) be an
L-reduction from A to B. Then, for any x € I4 and for any y € solp(fr(z)), Ea(z, g1 (x,y)) <

arfBrEp(fr(x),y). f A is a minimization problem then, for any © € I4 and for any y €
sols (f1.(x)),

1+ Ea(z, g1(z,y))
1+ arBrEs(fr(z).y)
1+ anfBr(Re(fr(z),y) — 1),

R4 (xagf(llvy))

<
<

and thus (fr, g1, arfr) is an E-reduction from A to B. Otherwise (that is, A is a maximization
problem) we distinguish the following two cases.

1. E(fr(z),y) < ﬁ in this case we have that

Ea(r,g0(z,y))
1 —Ex(z,gr(x,y))
arBrEp(fir(z),y)
1 —arfrEp(frlz),y)
< 2appr(Rp(fr(x),y)—1).

2. Eg(fr(x),y) > ﬁ in this case we have that Rp(fy(z),y) — 1> % so that

2a

R (CI?.,gL(ZI?.,y)) -1

A

Ra(z, T(x))—1<r—=1<2ar8(r—1)(Rp(fr(z),y)—1)

where the first inequality is due to the fact that 7" is an r-approximation algorithm for A.
We can thus define a triple (fg, g9r, ar) as follows:
1. For any « € 14, fp(z) = fr(x).
2. For any = € 14 and for any y € solg(fr(x)),

) ogr(a,y) iftma(e, gr(x,y)) > ma(e, T(x)),
gr(w,y) = { T(x) otherwise.
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3. dp = Illa,X{Q('kLﬂL, Q(YLﬂL (‘I’ - 1)}
From the above discussion it follows that (fz, g, @) is an E-reduction from A to B. a

Clearly, the converse of the above result does not hold since no problem in NPO — NPO PB
can be L-reduced to a problem in NPO PB while any problem in PO can be E-reduced to any
NPO problem. Moreover, in [26] it is shown that MAXIMUM 3-SATISFIABILITY is (NPO PB N
APX)-complete with respect to the E-reducibility. This result is not obtainable by means of
the L-reducibility: indeed, it is easy to prove that MINIMUM BIN PACKING is not L-reducible
to MAXIMUM 3-SATISFIABILITY unless P = NP (see, for example, [6]).

The E-reducibility is still somewhat too strict. Indeed, in [14] it has been shown that nat-
ural PTAS problems exist, such as MAXIMUM KNAPSACK, which are not E-reducible to poly-
nomially bounded APX problems, such as MAXIMUM 3-SATISFIABILITY (unless a logarithmic
number of queries to an NP oracle is as powerful as a polynomial number of queries).

2.3. The AP-reducibility

The above mentioned drawback of the E-reducibility is mainly due to the fact that an E-
reduction preserves optimum values (see [14]). Indeed, the linear relation between the perfor-
mance ratios seems to be too restrictive. According to the definition of approximation preserving
reducibilities given in [12], we could overcome this problem by expressing this relation by means
of an implication. However, this is not sufficient: intuitively, since the function g does not know
which approximation is required, it must still map optimum solutions into optimum solutions.
The final step thus consists of letting the functions f and ¢ depend on the performance ratio'.
This implies that different constraints have to be put on the computation time of f and g¢:
on the one hand, we still want to preserve membership in PTAS, on the other we want the
reduction to be efficient even when poor performance ratios are required. These constraints are
formally imposed in the following definition of approximation preserving reducibility (which is
a restriction of the PTAS-reducibility introduced in [14]).

Definition 8. Let A and B be two NPO problems. A is said to be AP-reducible to B, in
symbols A <ap B, if two functions f and g and a positive constant o exist such that:

1. For any x € I4 and for anyr > 1, f(x,r) € I is computable in time t;(|z|,r).

2. For any x € 14, for any v > 1, and for any y € solp(f(x,r)), g(z,y,r) € sols(x) is
computable in time t,(|z|, |y|. 7).

<o

For any fized v, both ty(-,7) and ty(-,-,r) are bounded by a polynomial.
For any fized n, both ty(n,-) and ty(n,n,-) are non-increasing functions.

Rl

For any x € 14, for any r > 1, and for any y € solp(f(x,r)),

Rp(f(x,r),y) < r implies Ra(z,g(x,y,7)) < 1+ a(r —1).

The triple (f, g, «) is said to be an AP-reduction from A to B.

According to the above definition, functions like 21/=Hnh or nt/"=1) are admissible bounds
on the computation time of f and g, while this is not true for functions like n” or 2”.

! We also let the function f depend on the performance ratio because this feature will turn out to be useful
in order to prove interesting characterizations of complete problems for approximation classes.
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Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility. Moreover,
it is easy to see that, contrary to the E-reducibility, any PTAS problem is AP-reducible to any
NPO problem.

As far as we know, this reducibility is the strictest one appearing in the literature that allows
to obtain natural APX-completeness results (for instance, the APX-completeness of MAXIMUM
SATISFIABILITY [14, 26]).

3. NPO-complete problems

We will in this section prove that there are natural problems that are complete for the classes
NPO and NPO PB. Previously, completeness results have been obtained just for Max NPO,
Min NPO, Max PB, and Min PB [12, 33, 4, 24]. One example of such a result is the following
theorem.

Theorem 2. MINIMUM WEIGHTED SATISFIABILITY s Min NPO-complete and MAXIMUM
WEIGHTED SATISFIABILITY is Max NPO-complete, even if only a subset {vi....,vs} of the

variables has nonzero weight w(v;) = 2°7' and any truth assignment satisfying the instance
qives the value true to at least one v;.

We will construct AP-reductions from maximization problems to minimization problems
and vice versa. Using these reductions we will show that a problem that is Max NPO-complete
or Min NPO-complete in fact is complete for the whole of NPO, and that a problem that is
Max PB-complete or Min PB-complete is complete for the whole of NPO PB.

Theorem 3. MINIMUM WEIGHTED SATISFIABILITY and MAXIMUM WEIGHTED SATISFIABIL-
ITY are NPO-complete.

Proof. In order to establish the NPO-completeness of MINIMUM WEIGHTED SATISFIABILITY
we just have to show that there is an AP-reduction from a Max NPO-complete problem to
MINIMUM WEIGHTED SATISFIABILITY. As the Max NPO-complete problem we will use the
restricted version of MAXIMUM WEIGHTED SATISFIABILITY from Theorem 2.

Let « be an instance of MAXIMUM WEIGHTED SATISFIABILITY, i.e. a formula ¢ over vari-
ables v1,...,vs with weights w(v;) = 25~ and some variables with weight zero. We will first
give a simple reduction that preserves the approximability within the factor 2, and then adjust
it to obtain an AP-reduction.

Let f(x) be the formula ¢ A a; A -+ A ag where «; is the conjunctive normal form of
(zi = (UL A -+ ATj—1 Awv;)), where zp,...,zs are new variables with weights w(z;) = 2" and

where all other variables (even the v-variables) have zero weight. If y is a satisfying assignment
of f(x), let g(x,y) be the restriction of the assignment to the variables that occur in ¢. This
assignment clearly satisfies ¢.

Note that exactly one of the z-variables is true in any satisfying assignment of f(z). Indeed,
if all z-variables were false, then all v-variables would be false and ¢ would not be satisfied. On
the other hand, if both z; and z; were true with j > 7, then v; would be both true and false
which is a contradiction. Hence,

vo=--+=v,_1=0,v;, =1
e 27 <imx, gz, y) <2257
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25 2}
—— < m(z,9(x.y)) < 2————
(7 (@), 9) ( (7 (@), 9)

In particular this holds for the optimum solution. Thus the performance ratio for MAXIMUM
WEIGHTED SATISFIABILITY is

9s
A
, o opt(z) opt(f(z)) _ . m(f(z),y) _ -
PIVICIN

which means that the reduction preserves the approximability within 2.

Let us now extend the construction in order to obtain R(z, ¢(z,y)) < (1 4+ 27" R(fr(x),y)
for every nonnegative integer k. The reduction described above corresponds to k& = 0.

For any ¢+ € {1,...,s} and for any (by,..., bk(i,)) € {0, 1}"’('5) where k(7) = min{s — 7, k}, we

have a variable z;, Let

..... bl\()

fk(x) = d) A /\ Aiby,..., bl»(l)"
16{]‘7 77}
(b1,esbp(iy ) €40,1 1)

where a4, is the conjuctive normal form of

..... bk(
(Zi,bl,...,bk(i) = (@ A AT A A (Uigr = D) A A (Vi) = bk(i)))) :
Define g(x,y) as above. Finally, define

K -2 K - 2f
(i) = L —
w(v;) E b W (Vig;) 14+ Z bJQ J

(by choosing K greater than 2¥ we can disregard the effect of the ceiling operation in the
following computations).
As in the previous reduction exactly one of the z-variables is true in any satisfying as-

signment of fr(x). If, in a solution y of fi(x), Ziby by = 1, then we have m(fr(z),y) =
’w(zi,bh...,bk(n) and we know that
k(i) 4 k(i) 4
m(x, g(x,y)) > wv;) + Z bjw(vigj) =2°""(1+ Z b;277)
j=1 j=1

On the other hand, if k(i) = s — i then m(z, g(z,y)) = 257(1 + Zji)l b;277), otherwise

m(z,g(z,y)) <w —i—Zb w(viyj) + Z w(vy) < 2% ’1+262J)(1—|—2 ‘).

j=k+i+1 j=1
In both cases, we thus get
K.2° K2
—— % <mzglry) < ——— (14277
i) = "I <
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and therefore R(z, g(z,y)) < (14 27%)R(fe(x),y). Given any r > 1, if we choose k such that
27k < (r = 1)/r, e.g. k = [logr —log(r — 1)], then R(fi(z).y) < r implies R(z,g(z,y)) <
(1+2""R(fr(z),y) <r+r27%" <r+r —1=1+2(r —1). This is obviously an AP-reduction
with o = 2.

A very similar proof can be used to show that MAXIMUM WEIGHTED SATISFIABILITY is
NPO-complete. ad

Corollary 1. Any Min NPO-complete problem 1s NPO-complete and any Max NPO-complete
problem s NPO-complete.

As an application of the above corollary, we have that the MINIMUM 0 — 1 PROGRAMMING
problem is NPO-complete.

We can also show that there are natural complete problems for the class of polynomially
bounded NPO problems.

Theorem 4. MaXIMUM PB 0 — 1 PROGRAMMING and MINIMUM PB 0 — 1 PROGRAMMING
are NPO PB-complete.

Proof. MaxiMuM PB 0—1 PROGRAMMING is known to be Max PB-complete [4] and MINIMUM
PB 0 — 1 PROGRAMMING is known to be Min PB-complete [24]. Thus we just have to show
that there are AP-reductions from MINIMUM PB 0 — 1 PROGRAMMING to MAaXiMUuM PB
0 — 1 PROGRAMMING and from MAXIMUM PB 0 — 1 PROGRAMMING to MINIMUM PB 0 —1
PROGRAMMING.

Both reductions use exactly the same construction. Given a satisfying variable assignment,
we define the one-variables to be the variables occurring in the objective function that have
the value one. The objective value is the number of one-variables plus 1.

The objective value of a solution is encoded by introducing an order of the one-variables.
The order is encoded by a squared number of 0 — 1 variables, see Fig. 2. The idea is to invert
the objective values, so that a solution without one-variables corresponds to an objective value
of n of the constructed problem, and, in general, a solution with p one-variables corresponds

to an objective value of L}ilJ

8 8 8 8 8 8 ouly zeros in upper part
r010000
Zi)zlflt(;{)n 1§ (1) 8 8 8 [1) 8 one 1 in each row
T001000
+——t—t—t—t i
solution: e e @ 0 e ©

Figure 2. The idea of the reduction from MINIMUM/MAXIMUM PB 0 — 1 PROGRAMMING to MAXI-
MUM/MINIMUM PB 0 — 1 PROGRAMMING. The variable 27 = 1 if and only if v; is the jth one-variable
in the solution. There is at most one 1 in each column and in each row.

The reductions are constructed as follows. Given an instance of MINIMUM PB 0 —1 PRrO-
GRAMMING or MAXIMUM PB 0—1 PROGRAMMING, i.e. an objective function 143"/ | v; and
some inequalities over variables V = {vy,..., vm U U, construct m? variables :L{ , 1 <4, <m,

and the following inequalities:
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3

Vi € [1..m] TZ <1 (at most one 1 in each column) (1)
j=1
Vi € [l..m] > xf <1 (at most one 1 in each row) (2)
=1
Vie[l.m—1] X :L{ -3 x{“ >0 (only zeros in upper part) (3)
=1 =1

Besides these inequalities we include all inequalities from the original problem, but we substitute
cach variable v; with the sum > ;" xf The variables in U (that do not occur in the objective
function) are left intact.

The objective function is defined as

S (- L) 5

p=1 =1

In order to express the objective function with only binary coefficients we have to introduce n
new variables yy,...,y, where y; = 1= 3", 2" for [n/(p+1)] < j < [n/p| and y; = 1 for
7 < [n/(m + 1)]. The objective function then is 3°7_; y;. One can now verify that a solution
of the original problem instance with s one-variables (i.e. with an objective value of s + 1)
will exactly correspond to a solution of the constructed problem instance with objective value
n/(s+1)| and vice versa.

Suppose that the optimum solution to the original problem instance has M one-variables,
then the performance ratio (s +1)/(M + 1) will correspond to the performance ratio

{ ; J
M+1 _ s+1 (1:I:E>
{ n J M+1 n
s+ 1

for the constructed problem, where ! is the relative error due to the floor operation. By

choosing n large enough the relative error can be made arbitrarily small. Thus it is easy to see
that the reduction is an AP-reduction. O

Corollary 2. Any Min PB-complete problem is NPO PB-complete and any Max PB-complete
problem s NPO PB-complete.

4. Query complexity and APX-intermediate problems

The existence of APX-intermediate problems (that is, problems in APX which are not APX-
complete) has already been shown in [12] where an artificial such problem is obtained by
diagonalization techniques similar to those developed to prove the existence of NP-intermediate
problems [29]. In this section, we prove that “natural” APX-intermediate problems exist: for
instance, we will show that MINIMUM BIN PACKING is APX-intermediate. In order to prove
this result, we will establish new connections between the approximability properties and the
query complexity of NP-hard optimization problems. To this aim, let us first recall the following
definition.

Definition 9. A language L belongs to the class PNPUML 4f it is decidable by a polynomial-
time oracle Turing machine which asks at most f(n) queries to an NP-complete oracle, where
n 1s the input size. The class QH s equal to the union |~ PNPIA],
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Similarly, we can define the class of functions FPNPL ()] [28]. The following result has been
proved in [21, 22].

Theorem 5. If a constant k exists such that
QH = PNPIH,

then the polynomaal-time hierarchy collapses.

The query-complexity of the “non-constructive” approximation of several NP-hard opti-
mization problems has been studied by using hardness results with respect to classes of func-
tions FPNPL [7, 9]. However, this approach cannot be applied to analyze the complexity of
“constructing” approximate solutions. To overcome this limitation, we use a novel approach
that basically consists of considering how helpful is an approximation algorithm for a given
optimization problem to solve decision problems.

Definition 10. Given an NPO problem A and a rational v > 1, A, 1s a multi-valued partial
function that, giwen an wnstance x of A, returns the set of feasible solutions y of x such that

R(z,y) <r.

Definition 11. Given an NPO problem A and a rational r > 1, a language L belongs to P4
if two polynomial-time computable functions f and g exist such that, for any x. f(x) is an
instance of A with sol(f(x)) # 0, and, for any y € A.(f(x)), g(z.y) =1 if and only if © € L.
The class AQH(A) is equal to the union J,- pAr.

The following result states that an approximation problem does not help more than a
constant number of queries to an NP-complete problem. It is worth observing that, in general,
an approximate solution, even though not very helpful, requires more than a logarithmic number
of queries to be computed [8].

Proposition 2. For any problem A in APX, AQH(A) C QH.

Proof. Assume that A is a maximization problem (the proof for minimization problems is
similar). Let T be an r-approximate algorithm for A, for some r > 1, and let L € P for some
p > 1. Two polynomial-time computable functions f and g then exist witnessing this latter
fact. For any x, let m = m(f(z),T(f(x))), so that m < opt(f(z)) < rm. We can then partition
the interval [m,rm] into |log,r] + 1 subintervals

[mv" pm), [pm, pZTnJ)‘ e [ongp rJ—lmv" ongp 7| m,]. [pUng 7| m, 7'm],

and start looking for the subinterval containing the optimum value (a similar technique has
been used in [7, 9]). This can clearly be done using |log,r| + 1 queries to an NP-complete
oracle. One more query is sufficient to know whether a feasible solution y exists whose value
lies in that interval and such that g(z,y) = 1. Since y is p-approximate, it follows that L can
be decided using Uogp r| + 2 queries, that is, L € QH. O

Recall that an NPO problem admits an asymptotic polynomial-time approximation scheme
if an algorithm 7' exists such that, for any x and for any r» > 1, R(z,T(z.7)) < r + k/opt(z)
with k constant and the time complexity of T'(z,r) is polynomial with respect to |z|. The
class of problems that admit an asymptotic polynomial-time approximation scheme is usually
denoted by PTAS>. The following result shows that, for this class, the previous fact can be
strengthened.
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Proposition 3. Let A € PTAS™. Then a constant h exists such that AQH(A) C PNPIA],

Proof. Let A be a minimization problem in PTAS™ (the proof for maximization problem is
very similar). By definition, a constant k& and an algorithm 7" exist such that, for any instance
x and for any rational r > 1,

m(z,T(x,r)) <r-opt(x)+ k.
We will now prove that a constant h exists such that, for any » > 1, a function [, € FpNPI=1]

exists such that, for any instance = of the problem A,
opt(z) < l.(x) <r-opt(z).

Intuitively, functions [, form a non-constructive approximation scheme that is computable by
a constant number of queries to an NP-complete oracle. Given an instance x, we can check
whether sol(z) = §) by means of a single query to an NP oracle, so that we can restrict ourselves
to instances such that sol(z) # () (and thus opt(z) > 1). Note that, for these instances, T'(-,2)
is a (k + 2)-approximate algorithm for A. Let us fix an r > 1, lete =r =1,y =T(x,1 +¢/2)
and a = m(x.T(z,2)). We have to distinguish two cases.

1. a > 2k(k + 2)/e: in this case, opt(z) > 2k /e, that is, opt(x)e/2 > k. Then

opt(z)(1+¢/2)+ k
opt(z)(1+¢/2) + opt(z)e/2
opt(z)(1+¢) = ropt(z),

miz,y) <
<

that is, y is an r-approximate solution for x, and we can set [,.(z) = m(z,y) (in this case [,
has been computed by only one query).
2. a < 2k(k+ 2)/e: in this case, opt(z) < 2k(k + 2)/e. Then,

opt(z) < m(z,y) < opt(z)+ opt(x)e/2 + k < opt(z) + k(k +2) + k.

Clearly, [logk(k + 3)] queries to NP are sufficient to find the optimum value opt(z) by
means of a binary search technique: in this case [,(z) = opt(x) has been computed by
[log k(k + 3)] + 1 queries.
Let now L be a language in AQH(A), then L € P4 for some > 1. Let f and g be the
functions witnessing that L € PAr. Observe that, for any =, 2 € L if and only if a solution
y for f(x) exists such that m(f(x),y) > I.(f(x)) and g(f(x),y) = 1: that is, given [,.(f(z)),
deciding whether x € L is an NP problem. Since [,.(f(z)) is computable by means of at most
[log k(k + 3)] 4+ 1 queries to NP, we have that L € PNPl where h = [log k(k + 3)] + 2. O

The next proposition, instead, states that any language L in the query hierarchy can be
decided using just one query to A, where A is APX-complete and r depends on the level of
the query hierarchy L belongs to. In order to prove this proposition, we need the following
technical result?.

2 Recall that the NP-complete problem PARTITION is defined as follows: given a set U of items and a size
function s : U — Q N (0,1], does there exists a subset U’ C U such that
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Lemma 1. For any APX-complete problem A and for any k, two polynomaal-time computable
functions f and g and a constant r exist such that, for any k-tuple (x1,...,x;) of instances of
PARTITION, z = f(x1,...,xt) 18 an wnstance of A and if y 1s a solution of x whose performance
ratio is smaller than r then g(x,y) = (b1, ..., br) where b; € {0,1} and b; =1 if and only if ;

18 a yes-instance.

Proof. Let x; = (U;, s;) be an instance of PARTITION for ¢ = 1, ..., k. Without loss of generality,
we can assume that the U;s are pairwise disjoint and that, for any 7, 3_,cp, si(u) = 2. Let
w = (U,s,<X) be an instance of MINIMUM ORDERED BIN PACKING defined as follows (a
similar construction has been used in [37]).

1. U= Uff:] U;U{vy,...,vp_1} where the v;s are new items.

2. For any u € U;, s(u) = s;(u) and s(v;)) =1fori=1,....k—1.
3. For any i < j < k, for any u € U;, and for any v’ € U;, u < v; 2 /.

Any solution of w must be formed by a sequence of packings of Uy, ..., Uy such that, for
any %, the bins used for U; are separated by the bins used for U;;; by means of one bin which
is completely filled by v;. In particular, the packings of the U;s in any optimum solution must
use either two or three bins: two bins are used if and only if z; is a yes-instance. The optimum
measure thus is at most 4k — 1 so that any (1 4+ 1/(4k))-approximate solution is an optimum
solution.

Since MINIMUM ORDERED BIN PACKING belongs to APX [41] and A is APX-complete,
then an AP-reduction (f1, g1, @) exists from MINIMUM ORDERED BIN PACKING to A. We can
then define z = f(x1,...,z;) = fi(w,14+1/(4ak)) and r = 1+1/(4ak). For any r-approximate
solution y of , the fourth property of the AP-reducibility implies that z = g1 (z,y, 1+ 1/(4ak))
is a (1 + 1/(4k))-approximate solution of w and thus an optimum solution of w. From z, we
can easily derive the right answers to the k queries z1,..., zp. ad

We are now able to prove the following result.
Proposition 4. For any APX-complete problem A, QH C AQH(A).

Proof. Let L € QH, then L € PNP for some h. It is well known (see, for instance, [3])
that L can be reduced to the problem of answering k = 2"~! non-adaptive queries to NP.
More formally, two polynomial-time computable functions ¢; and #» exist such that, for any x,
ti(x) = (x1,...,2,), where x1,..., 2, are k instances of the PARTITION problem, and for any
(b, ... b)) € {0,1}%, ta(x, b1, ..., b) € {0,1}. Moreover, if, for any 7, b; = 1 if and only if =;
is a yes-instance, then to(x,by,...,b;) =1 if and only if z € L.

Let now f, g and r be the two functions and the constant of Lemma 1 applied to problem A
and constant k. For any z, ' = f(#1(x)) is an instance of A such that if y is an r-approximate

solution for 2/, then t2(g(z',y)) = 1 if and only if © € L. Thus, L € pAr, a

By combining Propositions 2 and 4, we thus have the following theorem that characterizes
the approximation query hierarchy of the hardest problems in APX.

Theorem 6. For any APX-complete problem A, AQH(A) = QH.

Finally, we have the following result that states the existence of natural intermediate prob-
lems in APX.

Theorem 7. If the polynomial-time hierarchy does not collapse, then MINIMUM BIN PACKING,
MINIMUM DEGREE SPANNING TREE, and MINIMUM EDGE COLORING are APX-intermediate.
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Proof. From Proposition 3 and from the fact that MINIMUM BIN PACKING is in PTAS> [25], it
follows that AQH(MINIMUM BIN Packing) C PN for a given k. If MINIMUM BIN PACKING
is APX-complete, then from Proposition 4 it follows that QH C PNPIY. From Theorem 5 we
thus have the collapse of the polynomial-time hierarchy. The proofs for MINIMUM DEGREE
SPANNING TREE and MINIMUM EDGE COLORING are identical and use the results of [18, 15].

O

Observe that the previous result does not seem to be obtainable by using the hypothesis
P # NP, as shown by the following theorem.

Theorem 8. If NP = co-NP then MINIMUM BIN PACKING is APX-complete.

Proof. Assume NP = ¢o-NP, we will present an AP reduction from MAXIMUM SATISFIABILITY
to MINIMUM BIN PACKING. Since NP = co-NP a nondeterministic polynomial time Turing
machine M exists that, given in input an instance ¢ of MAXIMUM SATISFIABILITY, has an
accepting computation and all accepting computations halt with an optimum solution for ¢
written on the tape. Indeed, M guesses an integer k, an assigment 7 such that m(¢, 7) = k and
a proof of the fact that opt(¢) < k. From the proof of Cook’s theorem it follows that, given ¢, we
can find in polynomial time a formula ¢’ such that ¢ is satisfiable and that given any satisfying
assignment for ¢/ we can find in polynomial time an optimum solution for ¢. By combining
this construction with the NP-completeness proof of the MINIMUM BIN PACKING problem, we
obtain two polynomial-time computable functions #; and ¢2 such that, for any instance ¢ of
MAXIMUM SATISFIABILITY, t1(¢) = x4 is an instance of MINIMUM BIN PACKING such that
opt(z,) = 2 and, for any optimum solution y of x4, ta(xe,y) is an optimum solution of ¢.
Observe that, by construction, an r-approximate solution for 4 is indeed an optimum solution
provided that r» < 3/2. Let T" be a 4/3-approximate algorithm for MAXIMUM SATISFIABILITY
[42, 17]. The reduction from MAXIMUM SATISFIABILITY to MINIMUM BIN PACKING is defined

as follows: f(¢,7r) = t1(¢);

o) T(9) if r > 4/3,
9(d.9,7) = { t2(t1(¢4),y) otherwise.

It is immediate to verify that the above is an AP-reduction with oo = 1. O

Finally, note that the above result can be extended to any APX problem which is NP-hard
to approximate within a given performance ratio.

4.1. A remark on MAXIMUM CLIQUE

The following lemma is the analogoue of Proposition 2 within NPO PB and can be proved
similarly by binary search techniques.
Lemma 2. For any NPO PB problem A and for any r > 1, PAr C pNPloglogn+0O(1)],

From this lemma, from the fact that PNPlog"] ig contained in PMC1 where MC stands for

MaxiMuM CLIQUE [28], and from the fact that if a constant k exists such that

P,\IP[loglog n+k] _ PNP[Iog n]

N

then the polynomial-time hierarchy collapses [40], it follows the next result that solves an open
question posed in [7]. Informally, this result states that it is not possible to reduce the problem
of finding a maximum clique to the problem of finding a 2-approximate clique (unless the
polynomial-time hierarchy collapses).

Theorem 9. If PMC1 C PMC2 then the polynomial-time hierarchy collapses.
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5. Query complexity and completeness in approximation classes

In this final section, we shall give a full characterization of problems complete for poly-APX
and for APX, respectively, in terms of hardness of the corresponding approximation prob-
lems with respect to classes of partial multi-valued functions and in terms of suitably defined
combinatorial properties.

The classes of functions we will refer to have been introduced in [8] as follows.

Definition 12. FNP NP s the class of partial multi-valued functions computable by non-
deterministic polynomial-time Turing machines which ask at most ¢(n) queries to an NP oracle
in the entire computation tree.’

In order to talk about hardness with respect to these classes we will use the following
reducibility which is an extension of both metric reducibility [28] and one-query reducibility
[13] and has been introduced in [8].

Definition 13. Let F' and G be two partial multi-valued functions. We say that F many-one
reduces to G (in symbols, F<,,,G) if two polynomial-time algorithms t; and to exist such
that, for any = in the domain of F', t1(x) is in the domain of G and, for any y € G(ti1(x)),
to(z,y) € F(z).

The combinatorial property used to characterize poly-APX-complete problems is the well-
known self-improvability (see, for instance, [34]).

Definition 14. A problem A is self-improvable if two algorithms t1 and to exist such that, for
any instance  of A and for any two rationals r1,r9 > 1, @’ = t1(x,71,72) is an instance of A
and, for any y' € A,,(2'), y = to(x,y',r1,10) € A, (x). Moreover, for any fized ri and ro, the
running time of t1 and ty 1s polynomaal.

We are now ready to state the first result of this section.

Theorem 10. A poly-APX problem A is poly-APX-complete if and only if it is self-umprovable
and A,, is FNpPNPloglogn+OMI_p4rd for some ry > 1.

Proof. Let A be a poly-APX-complete problem. Since MAXIMUM CLIQUE is self-improvable
[16] and poly-APX-complete [26] and since the equivalence with respect to the AP-reducibility
preserves the self-improvability property (see [34]), we have that A is self-improvable. It is then
sufficient to prove that As is hard for FNPNPlloglogn+0O(1)]

From the poly-APX-completeness of A we have that MaxiMUM CLIQUE <ap A4: let «
be the constant of this reduction. From Theorem 12 of [§8] we have that any function F' in
FNPNPlloglogn+OM] many-one reduces to MAXIMUM CLIQUE] 4. From the definition of AP-
reducibility, we also have that MAXIMUM CLIQUE;.,<mvA2 so that F' many-one reduces to
As.

Conversely, let A be a poly-APX self-improvable problem such that, for some r9, A4,,
is FNpNPlloglogn+OM] pard. We will show that, for any problem B in poly-APX. B is
AP-reducible to A. To this aim, we introduce the following partial multi-valued function
multisat: given in input a sequence (¢1, ..., ¢n) of instances of the satisfiability problem with
m < log|(¢1,...,¢m)| and such that, for any 4, if ¢, is satisfiable then ¢; is satisfiable, a pos-
sible output is a satisfying truth-assignment for ¢;» where ¢* = max{: : ¢; is satisfiable}. From
the proof of Theorem 12 of [8] it follows that this function is FNPNP [loglogn+OM]_¢.omplete.

* We say that a multi-valued partial function F' is computable by a nondeterministic Turing machine N if,
for any x in the domain of F, an halting computation path of N(z) exists and any halting computation path of
N(z) outputs a value of F(z).
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By making use of techniques similar to those of the proof of Proposition 2, it is easy to see
that, since B is in poly-APX, two algorithms tP and t¥ exist such that, for any fixed » > 1,
tf’(-., r) and tf(-, -,7) form a many-one reduction from B, to multisat. Moreover, since 4,, is
FNpNPlloglogn+OM]hard, then a many-one reduction (tM,t)") exists from multisat to A,,.
Finally, let tf and 1‘24 be the functions witnessing the self-improvability of A.

The AP-reduction from B to A can then be derived as follows:

tB(2,r) tM (')

B (g r) (") @ " ro,r)

y o4 y < Yy ey

It is easy to see that if " is an r-approximate solution for the instance " of A, then y is an
r-approximate solution of the instance = of B. That is, B is AP-reducible to A with o =1. 0O

The above theorem cannot be proved without the dependency of both f and ¢ on r in the
definition of AP-reducibility. Indeed, it is possible to prove that if only ¢ has this property
then, unless the polynomial-time hierarchy collapses, a self-improvable problem A exists such
that Ay is FNPNPloglogn+0(M] 1ard and A is not poly-APX-complete.

In order to characterize APX-complete problems, we have to define a different combinatorial
property. Intuitively, this property states that it is possible to merge several instances into one
instance in an approximation preserving fashion.

Definition 15. An NPO problem A is linearly additive if a constant 3 and two algorithms
t1 and to exist such that, for any rational r > 1 and for any sequence x1,...,xp of in-
stances of A, ' = ti(x1,...,xk,7) is an instance of A and, for any y € AH(,,LU’B/;\“(:H),
to(z1, ... .2,y 1) = Y1, ..., yr where each vy; is an r-approrimate solution of x;. Moreover, the
running time of t1 and ta s polynomaal for every fived r.

Theorem 11. An APX problem A is APX-complete if and only if it is linearly additive and
a constant ro exists such that A, is FNPNPI _pgrd.

Proof. Let A be an r4-approximable APX-complete problem. From the proof of Proposition 4 a
constant rp exists such that A,, is hard for FNPNPUL In order to prove the linear additivity, fix
any r > 1 and let zq, ...,z be instances of A. Without loss of generality, we can assume r < 14
(otherwise the k instances can be r-approximated by using the r4-approximate algorithm).
For any + = 1,...,k the problem of finding an r-approximate solution y; for x; is reducible
to the problem of constructively solving a set of [log, 4] instances of PARTITION. Observe
that [log, r4] < ¢/(r —1) for a certain constant ¢ depending on 4. Moreover, we claim that a
constant y exists such that constructively solving kc/(r —1) instances of PARTITION is reducible
to (14 (r —1)/kc)-approximating a single instance of A (indeed, this can be shown along the
lines of the proof of Proposition 4). That is, A is linearly additive with g = v/c.

Conversely, let A be a linearly additive APX problem such that A,, is FNPNPU hard for
some 79 and let B be an rp-approximable problem. Given an instance z of B, for any r >
1 we can reduce the problem of finding an r-approximate solution for z to the problem of
constructively solving ¢/(r — 1) instances of PARTITION, for a proper constant ¢ not depending
on r. Bach of these questions is reducible to A,,, since any NP problem can be constructively
solved by an FNPNPU function. From linear additivity, it follows that ro-approximating ¢/(r—1)
instances of A is reducible to (1 + B(rop — 1)(r — 1)/c)-approximating a single instance of A.
This is an AP-reduction from B to A with oo = ¢/(B(rg — 1)). a
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Note that linear additivity plays for APX more or less the same role of self-improvability for
poly-APX. These two properties are, in a certain sense, one the opposite of the other: while the
usefulness of APX-complete approximation problems to solve decision problems depends on the
performance ratio and does not depend on the size of the instance, the usefulness of poly-APX-
complete approximation problems depends on the size of the instance and does not depend
on the performance ratio. Indeed, it is possible to prove that no APX-complete problem can
be self-improvable (unless P = NP) and that no poly-APX-complete problem can be linearly
additive (unless the polynomial-time hierarchy collapses).

It is now an interesting question to find a characterizing combinatorial property of log-APX-
complete problems. Indeed, we have not been able to establish this characterization: at present,
we can only state that it cannot be based on the self-improvability property as shown by the
following result.

Theorem 12. No log-APX-complete problem can be self-improvable unless the polynomaual-time
hierarchy collapses.

Proof. Let us consider the optimization problem MAX NUMBER OF SATISFIABLE FORMULAS
(in short, MNSF) defined as follows.

INSTANCE: Set of m boolean formulas ¢1,..., ¢, in 3CNF, such that ¢; is a tautology and
m < logn, where n is the size of the input instance.
SOLUTION: Truth assignment 7 to the variables of ¢1, ..., ¢n.

MEASURE: The number of satisfied formulas, i.e., |[{7 : ¢; is satisfied by 7}|.

Clearly, MNSF is in log-APX, since the measure of any assignment 7 is at least 1, and the
optimum value is always smaller than log n, where n is the size of the input. We will show that,
for any r < 2, MNSF, is hard for FNPNPllegloglogn—1]

Given loglog n queries to an NP-complete language (of size polynomial in n) 1, .. ., Tloglogn
we can construct an instance ® = ¢1, ..., ¢, of MNSF where ¢ is a tautology and, for + > 1,
the formulas ¢ = ... = ¢9ir1_; are satisfiable if and only if at least ¢ instances among
T1,..., Tloglogn are yes-instances (these formulas can be easily constructed using the standard
proof of Cook’s theorem). Note that m = 2'°81°87+1 _1 and, by adding dummy clauses to some
formulas, we can achieve the bound m < log|¢1,..., ¢, |. Moreover, from an r-approximate
solution for ® we can decide how many instances in 1,...,Tjoglogn are yes-instances, and we

logloglogn—1] is

can also recover solutions for such instances. That is, any function in FNPNP [
many-one reducible to MNSF,..

Let A be a self-improvable log-APX-complete problem. Then, for any function F €
FNPNPDOglOgIOg”*l], FngMNSEH_5§,va1+a/2§mVA2m where « is the constant in the AP-
reduction from MNSF to A and where the last reduction is due to the self-improvability of
A. Thus, for any z, computing F(z) is reducible to finding a 2'6-approximate solution for an
instance ' with |2/| < |z|° for a certain constant ¢. Since A € log-APX. it is possible to find
in polynomial time a (klog |z'|)-approximate solution y for z’ where k is a constant. From
y, by means of binary search techniques, we can find a 2%-approximate solution for z’ using
[log[logyis (klog |2'[)]] < log[loglog |z|**] —3 < loglog log || —2 adaptive queries to NP where
the last inequality surely holds for sufficiently large |z|. Thus,

FNPNP[]ogloglognfl] C FNPNP[loglog logn—2]

which implies the collapse of the polynomial-time hierarchy [40]. o

As a consequence of the above theorem and of the results of [26], we conjecture that the
minimum set cover problem is not self-improvable.
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