Simplified and Improved Separations Between Regular and General Resolution by Lifting

Marc Vinyals
Technion
Haifa, Israel

joint work with Jan Elffers, Jan Johannsen, and Jakob Nordström

Background

Regular Resolution

'37 Resolution.

Regular Resolution

'37 Resolution.
'62 Tree-like resolution.

Regular Resolution

'37 Resolution.
'62 Tree-like resolution.
'68 Regular resolution: do not resolve a variable twice on same path.

- Tree-like resolution is regular wlog.

Q Is regular resolution as powerful as general resolution?

Regular Resolution

'37 Resolution.
'62 Tree-like resolution.
'68 Regular resolution: do not resolve a variable twice on same path. [Tseitin]

- Tree-like resolution is regular wlog.

Q Is regular resolution as powerful as general resolution?

- Formulas need exponentially long regular proofs.
- If regular \equiv general, resolution needs exponentially long proofs.

Tree Res

Regular Resolution

'37 Resolution.

'62 Tree-like resolution.
'68 Regular resolution: do not resolve a variable twice on same path. [Tseitin]

- Tree-like resolution is regular wlog.

Q Is regular resolution as powerful as general resolution?

- Formulas need exponentially long regular proofs.
- If regular \equiv general, resolution needs exponentially long proofs.
'87 Separation regular vs general (by a constant).
[Huang, Yu]
'93 Separation regular vs general (superpolynomial).
'02 Separation regular vs general (exponential).
'11 Best separation to date: $\exp \left(L / \log ^{7} L \log \log L\right)$.
[AJPU] [Urquhart]

CDCL and Restarts

'96 CDCL: DPLL + Learning
- Also: VSIDS, Restarts.

CDCL and Restarts

'96 CDCL: DPLL + Learning

- Also: VSIDS, Restarts.
'09 CDCL as powerful as resolution.
- Crucially uses restarts.

- Restarts also seem very important in practice.

Q Are restarts really needed?

CDCL and Restarts

'96 CDCL: DPLL + Learning

- Also: VSIDS, Restarts.
'09 CDCL as powerful as resolution.
- Crucially uses restarts.
- Restarts also seem very important in practice.

Q Are restarts really needed?
'05 Pool resolution \simeq CDCL w/o restarts.

- Pool res \geq Regular res \Rightarrow Formulas that separate general and regular are good candidates to separate general and pool.

CDCL and Restarts

'96 CDCL: DPLL + Learning

Q Are restarts really needed?
'05 Pool resolution \simeq CDCL w/o restarts.

- Pool res \geq Regular res \Rightarrow Formulas that separate general and regular are good candidates to separate general and pool.
'14 All such formulas easy for pool resolution.
- Also: formulas not good to run experiments with.
- Need new formulas!

Proving Resolution Lower Bounds

Largest clause in proof

Size-Width Relation

Resolution F requires width $W \Rightarrow F$ requires length $\exp \left(W^{2} / n\right)$
Tree-like resolution F requires width $W \Rightarrow F$ requires length $\exp (W)$
Regular resolution ??

Proving Resolution Lower Bounds

Largest clause in proof

Size-Width RelationResolution F requires width $W \Rightarrow F$ requires length $\exp \left(W^{2} / n\right)$
Tree-like resolution F requires width $W \Rightarrow F$ requires length $\exp (W)$
Regular resolution ??
LiftingResolution F requires width $W \Rightarrow T(F)$ requires length $\exp (W)$
Tree-like resolution F requires depth $D \Rightarrow T(F)$ requires length $\exp (D)$
Regular resolution ??
Longest path in proof DAG

Results

Main Result (Informal)

Theorem

F requires large depth $\Rightarrow T(F)$ requires long regular proofs.

Main Result (Informal)

Theorem

F requires large depth $\Rightarrow T(F)$ requires long regular proofs.

- Simplifies separation between regular and general resolution.
- If F has narrow proofs, then $T(F)$ still has short proofs.
- Obtain separation from F with small width and large depth, e.g. pebbling formulas.

Main Result (Informal)

Theorem

F requires large depth $\Rightarrow T(F)$ requires long regular proofs.

- Simplifies separation between regular and general resolution.
- If F has narrow proofs, then $T(F)$ still has short proofs.
- Obtain separation from F with small width and large depth, e.g. pebbling formulas.
- New family of "sparse stone formulas".
- Improved separation: $\exp \left(L / \log ^{3} L \log \log ^{5} L\right)$.
- Can use in experiments.

Lifting

Usual Lifting

- Replace each original variable x_{i} with a gadget $g_{i}\left(y_{i}^{1}, \ldots, y_{i}^{k}\right)$.
- e.g. $\quad x_{1} \vee \neg x_{2} \quad \rightarrow \quad\left(y_{1}^{1} \oplus y_{1}^{2}\right) \vee \neg\left(y_{2}^{1} \oplus y_{2}^{2}\right)$.

Lifting

Usual Lifting

- Replace each original variable x_{i} with a gadget $g_{i}\left(y_{i}^{1}, \ldots, y_{i}^{k}\right)$.
- e.g. $\quad x_{1} \vee \neg x_{2} \quad \rightarrow \quad\left(y_{1}^{1} \oplus y_{1}^{2}\right) \vee \neg\left(y_{2}^{1} \oplus y_{2}^{2}\right)$.

Lifting with Reusing

- Share variables among gadgets.

Lifting

Selector variables

Lifting with Indexing

Main variables

- Gadget $g_{i}\left(s_{i}^{1}, \ldots, s_{i}^{m} ; r_{i}^{1}, \ldots, r_{i}^{m}\right)$: if $s_{i}^{j}=1$, then $g_{i}(\cdots)=r_{i}^{j}$. (Assume exactly one s_{i} variable is 1)

Lifting

Selector variables

Lifting with Indexing

Main variables

- Gadget $g_{i}\left(s_{i}^{1}, \ldots, s_{i}^{m} ; r_{i}^{1}, \ldots, r_{i}^{m}\right)$: if $s_{i}^{j}=1$, then $g_{i}(\cdots)=r_{i}^{j}$. (Assume exactly one s_{i} variable is 1)

Lifting with Indexing and Reusing

- Share all main variables among all gadgets.

Lifting

Lifting with Indexing

- Gadget $g_{i}\left(s_{i}^{1}, \ldots, s_{i}^{m} ; r_{i}^{1}, \ldots, r_{i}^{m}\right)$: if $s_{i}^{j}=1$, then $g_{i}(\cdots)=r_{i}^{j}$. (Assume exactly one s_{i} variable is 1)

Lifting with Indexing and Reusing

- Share all main variables among all gadgets.

Original variables

Lifting with Sparse Indexing and Reusing

- Fix a bipartite graph $G([n] \cup[m], E)$; variable s_{i}^{j} exists iff $(i, j) \in E$.
- G is n disjoint stars \Rightarrow usual lifting.
- F is pebbling formula and G is complete graph $K_{n, m} \Rightarrow$ stone formula.
- F is pebbling formula and G is random graph \Rightarrow sparse stone formula.

Main Result

Theorem (Dense)

If F requires depth D, then $\mathcal{L}_{K}(F)$ requires regular length $\sim \exp \left(D^{2} / n\right)$.

Main Result

Theorem (Dense)

If F requires depth D, then $\mathcal{L}_{K}(F)$ requires regular length $\sim \exp \left(D^{2} / n\right)$.

Theorem (Sparse)

If F requires depth D, then $\mathcal{L}_{G}(F)$ requires regular length $\sim \exp \left(D^{3} / n^{2} \log ^{2} n\right)$. G is a random graph of degree $d=\log (n / D)$.

Proof

Proof Overview (Dense)

Random restriction technique
(1) Hit proof with random restriction ρ.
(2) If proof of F is short, obtain proof of $F \upharpoonright_{\rho}=F^{\prime}$ with no wide clauses.

3 But all proofs of F^{\prime} have a wide clause.

Proof Overview (Dense)

Random restriction technique

(1) Hit proof with random restriction ρ.
(2) If proof of F is short, obtain proof of $F \upharpoonright_{\rho}=F^{\prime}$ with no wide clauses.

3 But all proofs of F^{\prime} have a wide clause.

- Need restriction to respect lifting: $\mathcal{L}(F) \Gamma_{\rho}=F^{\prime}=\mathcal{L}\left(F^{\prime \prime}\right)$.
- Need to tweak what "wide" means.
- Clause is "complex" if
- talks about many main variables or
- matches many original variables or
- restricts the neighbourhood of many original variables

Proof Overview (Dense)

Updated plan

(1) Hit proof with lifting-respecting restriction ρ.
(2. If proof of $\mathcal{L}(F)$ is short, obtain proof of $\mathcal{L}(F) \upharpoonright_{\rho}=\mathcal{L}\left(F^{\prime \prime}\right)$ with no complex clauses.

3 But all proofs of $\mathcal{L}\left(F^{\prime \prime}\right)$ have a complex clause.

- Need restriction to respect lifting: $\mathcal{L}(F) \upharpoonright_{\rho}=F^{\prime}=\mathcal{L}\left(F^{\prime \prime}\right)$.
[AJPU '02]
- Need to tweak what "wide" means.
- Clause is "complex" if
- talks about many main variables or
- matches many original variables or
- restricts the neighbourhood of many original variables

Proof Details (Dense)

- Finding a good restriction is not too hard.

Proof Details (Dense)

Can query and forget

 but not requery- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for $\operatorname{Search}(\mathcal{L}(F))$
- use to build decision tree for Search (F).

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for $\operatorname{Search}(\mathcal{L}(F))$
- use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for $\operatorname{Search}(F)$.
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for $\operatorname{Search}(F)$.
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for $\operatorname{Search}(F)$.
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for $\operatorname{Search}(F)$.
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for $\operatorname{Search}(F)$.
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.

Proof Details (Dense)

Can query and forget but not requery

- Finding a good restriction is not too hard.
- To prove that all regular proofs have a complex clause:

Given truth assignment α, find clause falsified by α

- view proof as read-once branching program for Search $(\mathcal{L}(F))$
- use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
- If query selector variable: say "not matched" unless forced to.
- If query main variable: if matched, answer according to decision tree.
- If no complex clause, then a coloured main variable is never matched

Experiments

Experiments

- Experiments with sparse stone formulas.

In theory...

- Short proofs always exist.
- 100s variables, 10 000s clauses.

Experiments

- Experiments with sparse stone formulas.

In theory...

- Short proofs always exist.
- 100s variables, 10 000s clauses.

In practice...

- Few main variables \Rightarrow very hard.
- Many main variables \Rightarrow restarts crucial.

Sparse stone formula, base depth $D=12$

Sparse stone formula, base depth $D=12$

Take Home

Results

- Generic tool to prove regular resolution lower bounds: lifting with reusing.
- New and simplified lower bounds for regular resolution.

Take Home

Results

- Generic tool to prove regular resolution lower bounds: lifting with reusing.
- New and simplified lower bounds for regular resolution.

Open Problems

- Are restarts needed?
- More formulas that separate regular and general resolution?

Take Home

Results

- Generic tool to prove regular resolution lower bounds: lifting with reusing.
- New and simplified lower bounds for regular resolution.

Open Problems

- Are restarts needed?
- More formulas that separate regular and general resolution?

Thanks!

