Simplified and Improved Separations Between Regular and General Resolution by Lifting

Marc Vinyals

Technion Haifa, Israel

joint work with Jan Elffers, Jan Johannsen, and Jakob Nordström

Background

'37 Resolution.

[Blake] Res

- '37 Resolution.
- '62 Tree-like resolution.

Tree Res

'37 Resolution.	[Blake]	Res
'62 Tree-like resolution.	[DPLL]	1
 '68 Regular resolution: do not resolve a variable twice on same path Tree-like resolution is regular wlog. Q Is regular resolution as powerful as general resolution? 	1. [Tseitin]	
 Formulas need exponentially long regular proofs. If regular = general, resolution needs exponentially long proof 	[Tseitin,Galil] fs.	Reg Res
		Tree Res

'37 Resolution.	[Blake]	Res
'62 Tree-like resolution.	[DPLL]	▲
 '68 Regular resolution: do not resolve a variable twice on same Tree-like resolution is regular wlog. Q Is regular resolution as powerful as general resolution? 	path. [Tseitin]	
 Formulas need exponentially long regular proofs. If regular = general, resolution needs exponentially long p 	[Tseitin,Galil] proofs.	Reg Res
'87 Separation regular vs general (by a constant).	[Huang, Yu]	
'93 Separation regular vs general (superpolynomial).	[Goerdt]	
'02 Separation regular vs general (exponential).	[AJPU]	Trop Doc
'11 Best separation to date: $\exp(L/\log^7 L \log \log L)$.	[Urquhart]	Tree Res

'96 CDCL: DPLL + Learning	[MS; MMZZM]	CDCL	Res
Also: VSIDS, Restarts.			▲
			Reg Res
			▲
			1
		DPLL	≡ Tree Res

DPLL \equiv Tree Res

Proving Resolution Lower Bounds

Largest clause in proof

Size-Width Relation

Resolution F requires width $W \Rightarrow F$ requires length $\exp(W^2/n)$ Tree-like resolution F requires width $W \Rightarrow F$ requires length $\exp(W)$ Regular resolution ??

Proving Resolution Lower Bounds

Largest clause in proof

Size-Width Relation

Resolution F requires width $W \Rightarrow F$ requires length $\exp(W^2/n)$ Tree-like resolution F requires width $W \Rightarrow F$ requires length $\exp(W)$ Regular resolution ??

Lifting

Resolution F requires width $W \Rightarrow T(F)$ requires length exp(W)Tree-like resolution F requires depth $D \Rightarrow T(F)$ requires length exp(D)Regular resolution ??

Longest path in proof DAG

Results

Marc Vinyals (Technion) Separations Between Regular and General Resolution by Lifting

Main Result (Informal)

Theorem

F requires large depth \Rightarrow *T*(*F*) requires long regular proofs.

Main Result (Informal)

Theorem

F requires large depth \Rightarrow *T*(*F*) requires long regular proofs.

Simplifies separation between regular and general resolution.

- If F has narrow proofs, then T(F) still has short proofs.
- Obtain separation from F with small width and large depth, e.g. pebbling formulas.

Main Result (Informal)

Theorem

F requires large depth \Rightarrow *T*(*F*) requires long regular proofs.

Simplifies separation between regular and general resolution.

- If F has narrow proofs, then T(F) still has short proofs.
- Obtain separation from F with small width and large depth, e.g. pebbling formulas.
- New family of "sparse stone formulas".
- Improved separation: $\exp(L/\log^3 L \log \log^5 L)$.
- Can use in experiments.

Lifting

Usual Lifting

- ▶ Replace each original variable x_i with a gadget $g_i(y_i^1, ..., y_i^k)$.
- e.g. $x_1 \lor \neg x_2 \to (y_1^1 \oplus y_1^2) \lor \neg (y_2^1 \oplus y_2^2).$

Lifting

Usual Lifting

- ▶ Replace each original variable x_i with a gadget $g_i(y_i^1, ..., y_i^k)$.
- e.g. $x_1 \lor \neg x_2 \to (y_1^1 \oplus y_1^2) \lor \neg (y_2^1 \oplus y_2^2).$

Lifting with Reusing

Share variables among gadgets.

Selector variables

Lifting with Indexing

Lifting

Main variables

• Gadget
$$g_i(s_i^1, \ldots, s_i^m; r_i^1, \ldots, r_i^m)$$
: if $s_i^j = 1$, then $g_i(\cdots) = r_i^j$.
(Assume exactly one s_i variable is 1)

Selector variables

Lifting with Indexing

Lifting

Main variables

• Gadget
$$g_i(s_i^1, \ldots, s_i^m; r_i^1, \ldots, r_i^m)$$
: if $s_i^j = 1$, then $g_i(\cdots) = r_i^j$.
(Assume exactly one s_i variable is 1)

Lifting with Indexing and Reusing

Share all main variables among all gadgets.

Lifting

Selector variables

Lifting with Indexing

Main variables

• Gadget $g_i(s_i^1, \ldots, s_i^m; r_i^1, \ldots, r_i^m)$: if $s_i^j = 1$, then $g_i(\cdots) = r_i^j$. (Assume exactly one s_i variable is 1)

Lifting with Indexing and Reusing

Share all main variables among all gadgets.

Lifting with Sparse Indexing and Reusing

- Fix a bipartite graph $G([n] \cup [m], E)$; variable s_i^j exists iff $(i, j) \in E$.
- G is n disjoint stars \Rightarrow usual lifting.
- ► *F* is pebbling formula and *G* is complete graph $K_{n,m} \Rightarrow$ stone formula.
- ▶ *F* is pebbling formula and *G* is random graph \Rightarrow sparse stone formula.

Main Result

Theorem (Dense)

If *F* requires depth *D*, then $\mathcal{L}_K(F)$ requires regular length $\sim \exp(D^2/n)$.

Main Result

Theorem (Dense)

If *F* requires depth *D*, then $\mathcal{L}_K(F)$ requires regular length $\sim \exp(D^2/n)$.

Theorem (Sparse)

If *F* requires depth *D*, then $\mathcal{L}_G(F)$ requires regular length $\sim \exp(D^3/n^2\log^2 n)$.

G is a random graph of degree $d = \log(n/D)$.

Proof

Marc Vinyals (Technion) Separations Between Regular and General Resolution by Lifting

Proof Overview (Dense)

Random restriction technique

- **1** Hit proof with random restriction ρ .
- **2** If proof of *F* is short, obtain proof of $F \upharpoonright_{\rho} = F'$ with no wide clauses.
- **3** But all proofs of F' have a wide clause.

Proof Overview (Dense)

Random restriction technique

- **1** Hit proof with random restriction ρ .
- **2** If proof of *F* is short, obtain proof of $F \upharpoonright_{\rho} = F'$ with no wide clauses.
- **3** But all proofs of F' have a wide clause.
- ► Need restriction to respect lifting: $\mathcal{L}(F)$ _{ρ} = $F' = \mathcal{L}(F'')$. [AJPU '02]
- Need to tweak what "wide" means.
- Clause is "complex" if
 - talks about many main variables or
 - matches many original variables or
 - restricts the neighbourhood of many original variables

[AIPU '02]

Proof Overview (Dense)

Updated plan

- **1** Hit proof with lifting-respecting restriction ρ .
- **2** If proof of $\mathcal{L}(F)$ is short, obtain proof of $\mathcal{L}(F)\!\upharpoonright_{\rho} = \mathcal{L}(F'')$ with no complex clauses.
- **3** But all proofs of $\mathcal{L}(F'')$ have a complex clause.
- ► Need restriction to respect lifting: $\mathcal{L}(F)$ _{ρ} = $F' = \mathcal{L}(F'')$. [AJPU '02]
- Need to tweak what "wide" means.
- Clause is "complex" if
 - talks about many main variables or
 - matches many original variables or
 - restricts the neighbourhood of many original variables

[AIPU '02]

Finding a good restriction is not too hard.

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read**-once branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.

Can query and forget but not requery

- Finding a good restriction is not too hard.
- > To prove that all **regular** proofs have a complex clause:
 - ▶ view proof as **read-once** branching program for Search($\mathcal{L}(F)$)
 - use to build decision tree for Search(F).
- Key invariant: match original variables to main variables consistent with decision tree.
 - If query selector variable: say "not matched" unless forced to.
 - If query main variable: if matched, answer according to decision tree.
- If no complex clause, then a coloured main variable is never matched
 - Hence must query *D* main variables.
 - Hence (read once) must query D different main variables.
 - Contradiction, only have m < D main variables.</p>

Experiments

Experiments

Experiments with sparse stone formulas.

In theory...

- Short proofs always exist.
- ▶ 100s variables, 10 000s clauses.

Experiments

Experiments with sparse stone formulas.

In theory...

- Short proofs always exist.
- ▶ 100s variables, 10 000s clauses.

In practice...

- Few main variables \Rightarrow very hard.
- Many main variables \Rightarrow restarts crucial.

Take Home

Results

- Generic tool to prove regular resolution lower bounds: lifting with reusing.
- New and simplified lower bounds for regular resolution.

Take Home

Results

- Generic tool to prove regular resolution lower bounds: lifting with reusing.
- New and simplified lower bounds for regular resolution.

Open Problems

- Are restarts needed?
- More formulas that separate regular and general resolution?

Take Home

Results

- Generic tool to prove regular resolution lower bounds: lifting with reusing.
- New and simplified lower bounds for regular resolution.

Open Problems

- Are restarts needed?
- More formulas that separate regular and general resolution?

Thanks!