Simplified and Improved Separations Between Regular and General Resolution by Lifting

Marc Vinyals

Technion Haifa, Israel

joint work with Jan Elffers, Jan Johannsen, and Jakob Nordström

Regular Resolution

Resolution.

Res

Regular Resolution

Regular Resolution

CDCL and Restarts

- CDCL as powerful as resolution.
 - Crucially uses restarts.
 - Restarts also seem very important in practice.
 - Q Are restarts really needed?

Reg Res

CDCL and Restarts

CDCL and Restarts

Proving Resolution Lower Bounds

Largest clause in proof

Size-Width Relation

Resolution F requires width $W \Rightarrow F$ requires length $\exp(W^2/n)$ Regular resolution ??

Proving Resolution Lower Bounds

Largest clause in proof

Size-Width Relation

Resolution F requires width $W \Rightarrow F$ requires length $\exp(W^2/n)$ Regular resolution ??

Lifting

Resolution F requires width $W \Rightarrow T(F)$ requires length $\exp(W)$ Regular resolution ??

Main Result (Informal)

Theorem

F requires large depth \Rightarrow *T*(*F*) requires long regular proofs.

Longest path in proof DAG

Main Result (Informal)

Theorem

F requires large depth \Rightarrow T(F) requires long regular proofs.

Longest path in proof DAG

Simplifies separation between regular and general resolution.

- If F has narrow proofs, then T(F) still has short proofs.
- Obtain separation from F with small width and large depth, e.g. pebbling formulas.

Main Result (Informal)

Theorem

F requires large depth \Rightarrow *T*(*F*) requires long regular proofs.

Longest path in proof DAG

Simplifies separation between regular and general resolution.

- If *F* has narrow proofs, then T(F) still has short proofs.
- Obtain separation from F with small width and large depth, e.g. pebbling formulas.
- New family of "sparse stone formulas".
- Improved separation: $\exp(L/\log^3 L \log \log^5 L)$.
- Can use in experiments.