2009

Abstract

Salient edges are perceptually prominent features of a surface. Most previous extraction schemes utilize the notion of ridges and valleys for their detection, thereby requiring curvature derivatives which are rather sensitive to noise. We introduce a novel method for salient edge extraction which does not depend on curvature derivatives. It is based on a topological analysis of the principal curvatures and salient edges of the surface are identified as parts of separatrices of the topological skeleton. Previous topological approaches obtain results including non-salient edges due to inherent properties of the underlying algorithms. We extend the profound theory by introducing the novel concept of separatrix persistence, which is a smooth measure along a separatrix and allows to keep its most salient parts only. We compare our results with other methods for salient edge extraction.

Resources

Download

List of all publications