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Abstract This paper introduces a novel combinatorial algorithm tmpate a hi-
erarchy of discrete gradient vector fields for three-dinmra scalar fields. The
hierarchy is defined by an importance measure and repreéberdembinatorial gra-
dient flow at different levels of detail. The presented alpon is based on Forman’s
discrete Morse theory, which guarantees topological steiscy and algorithmic ro-
bustness. In contrast to previous work, our algorithm co@dmemory and runtime
efficiency. It thereby lends itself to the analysis of largéadsets. A discrete gradient
vector field is also a compact representation of the undeglgiktremal structures —
the critical points, separation lines and surfaces. Giveartain level of detail, an
explicit geometric representation of these structuresbeaaxtracted using simple
and fast graph algorithms.

1 Introduction

The analysis of three dimensional scalar data has beconmagortant tool in sci-
entific research. In many applications, the analysis of lmgical structures — the
critical points, separation lines and surfaces — are oftgnterest and may help to
get a deeper understanding of the underlying problem. Shmese structures have
an extremal characteristic, we call thextremal structures the following.

The extremal structures have a long history [2, 14]. Tybyc#he critical points
are computed by finding all zeros of the gradient, and can &ssified into min-
ima, saddles, and maxima by the eigenvalues of their HesEiigrespective eigen-
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vectors can be used to compute the separation lines andasirés solutions of
autonomous ODEs. For the numerical treatment of these gmabilwe refer to
Weinkauf [22].

One of the problems that such numerical algorithms faceadthcrete nature
of the extremal structures. For example, the type of a etipoint depends on the
signs of the eigenvalues. If the eigenvalues are close tm #ee determination of
the type is ill-posed and numerically challenging. Depagdin the input data, the
resulting extremal structure may therefore strongly ddpamthe algorithmic pa-
rameters and numerical procedures. From a topologicat pbiview, this can be
quite problematic. Morse theory relates the extremal strecof a generic func-
tion to the topology of the manifold, e.g., by the Poiree&topf Theorem or by the
strong Morse inequalities [15]. The topology of the mardfaéstricts the set of the
admissible extremal structures.

Another problem is the presence of noise, for example duk&dnhaging pro-
cess, or sampling artifacts. Both can create fluctuatiotfseiscalar values that may
create additional extremal structures, which are very dexsnd hard to analyze, in
general. A distinction between important and spurious el@sis thereby crucial.

To address these problems, one may use the framework oétiiddorse theory
introduced by Forman who translated concepts from contislorse theory into
a discrete setting for cell complexes [5]. A gradient fielceiecoded in the com-
binatorial structure of the cell complex, and its extremeicures are defined in a
combinatorial fashion. A finite cell complex can therefoaerg only a finite number
of combinatorial gradient vector fields, and their respecéixtremal structures are
always consistent with the topology of the manifold.

The first computational realization of Forman'’s theory weespnted by Lewiner
et al. [12, 13] to compute the homology groups of 2D and 3D ffo&ds. In this
framework, a sequence of consistent combinatorial gradiedlds can be computed
such that the underlying extremal structures become lesplex with respect to
some importance measure. The combinatorial fields aresepted by hypergraphs
and hyperforests, which allow for a very compact and meméfigient represen-
tation of the extremal structure. However, the framewor&ril/ applicable to rel-
atively small three dimensional data sets since the cortgtruof the sequence re-
quires several graph traversals. This results in a nonHieasinning time for large
data sets. Recently, several alternatives for the computaf a discrete Morse func-
tion were proposed, for example by Robins et al. [18] and Kihgl. [11].

An alternative approach to extract the essential critioalfs and separation lines
was proposed by Gyulassy [7]. His main idea is to construttg@esinitial field and
extract its complex extremal structures by a field traverSalseparate spurious
elements from important ones, the extremal structureshame directly simplified.
One advantage of this approach is a very low running time. @aeback is that
certain pairs of critical points, i.e., the saddle pointayrbe connected among each
other arbitrarily often by saddle connectors [21]. This oasult in a large memory
overhead [8] since the connectors as well as their geonstitiedding need to be
stored separately. Note that the reconstruction of a coatdmiial gradient vector
field based only on a set of critical points and their sepandines is challenging.
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In this work, we construct a nested sequence of combinatpréalient fields.
The extremal structures are therein implicitly defined, cihénables a memory-
efficient treatment of these structure. Additionally, teenplete combinatorial flow
is preserved at different levels of detail, which allows paty the extraction of
separation surfaces, but may also be useful for the analys§b time-dependent
data as illustrated by Reininghaus et al. [17] for 2D.

The computation of our sequence is based on the ideas ofrigbmuis et al. [16].
A combinatorial gradient field is represented by a Morse hiatgin a derived cell
graph. In this paper, we focus on scalar data given on a 3Dtated grid.

Although the computation of a sequence of Morse matchingsg®bal prob-
lem, an initial Morse matching can be computed locally andérellel. We use an
OpenMP implementation of therocessLowerStaalgorithm proposed by Robins
et al. [18] to compute this initial matching. The criticalipts in this matching cor-
respond one-to-one to the changes of the topology of therltavel cuts of the
input data.

As mentioned earlier, the presence of noise may lead to acamplex initial
extremal structure. The objective of this paper is to effitieconstruct a nested se-
quence of Morse matchings such that every element of thissseg is topologically
consistent, and the underlying extremal structures bedessecomplex in terms of
number of critical points. The ordering of the sequence flan an importance
measure that is closely related to the persistence mea2dyel], and is already
successfully used by Lewiner [12] and Gyulassy [7]. This sae@ enables the se-
lection of a Morse matching with a prescribed complexityra extremal structure
in a very fast, almost interactive post-processing ste dtiitical points and the
separation lines and surfaces are then easily extractedllegting all unmatched
nodes in the graph and a constrained depth-first searchngtattthese nodes.

The rest of the paper is organized as follows: in Section Zowaulate elements
of discrete More theory in graph theoretical terms. In $&c8, we present our new
algorithm for constructing a hierarchy of combinatoriahdjent vector fields. In
Section 4, we present some examples to illustrate the refsoiltr algorithm and its
running time.

2 Computational Discrete Morse Theory

This section begins with a short introduction to discreterdéotheory in a graph
theoretical formulation. We then recapitulate the optatizn problem that results
in a hierarchy of combinatorial gradient vector fields reprging a 3D image data
set. For simplicity, we restrict ourselves to three dimenal scalar data given on
the vertices of a uniform regular grid. The mathematicabtiidor combinatorial
gradient vector fields, however, is defined in a far more gdrsatting [5].

Cell Graph. Let C denote a finite regular cell complex [9] defined by a 3D grid.
In this paper, we call a cell complergular if the boundary of eacl-cell is con-
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b)

Fig. 1 lllustration of a cell complex and its derived cell graph. a)wgbdhe cells of a % 2 x 2
uniform grid in an exploded view. A single voxel is represeritgaight 0-cells, twelve 1-cells, six
2-cells, and one 3-dimensional cell. These cells and their kaoynidlation define the cell complex.
b) shows the derived cell graph. The nodes representing the, @-, and 3-cells are shown as blue,
green, yellow and red spheres respectively. The adjacendeaiddes is given by the boundary
relation of the cells. The edges are colored by the lower dimeasincident node. c) shows the
cell complex and the cell graph to illustrate the neighborh@dation of the cells.

tained in a union ofd — 1)-cells. The cell grapi® = (N, E) encodes the combinato-
rial information contained i€. The nodedN of the graph consist of the cells of the
complexC and each node® is labeled with the dimensiopof the cell it represents.
The scalar value of each node is also stored. Higher dimealsimdes are assigned
the maximal scalar value of the incident lower dimensiormales. The edges of
the graph encode the neighborhood relation of the cells ifithe celluP is in the
boundary of the celvP+1, theneP = {uP,wP*1} € E. We label each edge with the
dimension of its lower dimensional node. An illustrationao€ell complex and its
graph is shown in Figure 1. Note that the node indices, th#jacance and their
geometric embedding iR2 are given implicitly by the grid structure.

Morse Matchings. A subset of pairwise non-adjacent edges is callathiching
M C E. Using these definitions,@mbinatorial gradient vector field ¥n a regular
cell complexC can be defined as a certain acyclic matching of the cell g@aph
[3]. The set of combinatorial gradient vector fields®@is given by the set of these
matchings, i.e., the set dorse matchings# ¢ of the cell graphG. An illustration
of a 2D Morse matching is shown in Figure 2 a).

Extremal Structures. We now define the extremal structures of a combinatorial
gradient vector field/ in G. The unmatched nodes are callaitical nodes If uP is
a critical node, we say that the critical node has ingeX critical nodeof indexpis
called minimum(p = 0), 1-saddlgp = 1), 2-saddlg p = 2), or maximum(p = 3).
A combinatorialp-streamlinds a path in the graph whose edges are of dimengion
and alternate betwedhcC E and its complemert \ V. In a Morse matching, there
are no closed-streamlines. This defines the acyclic constraint for Marsgch-
ings. A p-streamline connecting two critical nodes is calleg-aeparation lineA
p-separation surfaces given by all combinatorial 1-streamlines that emanaienfr
a critical point of indexp. The extremal structures give rise to a Morse-Smale com-
plex that represents the topological changes in the letgldéhe input data. Since
we have assigned the maximal value to higher dimensionksl, ¢kére are no sad-
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Fig. 2 Depiction of algorithmconstructHierarchylmage a) shows al2Morse matchingVl. The
matched and unmatched edges of the cell gi@gtre depicted as solid and dashed lines respec-
tively. The unmatched nodes Gfare shown as black dots. Each nod&a$ labeled by its dimen-
sion. Image b) shows the two minima (blue dots) and the saddle (ydiboas well as the only
two possible augmenting paths (blue and green stripad) iimage c) shows the augmentation of
M along the left (green) path. The start- and endnode of thisgo& now matched and not critical
anymore. A single minimum (blue dot) remainsih

dles with a scalar value smaller or greater than their caedeminima or maxima
respectively.

Optimization Problem. The construction of a hierarchy can be formulated as an
optimization problem [16]. Given edge weights. E — R, the objective is to find
an acyclic matchiny € .#® such that

V= argmax w(M). 1)
Me.#9,|M|=k

However, equation (1) becomes an NP-hard problem in the @a3B manifolds
[10]. We therefore only use (1) to guide our algorithmic dedio construct a nested
sequence of combinatorial gradient vector fiefds= (Vi) _,- For eactk, we
are looking for the smallest fluctuation to get a represantaif our input data at
different levels of detail. Note that this proceeding diférom the homological
persistence approach introduced by Edelsbrunner et alTigre are persistence
pairs in  that cannot be described by a sequeficas shown in a counterexample
by Bauer et al. [1].

3 Algorithm

In this section, we describe the construction of a sequehoenobinatorial gradient
vector fields. The construction consists of two steps. Iditeestep, an initial Morse
matching is computed. The matching represents the finegptdiow of the input
data. In the second step, the initial matching is iteragiginplified by removing
the smallest fluctuation in every iteration. The simplificatis done by computing
the p-separation lines representing this fluctuation in a given matchwvig A p-
separation line, which is connecting two critical poingsan augmenting path since
it is alternating and its start- and endnode are not matdiedcan then produce a
larger matching/;. 1 by taking the symmetric difference

Vi1 =V AS 2
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Algorithm 1 constructHierarchy
Input: initial matching \,, cellgraph G
Output: hierarchy

1: hierarchy< nil

2: saddleQueue- initQueudG)

3: while saddleQueue 0 do

4: s« saddleQueugop()

5:  if isCritical(s) then

6: [cancelPartneraugPath < getU niquePairings.idx)
7

8

9

if cancelPartneithen
weight«— getWeights.idx, cancelPartney
if weight< saddleQueuéop().weightthen

10: updateMatchingaugPath

11: hierarchyappendaugPath

12: else

13: saddleQueugpush(s.idx, weight)

Equation (2) is callecaugmentingthe matching. The simplification stops if the
matching can not be augmented anymore. This final resulesepts the gradient
field with the coarsest level of detail.

Initial Matching. To compute the initial matchingi,, we use the algorithm
ProcessLowerStafl8]. ProcessLowerStacomputes a valid Morse matching by
finding pairs in the lower star of each 0-node in lexicograptescending order.
Since the decomposition of a cell graph in its lower stardlisjint decomposition,
each lower star can be processed in parallel. The assuniptPrcessLowerStar
is that the scalar values are distinct. To fulfill this requient, we use the same idea
as Robins et al. [18]. Two 0-nodes in a lower star with the saoaar values are
differentiated by their index. If the enumeration of the@das inG is linear, this
correlates to a linear ramp with an infinitesimal srmpll

Computing the Hierarchy. In the following we describe the construction of a
sequence of Morse matchings. See Algorithm 1 and Figure 2 for a depiction of
it. The main idea is to compute theseparation line with the smallest weight that
emanates from a saddle and allows for an augmentation of tivsdvimatching.
While the computation of the 0- and 2-separation lines idggitdorward, special
attention needs to be taken for the computation of 1-seipartibes since they can
merge and split in the combinatorial setting.

We start with the initial matchiny, as described above. In the first step, the
priority queue is initialized by the functianitQueue(line 2). This function collects
all unmatched 1- and 2-nodes and computes the weight of tieekes. The weight
is given by the smallest difference in the scalar values eitalle and its neighbors
[16]. initQueueuses basically the same functionality as the funagietniquePair-
ing, which is described subsequently. After the queue is iirgd, the first saddle
of the queue, i.e., the element with the smallest weighékier (line 4) and checked
whether it is still critical (line 5). This is necessary snprevious simplification
steps may have affected Then, the functiometUniquePairingcomputes the can-
cel partner as well as the augmenting path that connectsitlis withs (line 6).
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a) b)

Fig. 3 lllustration of algorithmgetUniquePairing In the first step (a), the two 1-separation lines
(blue lines) starting from a 1-saddle (green sphere) are irttjyrBoth end in distinct minima (blue
spheres), which would allow for an augmentation along one aitiees. The combinatorial flow
restricted to the separation lines is indicated by arrows dséitond step (b), the separation surface
(blue surface) is integrated using a depth first search. The suefads in 2-separation lines (red
lines) that emanate from 2-saddles (yellow spheres). For eadtesé 2-saddles the intersection
of their separation surface and the surface emanating from #izeldle is computed in the third
step (c). The intersection is depicted by red stripes. The raguaddle connectors, i.e., the 1-
separation lines, are shown as green lines. The right 2-saddiangcted twice with the 1-saddle.
An augmentation of the matching along one of these lines wowldltren a closed 1-streamline.
This saddle is therefore not a valid candidate for a cangafiaFrom the remaining 2-saddles and
the two minima the critical node is chosen that has the smalleshiwsith respect to the 1-saddle.

If the saddles is connected to every neighbor by multiple paths, then wenzdn
cancel this saddle since a closed combinatorial streamlirraild be created (line
7). Otherwise, we compute the weight®énd its cancel partner and test whether
it is smaller than the weight of the next element in the quéine 8 and 9). This
is necessary since previous simplification steps may hdgetatl the connectivity
of s. If the weight is smaller, it represents the smallest fluttwmeat this time, and
we can augment the matching along the path (line 10). Thidteeim a simplified
combinatorial gradient field where the saddle ned@md its cancel partner are no
longer critical. Since the augmentation of a matching alangaugmenting path
never creates new critical nodes, the complexity of the tiyidg extremal struc-
ture is reduced. The path is finally stored to be able to regtos specific level of
detail (line 11). We reinsert the saddl&ith the new weight (line 13) if the weight
is greater.

The main computational effort lies in the computation of Hest pairing that
contains a uniquely defined connection. Algorithm 2 and F&dg8show how this
can be achieved efficiently. Letbe an unmatched 1- or 2-node. In the first step,
the two 0- or 2-separation lines — the paths that connectdesadde with at most
two 0-nodes or 3-nodes — are computed. We take the two 0- dg@seincident to
s (line 2) and follow the combinatorial gradient field until anmatched node is
found. This is done by the functiontegrateSeparationLin@ine 3). Note that these
separation lines are uniquely defined if we start at a satitii#tiple lines can merge
but they can not split. We need to check whether these twaspatitl in the same
minimum or maximum (line 4). If they do, an augmentation glone of these paths
would create a closed streamline, which are not allowed mhipnatorial gradient
fields. If the two endnodes are distinct, we choose the ortetvé smallest weight
and take the corresponding path as augmenting path (lind 5)an
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Algorithm 2 getUniquePairing

Input: saddles
Output: cancelPartneraugmentingPath
1: cancelPartner— nil, augmentingPatk— nil, isCircle «<— falsg weight<— o
2: [firstLink, secLinK «— getLinkToExtremgs)
3: [firstPath secPath <« integrateSe parationLin(g, [ firstLink, secLink)
4: if getEndNodefirstPath) £ getEndNodésecPath then

5:  [cancelPartneaugmentingPath— getBestWeiglftf irstPath secPath
6:  weight«+ getWeights, cancelPartney
7: [surfacesaddle$« integrateSeparationSur fats
8: sort(saddle$
9: for all n € saddlesdo
10:  if n.weight< weightthen
11: [isCircle, line] «<— checkMultiplePairingsur facen.idx)
12: if isCircle= falsethen
13: weight<« n.weight cancelPartner— n.idx
14: augmentingPatk- line
15: return

In the second step, we investigate the connectivitywith complementary sad-
dle nodes. The 1-separation lines that connect these saaldlealso called saddle
connectors [21], and are defined by the intersection of thgpbementary separation
surfaces. In contrast to 0- and 2-separation lines, these tian split and merge. In
previous work of Lewiner [12], this property results in a Ai@asible running time,
and in the work of Gyualssy [7], it induces a large memory comgtion. The sec-
ond part of Algorithm 2 and Algorithm 3 show a memory and rungrtime efficient
alternative.

Given the saddls, we integrate the separation surface using a depth-firstisea
(line 7). This is done byntegrateSeparationSurfacBlote that the integration only
follows the 1-streamlines, i.e., the 1-paths that alterb&tween the current match-
ing and its complement. Since the boundary of a separatidacguconsists of sep-
aration lines, the integration will terminate at thesedin€he 1- and 2- nodes de-
scribing these lines are already matched and hinder a fufltfeding. The result
of integrateSeparationSurfaég a list of 1- and 2-nodes representing the separation
surface. Additionally, a list of the complementary sadde®gturned. We sort these
saddles by their weight te(line 8) and test them in ascending order (line 9). Since
the objective is to remove the smallest fluctuation, we askitg for a saddle part-
ner with a smaller weight thashas with its uniquely connected minima or maxima
(line 10). If there is such a partner, we check whether thexeraultiple connections
between these two saddles by calliggtUniqgueSaddleConnect@ine 11). If the
connection is unigue we use it as an augmenting path anchréime 13, 14 and
15).

In the discrete Morse setting of Forman’s theory, saddleneotors can merge
and split. This property prohibits a direct walk startingaegaddle as we have done
for the 0- and 2-separation lines. Saddle connectors cauimputed by definition
as the intersection of the two corresponding separatidases [21], but this would
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Algorithm 3 getUniqueSaddleConnector

Input: separationsur face sepSur addle s
Output: sepLinegisCircle

1: sepLine~ nil,

2: queue+ nil, queuepushs)

3: while queue# 0 do

4 curNode« queuepop(), numNeighbors— 0

5:  nodeList« getAlINeighborsinSur fadeurNodesepSurj
6:  forall me nodeListdo
7
8
9

if isVistedm| = falsethen
if numNeighbors- 1 then
isCircle < true

10: return

11: else

12: queuepushm), sepLinepushgetLinkm,curNode)
13: isVistedm] « true

14: numNeighbors— numNeighborg- 1

result in a infeasible running time. Instead, we computeitiersection directly
using the functiorgetUniqueSaddleConnect@hown in Algorithm 3.

Consider a set of 1- and 2-nodes representing a separati@ceuand a saddle
s in the boundary of this surface. We first pusim a queue (line 2). This queue
will allow the traversal of the saddle connector. For the flement of the queue,
we collect all neighboring 1- and 2-nodes in the node lisegiby the separation
surface (line 4 and 5). Note that the saddle connector isteedsline and its edges
must alternate between the matching and its complemend. i$fachieved by the
function getAlINeighborsIinSurfac&he main idea is now to check for split events
in the intersection. If there is such an event, we know thertetlare multiple connec-
tions between the two saddles since by definition the intérsealways ends in the
complementary saddle. We test each of these nodes if theyalrerady visited (line
6 and 7). In order to check for split events, we need to counhtimber of possible
extensions of the saddle connector. If there are more thantie algorithm returns
with a boolean indicating multiple connections (line 8, @d®). If this is not the
case, the current node is an extension of the saddle comn€atonode is added to
the queue and the corresponding link to the saddle conndt¢temumber of possi-
ble extensions is increased by one (line 12, 13 and 14). Téfedads in the other
saddle, and the links describing the saddle connector a@riad order.

Extraction of Extremal Structures. Given a nested sequence of combinatorial
gradient vector fields = (Vi)k—k,,...k,» @n arbitrary element of the sequence can
be restored as follows: first we take the coarsest possilidEMie. This is the final
result of Algorithm 1. Note that this field can be efficientgpresented by a boolean
vector whose size is given by the number of edgés.ifihen, this field is iteratively
augmented along the augmenting paths computed in Algorithmreverse order
(Vi,_q- - -+ Viq)- The augmentation of a field along an alternating patby is given
by the symmetric differenc¥, 1 =V, /A p,. In contrast to (2) this augmentation
increases the number of critical nodes by two. The augmientatops if the de-
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Data Set| Initial Matching|Speed Up 5% Simplification | |#50| | Peak |Memory

(Size) |12 cores (1 core) Complete Hierarchy |#| [Memory, Factor
Neghip 6 seq 10. 1ll1se¢ 4974 1MB 1
643 (1 min 2 sec 11se¢ 5023
Hydrogen 51 se 11. 2min 13 se¢ 87821 8 MB 1
128 (9 min 53 sec 2 min 13 se¢ 87825
Aneurism 7min02se¢ 115 15 min 45 sef 38542 107 MB 1.59
256° (81 min 12 sed) 21 min 39 set 48561
Beetle 18 min43set 11.4 34 min 26 se(309290 260 MB| 1.52
416 x 247 (214 min 26 seq) 41 min 19 se(321227
Benzene| 30 min 46 se¢ - 33 min1se¢ 92| 392 MB 1.51
4018 33min7se¢ 123
Synthetic|8h 26 min 19 sec —-| 8h45min22sec 203 6.3 GB 1.51
1024 8h 49 min 16 sec 243

Table 1 Running times and memory consumption for six data sets of varyingrdiimes. The
computation of the initial matching with 12 cores and, as egfee, for 1 core is shown in the
second column. The resulting speed up factor is shown in the tbitdnn. The running time
for a 5% and a complete simplification, and the number of levelfiegnhierarchies are shown
in the fourth and fifth column. The peak memory consumption and theanefactor for a full
simplification including the augmenting paths are shown in théa sird seventh column.

sired number of critical nodes is achieved or the weight efléist augmenting path
corresponds to a prescribed threshold.

For a certain level in the hierarchy, the critical nodes are computed by col-
lecting all unmatched nodes. From each of the collected d2amodes, the 0- and
2-separation lines are computed by following the combinattdlow. The separa-
tion surfaces are restored by a depth-first search similer @sed in Algorithm 2.
For the computation of the saddle connectors, we can useifigo3 in a slightly
modified version. Instead of returning when a split event feasd, a new line is
started. The geometric embedding is given by the grid siraadf the input data.
Note that the extremal structures can not be easily updatedmentally.

Memory Consumption. For the construction of the hierarchy, a boolean vector,
whose size is given by the number of edge&irs needed to represent the current
matching. The number of nodes in the cell graph is eight tithesyumber of ver-
tices in the input grid. The number of edgedGris therefore bounded by 24 times
the number of vertices. Since the size of a booleary82th of a single precision
number we need a factor of 0.75 of the input data to reprekennatching. Three
additional boolean vectors of size of number of nodes aressey for the surface
integration, its intersection, and the node matching. Dkel factor is therefore.b
of the input data. Robins proved that the critical pointsiara one-to-one corre-
spondence to the topological changes in the lower level[48is Since (2) only
decreases the number of critical nodes, the size of theityrigueue is given by
the number of critical points in the input field. The thearatimaximal memory
consumption for separation surfaces is bounded by the nuofie and 2-nodes in
G.
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Fig. 4 This image shows the critical points and theeparation lines of a synthetic example for
different levels of detail. Minima, 1-saddles, 2-saddles andimavare depicted as blue, green,
yellow and red spheres respectively. Tieeparation lines are shown as blpe{0), green p=1)

and red p = 2) lines. Image a) shows the initial Morse matchiig whereas b) and c) show
the levelVy,_13 andVi,_4. The isosurface (grey) in c) illustrates the most dominant minima and
maxima regions. The hierarchy consists of 243 levels.

4 Examples

In the following, we present some examples to illustrate rethod. All experi-
ments were done on an AMD Opteron 6174 CPU. To compute thelimgtching,
we implemented an OpenMP versionRibcessLowerStaiTable 1 shows the run-
ning time and memory consumption for different 3D data SEt® neghip, hydro-
gen and aneurism are provided Diye Volume Library19] while the beetle data set
is provided by Goller et al. [6]. We give the running time for the computatioh
the initial matching with 12 cores and 1 core, respectivehd the corresponding
speed up factor. Besides computing the complete hieraiihiy, it is in some cases
sufficient to compute only a subsequencevoin order to remove only the most
spurious/noisy extremal structures. Therefore, we alg®@thie computation time of
the algorithm for a 5% simplification, i.e., until the weighftthe last augmenting
path corresponds to 5% of the data range. The correspondimger of hierarchy
levels is given as well. The memory consumption is measugedbserving the
peak memory usage during computation. This includes alsatigmenting paths.
The memory factor relates the consumption to the file sizg(sipoint precision).
Figure 4 shows the extremal structures for different lewéldetail of a synthetic
example. The running time and memory consumption is alsengiv Table 1.

The speed up factor is nearly optimal and scales with theminas of the data
set. The construction time of for the complex aneurism data set was approxi-
mately 21 minutes, which correlates to the work of Gyulagdsgl.g8] with a rea-
sonable valence parameter. This example shows also thajblegical complexity
of the initial field influences the running time. For simpldgalaets as the neghip or
hydrogen there is nearly no difference in running time betwa 5% and a full sim-
plification. The overall running time and the practical meynconsumption, which
is less than a factor of two of the input data, allows for thalgsis of large data
with an appropriate topological complexity.
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Fig. 5 Extremal structures of the electrostatic field of a benzene mtgdor Vi, oo with 181 crit-
ical points. (a) shows the minimal structures: the 48 minima (bluersphe78 1-saddles (green
spheres), O-separation lines (blue lines) and the 1-separati@eeblue surface). (b) shows the
maximal structures: the 12 maxima (red spheres), 43 2-saddles (ysglmves), 2-separation lines
(red lines) and the 2-separation surface (red surface). Ude to syyordy one half of the separa-
tion surfaces is shown. Note that 1-separation surfaces sefeadlew given by the 0-streamlines,
while 2-separation surfaces separate 2-streamlines. Triaimgutae 2-nodes of 1-separation sur-
faces therefore does not necessarily lead to closed surfacesthast to 2-separation surfaces.

Comparison of Continuous and Combinatorial Extremal Structures. Fig-
ures 5 and 6 visualize the extremal structures of the elgtettio potential around
the benzene molecule. This data set has been analyzed bseTkeial. [21] us-
ing numerical methods, and we use their results for a sidsids comparison of
continuous and combinatorial structures. To achieve coafyba results, we chose
the hierarchy leveVy,_go where we have the same number of 1- and 2-saddles as
in the continuous case. The data set is sampled on & @@ular grid using the
fractional charges method [20]. The running time is showiidhle 1; the extrac-
tion of the critical points and the-separation lines for an arbitrary elementof
took at most 20 seconds whereas the separation surfaceattondst 60 seconds.
Figure 5 shows our combinatorial result from a top view. Nuodgv the regularity
of the underlying data set has been perfectly captured. ddges a challenge for
numerical algorithms, since guarantees about finding gital points can usually
not be given. The side-by-side comparison of the continamasthe combinatorial
extraction results is shown in Figure 6.

We make the following observations: First, the continuoassion is not only
visually more pleasing, but it better communicates the smoature of the flow
to a viewer. For such purposes, the classic continuous rdgthi@ preferable over
the combinatorial ones. Second, numerical algorithmsirecularger number of
parameters, which are often difficult to choose. In this exanthe continuous ver-
sion misses some saddle connectors, since a certain maximnéder of integration
steps had to be chosen for the extraction algorithm [21].dDfge, we could have
changed that parameter and re-run the algorithm by Theisél 1], but this still
would not make it a proofably watertight case. Our combinatalgorithm, on the
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Fig. 6 Comparison of combinatorial and continuous extremal strucforethe electrostatic field
around a benzene molecule. Image a) shows smooth extremal stsuextngcted as in [21]. The
minima and the maxima are depicted as blue and red spheres whileahd 2-saddles are shown
as blue and red disks respectively. The saddle connectors ama stsoblue-red stripes. Gray il-
luminated lines represent streamlines emanating from the satidiege b) shows combinatorial
extremal structures. The minima, 1- and 2-saddles, and the maximgpaesented by blue, green,
yellow and red spheres respectively. The saddle connectoshaven as green lines. Gray illu-
minated lines depict the 2-separation lines emanating fro2-$eddles. Gray surfaces depict the
carbon and the hydrogen atoms and their bonds.

other hand, captures all connectors by design. Hence, catabial methods are
preferable over continuous ones if proofable correctretse primary goal, e.g., if
the extraction results are supposed to serve as an inpuftdiothar analysis.

5 Conclusions and Future Work

We presented a novel combinatorial algorithm to constrwegighted hierarchy of
combinatorial gradient vector fields for 3D scalar data. filegarchy represents the
combinatorial flow for different levels of detail and imptlg defines the extremal
structures. The weighting enables a distinction betweern@ps and dominant ex-
tremal structures. The hierarchy is efficiently represgbtea sequence of augment-
ing paths. As seen in Table 1 the running time scales reakof@bcommon data
sets. The memory consumption of Algorithm 1 is bounded. @atdsvs for an anal-
ysis of large data sets. Our algorithm could allow for an esien of other methods
that make use of a combinatorial gradient vector field sut¢b@sogical smoothing
[23] or tracking of critical points [17] to 3D.

Acknowledgements

This work was supported by the Max-Planck Institute of Bierlistry, Martinsried,
and the DFG Emmy-Noether research program. The authorsdwitel to thank



14

D. Gunther et al.

Daniel Baum, Ingrid Hotz, Jens Kasten, Michael Koppitz,kBaWarquardt, and
Jan Sahner for many fruitful discussions on this topic.

References

11.

12.

13.

14,

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

U. Bauer, C. Lange, and M. Wardetzky. Optimal topologicaiification of discrete func-
tions on surfacesCoRR abs/1001.1269, 2010.

. A. Cayley. On contour and slope line3hhe London, Edinburg and Dublin Philosophical

Magazine and Journal of Scienck8:264-268, 1859.

. M. K. Chari. On discrete Morse functions and combinatorigbdepositionsDiscrete Math,

217(1-3):101-113, 2000.

. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topoldgieesistence and simplification.

Discrete and Computational Geomet88(4):511-533, 2002.

. R. Forman. Morse theory for cell complexéglvances in Mathematic&34:90-145, 1998.
. M. E. Giller, G. Glaeser, and J. Kastner.

http://www.cg.tuwien.ac.at/research/publications/208&set-stagbeetle/.

. A. Gyulassy. Combinatorial construction of Morse-Smale complexes for datlyesis and

visualization PhD thesis, University of California, Davis, 2008.

. A. Gyulassy, P.-T. Bremer, V. Pascucci, and B. Hamann. Practeeiderations in Morse-

Smale complex computation. Tropological Methods in Visualization (TopolnVigp09.

. A. Hatcher.Algebraic Topology Cambridge University Press, Cambridge, U.K., 2002.
. M. Joswig and M. E. Pfetsch. Computing optimal Morse matchiB¢&M J. Discret. Math.

20(1):11-25, 2006.

H. King, K. Knudson, and N. Mramor. Generating discrete Méusetions from point data.
Experimental Mathematic44(4):435-444, 2005.

T. Lewiner. Geometric discrete Morse complexd2hD thesis, Dept. of Mathematics, PUC-
Rio, Aug 2005.

T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morgetiions for 2-manifolds.
Computational Geometry: Theory and ApplicatipB6(3):221-233, November 2003.

J. C. Maxwell. On hills and dale$he London, Edinburg and Dublin Philosophical Magazine
and Journal of Scien¢c&0:421-425, 1870.

J. Milnor. Topology from the differentiable viewpaindniv. Press Virginia, 1965.

J. Reininghaus, D. i@ther, |. Hotz, S. Prohaska, and H.-C. Hege. TADD: A com portei
framework for data analysis using discrete Morse theoryMathematical Software — ICMS
201Q pages 198-208. Springer, 2010.

J. Reininghaus, J. Kasten, T. Weinkauf, and |. Hotz. Combiiahfeature flow fields: Track-
ing critical points in discrete scalar fields. Technical Refp@r02, Zuse Institute Berlin, 2011.
V. Robins, P. J. Wood, and A. P. Sheppard. Discrete Morseytleograyscale digital images.
In IEEE Transactions on Pattern Analysis and Machine Learnpages 1-14, 2010.

S. Rittger. The Volume Library. http://www9.informatik.unitangen.de/External/vollib/.

D. Stalling and T. Steinke. Visualization of vector fieldgjuantum chemistry. ZIB Preprint
SC-96-01, 1996.

H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. dga€onnectors - an approach to
visualizing the topological skeleton of complex 3D vector fielth Proc. IEEE Visualization
2003 pages 225-232, Seattle, U.S.A., Oct. 2003.

T. Weinkauf. Extraction of Topological Structures in 2D and 3D Vector Bl PhD thesis,
University Magdeburg and Zuse Institute Berlin, 2008.

T. Weinkauf, Y. Gingold, and O. Sorkine. Topology-basedatmag of 2D scalar fields with
C-continuity. Computer Graphics Forum (Proc. EuroVj€9(3):1221-1230, June 2010.

A. Zomorodian. Computing and Comprehending Topology: Persistence and Hieical
Morse ComplexesPhD thesis, Urbana, lllinois, October 2001.



