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Abstract— We present an approach to analyze mixing in flow
fields by extracting vortex and strain features as extremal
structures of derived scalar quantities that satisfy a duality
property: they indicate vortical as well as high-strain (saddle-
type) regions. Specifically, we consider the Okubo-Weiss criterion
and the recently introduced MZ-criterion. While the first is
derived from a purely Eulerian framework, the latter is based
on Lagrangian considerations. In both cases high values indicate
vortex activity whereas low values indicate regions of high strain.
By considering the extremal features of those quantities, we define
the notions of a vortex and a strain skeleton in a hierarchical
manner: the collection of maximal 0D, 1D and 2D structures
assemble the vortex skeleton; the minimal structures identify
the strain skeleton. We extract those features using scalar field
topology and apply our method to a number of steady and
unsteady 3D flow fields.

Index Terms— flow visualization, feature extraction, vortex
core lines, strain features

I. INTRODUCTION

Recent advances in time-dependent flow simulations have
increased the size of data significantly. Additionally scientists
aim at understanding the high dimensional parameter space
that governs the flow – geometry optimization as well as active
flow actuation are areas in which high degrees of freedom must
be controlled. Automatic extraction and quantification of the
features of interest are key ingredients to understanding the
impact of parameter changes that can finally lead to optimized
flow.

The extraction of features as well defined geometric objects
is a prerequisite for distance measurements and extent quan-
tification. In this paper, we present an approach for extraction
of both vortex and strain features as points, lines and surfaces.
The existence of vortices on the one hand and high-strain
regions on the other hand drives mixing in a flow. Hence,
our techniques can be used as a tool for mixing analysis in
flow fields.

For vortex features much research has aimed at extracting
lines denoting the core of a vortex: Sujudi et al. [22] extracted
lines around which swirling motion of stream lines occurs,
Roth et al. [16] described a higher order method. Banks et
al. integrated vorticity lines from critical points in the flow
[1], correcting towards pressure minima. Stegmaier et al. [20]
took a similar approach and suggested to correct towards
minima of λ2. Peikert et al. [15] provided the parallel vectors
operator, a framework for vortex core line extraction covering
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all those methods. Theisel et al. [23] coupled the parallel
vectors approach and the feature flow fields approach [24] to
track vortex core lines in time. Wiebel et al. [28] developed the
localized flow approach which can also be used for Galilean
invariant vortex core line extraction. Miura et al. [13] extracted
minimum lines of pressure. Sahner et al. [17] extracted vortex
core lines as extremum lines of vortex region quantities like
λ2 [11] and Q [10] in a Galilean invariant way. This means,
the extracted features are invariant under Galilean changes of
the reference frames.

All those approaches aim at the extraction of one dimen-
sional vortex features. In this work, we extend the two latter
works by extracting zero-, one- and two-dimensional extremal
vortex features as the vortex skeleton, see Figure 2 for a
motivating example.

On the other hand, little is known about the extraction of
features that can be identified with mixing properties of the
flow. Mixing is actively researched in many fields, for instance
in burning chambers where fuel and oxygen injection has to
be synchronized for optimal combustion. Vector field topology
– introduced to the visualization community by Helman et al.
[9] – can be used for mixing detection, as saddle points are
indicators for strain in the flow, as well as boundary switch
and saddle connectors extracted by Theisel and Weinkauf
[25], [26]. These are the intersection lines of 2D separatrices
showing between which saddles and boundary regions particle
transport takes place. Topological methods based on the flow
field itself are not Galilean invariant, a property that in many
cases is considered necessary from the physical point of view.

In this paper we identify specific, derived scalar quantities
of the flow that have a duality property: they detect vortex and
strain regions simultaneously. By extracting extremal points,
lines and surfaces of those properties we achieve Galilean
invariant strain features that together assemble the strain skele-
ton. With those extracted features at hand we aim at tracking
and comparing those structures in the future. However, this is
beyond the scope of the this paper. We concentrate on the mere
extraction and do not address possibilities of post processing
the extracted structures.

This paper is organized as follows: In section II we clarify
the notion of dual vortex and strain quantities and identify
two criteria that meet this requirement. In section III we define
vortex and strain skeletons as the collection of certain extremal
structures of these quantities. We show how separation prop-
erties can be utilized to quantify the extent of vortex and strin
features. Implementation issues of the extremal extraction are
given in section IV. Finally, we apply our methods to a number
of steady and unsteady data sets in section V before drawing
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conclusions in section VI.

II. DUAL VORTEX AND STRAIN QUANTITIES

The most widely used vortex region quantities are based on
a decomposition of the flow field gradient ∇v = S + Ω into
its symmetric part, the strain tensor

S =
1
2
(∇v +∇vt) (1)

and its antisymmetric part, the vorticity tensor

Ω =
1
2
(∇v −∇vt) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2)

where ω = (ω1, ω2, ω3) = ∇ × v denotes the vorticity.
While Ω assesses vortical activity, the strain tensor S measures
the amount of stretching and folding which drives mixing to
occur. To motivate the latter, some words are necessary on
perturbation advection: in a time dependent flow field consider
the path line x(t;x0) started at x0 defined by ẋ(t;x0) =
v(x(t;x0), t) and initial condition x(t0, x0) = x0. Comparing
x to x̃(t, x̃0) with x̃0 being an infinitesimal perturbation of
x0, the propagated perturbation ξ(t) = x̃(t, x̃0) − x(t, x0) is
gouverned by the linearized dynamical system

ξ̇ = ∇v(x(t;x0), t)ξ, (3)

see e.g. [6]. The strain tensor now gives the answer to the
question, how the magnitude of the perturbation |ξ| evolves
in time when both initial conditions are advected by the flow.
This evolution is described by the Lyapunov function

V (ξ, t) :=
1
2

d
dt
|ξ|2 = 〈ξ, ξ̇〉 = 〈ξ,∇vξ〉 = 〈ξ,Sξ〉, (4)

where (3) was used as well as the fact that the symmetric
scalar product 〈·, ·〉 only sees the symmetric part of ∇v. Where
V < 0, initial perturbations decay over time, while V > 0
indicates their growing. Where perturbations decay or grow
drastically the flow exhibits a saddle like pattern – a pattern
that drives mixing of fluid particles. Now the Euclidean matrix
norm ‖S‖, called the rate of strain, supplies a measure for this
initial perturbation evolution due to

|V (ξ, t)| = |〈ξ,Sξ〉| ≤ |ξ|2‖S‖. (5)

Note that although the initial perturbation analysis uses path
lines, the quantity S that measures the perturbation growth is
completely Eulerian – it is built out of quantities in a specific
snapshot of time.

Inherent to the decomposition of the flow field gradient ∇v
into S and Ω is the following duality: vortical activity is high in
regions where Ω dominates S, whereas strain is characterized
by S dominating Ω.

In order to identify vortical activity, Jeong et al. used this
decomposition in [11] to the vortex region quantity λ2 as the
second largest eigenvalue of the symmetric tensor S2 + Ω2.
Vortex regions are identified by λ2 < 0, whereas λ2 > 0
lacks physical interpretation. λ2 does not capture stretching
and folding of fluid particles and hence does not capture the
vorticity-strain duality detailed above.

Fig. 1. Isosurfaces of Q showing Eulerian vortex regions in a flow
behind a circular cylinder. The LIC-plane is indicating corresponding vortical
streamline patterns in the reference frame relative moving with the convection
velocity. Throughout the paper, vortex features are colored red, whereas strain
features are colored blue.

Fig. 2. A closeup of the cylinder dataset showing vortex regions with
transparent isosurfaces of Q. This paper aims at extracting 1d and 2d extrema
of duality quantities like Q. The lines shown here are the maximum lines of
Q where Q > 0 extracted by our methods. The lines are scaled by their Q-
value and can be regarded as centers of isosurfaces. The correspondence of
the lines in the center of the swirling motion shown in the LIC plane justifies
the notion of vortex core lines.

In the following subsections we discuss two quantities
which utilize the decomposition of ∇v to identify not only
vortices but also strain regions. This duality property of those
quantities will later be used in section III to define 0D, 1D
and 2D vortex and strain features that together assemble the
corresponding feature skeletons.

A. The Okubo-Weiss Criterion

The Q-criterion of Hunt [10], also known as the Okubo-
Weiss criterion, is defined by

Q :=
1
2
(‖Ω‖2 − ‖S‖2) = ‖ω‖2 − 1

2
‖S‖2. (6)

Where Q is positive, the vorticity magnitude dominates the
rate of strain. Hence it is natural to define vortex regions as
regions where Q > 0. Unlike λ2, Q has a physical meaning
also where Q < 0. Here the rate of strain dominates the
vorticity magnitude. The Q-criterion is an Eulerian quantity.
Figure 1 shows isosurfaces of Q > 0 behind a circular cylinder
indicating vortex features. In this figure and throughout the
paper, we use red colors to denote vortex features. Blue color
will stand for strain features. The data set was derived by
Bernd R. Noack (TU Berlin) from a direct numerical Navier
Stokes simulation by Gerd Mutschke (FZ Rossendorf). It
is a 3D time-dependent Galerkin approximation in the time
range [0, 2π]. It will be explained in detail in section V. We
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Fig. 3. Isosurfaces of MZ showing Lagrangian vortex regions only displayed
where path lines could be integrated for 2 seconds.

use this data set throughout the next sections to illustrate
our techniques. Figure 1 additionally contains a LIC plane
which shows rotational stream line behavior in the frame
of reference corresponding to the convection velocity. The
isosurfaces correspond to the circular pattern shown in the LIC
plane. Note however that Q is a Galilean invariant quantity
which is independent of such translational changes of the
reference frame.

B. The MZ-Criterion

Haller has recently proposed the MZ-criterion that also
discriminates vortex and strain regions in incompressible flows
similar to the Q-criterion, but in contrast to this based on a
Lagrangian analysis [7]. Figure 3 gives an example. To the best
of our knowledge the MZ-criterion has not been used before in
3D-visualization of flow fields. As both the underlying theory
and the implementation are quite involved, we give a deeper
introduction here.

The MZ-criterion is based on a strain analysis along path
lines. Loosely spoken, Haller proves that path lines along
which the strain acceleration tensor M (the tensor describing
the first time derivative of V as defined in equation (4)) is
positive definite are of saddle type – so called hyperbolic lines
of maximal strain. In contrast he defines vortices as path lines
along which M is indefinite. Such structures are called elliptic.

More precisely, Haller argues that in incompressible flows,
the function V takes both positive and negative values, as S
has at least one negative and one positive eigenvalue. Hence,
the set

Z = {ξ|〈ξ,S(x(t), t)ξ〉 = 0} (7)

is never empty and usually a two dimensional surface, as it
separates the regions V < 0 and V > 0. Physically, within
Z, initial bifurcations do not change their magnitude. Hence
within Z, the bifurcation evolution is gouverned by the first
time derivative

d
dt

V (ξ(t), t). (8)

Haller proves that path lines for which d
dtV is positive for ξ in

Z for all times are of saddle type in the sense that they form
stable and unstable manifolds that drive advective mixing in
the fluid.

To be able to decide this positivity, we state that

d
dt

V (ξ(t), t) =
d
dt
〈ξ(t),S(x(t), t)ξ(t)〉

= 〈ξ̇,S(x(t), t)ξ〉+ 〈ξ, d
dt

(S(x(t), t)ξ)〉

= 〈∇v(x(t), t)ξ,S(x(t), t)ξ〉

+〈ξ, d
dt

(S(x(t), t))ξ + S(x(t), t)ξ̇〉

Fig. 4. MZ-criterion of the periodic ABC-flow. Darker colors indicate
higher ellipticity times. Some path lines used for computing MZ are shown:
hyperbolic points are colored blue, elliptic points are red.

= 〈ξ, (∇vtS +
d
dt

(S(x(t), t)) + S∇v)ξ〉

= 〈ξ,Mξ〉 (9)

where the strain acceleration tensor M is defined as

M = ∇vtS +
d
dt

(S(x(t), t)) + S∇v. (10)

The MZ-criterion is now defined as follows:

Definition 1: MZ-criterion - total ellipticity time Let
(x0, t0) be an arbitrary point in the space-time domain of the
flow and x(t) the path line with x(t0) = x0.

1) A point on the path line is called hyperbolic, if 〈ξ,Mξ〉
is positive for all ξ in Z at that point. Physically, such a
point describes a saddle type or strain point. Otherwise,
the point on the path line is called elliptic and indicates
vortex behavior.

2) MZ(x0, t0) is defined as the sum of the lengths of all
time intervals, in which the path line started at (x0, t0)
is elliptic.

Where MZ = 0, the path lines are hyperbolic for all times,
and hence form stable or unstable manifolds as described
above. In contrast, where MZ equals the integration time of
the path lines, maximal vortex activity is present. However, in
numerical implementations the path line seeding is necessarily
sparse. Thus it is unlikely to find a path line that is completely
hyperbolic or completely elliptic. But still, a qualitative prop-
erty holds for the MZ-criterion computed on a sparse grid:

• The lower MZ, the more strain is present (the majority
of points on the path line are hyperbolic).

• The higher MZ, the more vortical behavior is present
(the majority of points on the path line are elliptic).

This is a duality property similar to the Okubo-Weiss criterion.
Note that the duality of vortex and strain activity is intrinsic to
the MZ-criterion, as MZ is solely based on a strain analysis.
Hence, Haller defines a vortex as lack of strain.

While Q is Galilean invariant, Haller states that MZ is
invariant even under a larger group of frame changes, the
objective group.

The computation of MZ relies on the computability of the
positivity of 〈ξ,Mξ〉 on Z. We address the implementation
issues next.
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C. Implementation of MZ

For 3D time-dependent flows, the MZ-criterion defines a 3D
time-dependent scalar field which can be computed as follows:

Algorithm 1: At each time step ti

1) Generate a set of seeding points for path line integration.
This may be the original grid at ti, a subset thereof, or
the grid points of a uniform grid defined in a region of
interest.

2) Integrate path lines for TP seconds. We use a 4th-order
Runge-Kutta integration with adaptive step size.

3) For each path line x(t) started at seeding point (x0, ti)
a) Decide for each point on the path line if it is elliptic

or hyperbolic (Figure 4).
b) Add up all times where the path line is elliptic and

associate this total time value to x0 at time ti.

Figure 4 shows a volume rendering of MZ of the analytic
ABC-flow as used by Haller in [7]. Note how the saddle-like
behavior of the path lines corresponds to hyperbolic (blue)
points. However, it also shows a drawback of the method,
as the path lines might leave the domain in non-analytic
fields before the maximum integration time is reached. Further
challenges can be seen in finding a suitable seeding set for
path line integration and the determination of the maximum
integration time TP . Both aspects are open research issues
regarding MZ.

For an implementation of the above algorithm, the compu-
tation of the positivity of 〈ξ, Mξ〉 on the zero strain cone Z
in step 3a remains to be clarified. Haller argues that Z can be
described by an elliptic cone using the eigenvectors e1, e2, e3

of the strain tensor S and its corresponding eigenvalues
s1, s2, s3, ordered such that

sign s1 = sign s2 6= sign s3, |s|1 ≥ |s|2. (11)

Then writing M in strain basis

M̂ = (e1 e2 e3)
t
M (e1 e2 e3) , (12)

due to the symmetry of Z, the positivity of 〈ξ, Mξ〉 is
equivalent to positivity of the one-parameter function

m(α) = M̂11b cos2 α + M̂22a sin2 α + M̂33ab (13)

+
√

ab
(
2M̂13

√
b cos α

+2M̂23

√
a sinα + M̂12 sin 2α

)
for all α ∈ [0, 2π], where

a = −s1

s3
, b = 1− a, (14)

see [7] for details. The performance of the positivity check
of m on the interval [0, 2π] is of crucial importance for the
overall performance of the MZ-computation, as this check
has to be performed dT · nS · nT times, where dT is the
number of time steps, nS the number of seeds per time step,
and nT is the average number of sample points on a path
line. We found that checking for zeros of m using bisection
combined with a first-order derivative estimation speeds up the
computation about 3 times compared to equidistantly spaced

Fig. 5. Isosurfaces are not well suited for higher dimensional extremum
extraction: Gray isosurface Q = 0 is too far away from strongest vortex
activity indicated by the shown extremum lines (red). Yellow isosurface Q =
2.7 splits up and misses some regions at all. The maximum lines of Q (red)
show location and extent of the vortices correctly.

sign checks. However, compared to the Eulerian Q-criterion
which can be computed in seconds, the Lagrangian approach
of the MZ-criterion is much more time-consuming. For 1283

seeding points the computation time can be up to two hours
per time step on modern hardware.

III. VORTEX AND STRAIN SKELETONS

This paper aims at the identification of structures of high
strain and vortical activity utilizing the criterions discussed in
section II. Common parameter-dependent visualization tech-
niques like volume rendering or extraction of isosurfaces are
not best suited for this due to the following reasons:

• These approaches require the choice of isovalues or
transfer functions, which raises the question of how to
choose these parameters appropriately.

• Isosurfaces tend to give wrong answers when it comes to
examine the extent of vortices or strain regions since for
certain isovalues they split up even inside such regions.
For a visualization of the Q-criterion one may choose
an isovalue of Q = 0 since this separates vortex and
strain regions. However, from the resulting visualizations
one can usually not infer the regions of strongest activity
since typically the surfaces are too far away from those
centers (Figure 5).

• Volume rendering is a purely qualitative technique which
lacks the availability of sharp geometric features that can
be used e.g. to measure distances between vortices.

To avoid these difficulties we choose to extract extremal
features of Q and MZ. Due to their duality we identify the
following features:

• The 0D, 1D and 2D minimal features of those quantities
are points, lines and surfaces of maximal strain.

• The 0D, 1D and 2D maximal features of those quantities
are points, lines and surfaces of maximal vortex activity.

One further property must be regarded for Q: only maximal
features for which Q > 0 should be regarded as vortical
features. On the other hand, only minimal features for which
Q < 0 should be regarded as strain features. It is not clear if
such a natural border exists for the MZ-criterion. The most
natural choice might be 1

2TP , the half path line integration
time, as there the hyperbolic and elliptic times on the path
line balance. However, the actual integration time of each path
line may be smaller than TP since they can leave the domain
earlier.
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(a) Minimum. (b) Attracting
saddle.

(c) Repelling
saddle.

(d) Maximum.

Fig. 6. Classification of critical points in scalar fields.

A. Extremal Feature Definition using Scalar Topology

We choose to extract these extremal features using scalar
topology. 2D-Scalar topology is closely linked to watershed
lines in a 2D-terrain (cf. Figure 10). At certain line structures,
rain water separates in the sense that nearby water assembles
in different valleys. Those maximum lines partition the do-
main into valleys. Within valleys all water flows towards the
same minimum. Similarly, the domain is partitioned into hills
separated by minimal lines called watercourses. On hills all
water runs down from one maximum.

The generalization to 3D is straight-forward. Here the
watersheds are surfaces, and additional 1D-separatrices come
into play. The partitioning of the domain in hills and valleys as
well as the corresponding separatrices are the subject of scalar
topology. If the scalar function is differentiable, its topology
can also be obtained as the vector field topology of its gradient.

The key-elements of scalar topology are so-called critical
points, at which the gradient vector field of the scalar function
vanishes. Depending on the eigenvalues of the Hessian matrix
of the scalar function, those critical points can be classified
into four categories (see Figure 6): When all three eigenvalues
are positive, the critical point is a minimum, and all gradient
lines are leading away from the critical point, so minima
are sources (see Figure 6a). A point with exactly one neg-
ative eigenvalue is called a repelling saddle (Figure 6c). The
unstable manifold emanating from this point has the plane
spanned by the eigenvectors corresponding to the positive
eigenvalues as its tangent plane. Within this surface, gradient
lines lead away from the point. Those surfaces are maximal
features, separating minima from each other. We refer to those
surfaces as 2D-separatrices, maximum surfaces or watersheds.
The one-dimensional separatrix tangential to the eigenvector
corresponding to the one negative eigenvalue is a minimum
line in the scalar field, leading to a minimum following
the steepest descent (Figure 7). Those lines are meaningful
features, as they can be regarded as centers of isosurfaces, see
Figure 5 for an illustrative example and Figure 2 for a real
world application. A point with two negative eigenvalues is
called attracting saddle (Figure 6b), and its 2D-separartrix is
a watercourse, as it separates two maxima from each other. We
also refer to the watercourses as minimum surfaces 1. Finally,
all eigenvalues are negative at maxima (Figure 6d) and all
gradient lines lead into the point, so maxima are sinks.

The utilization of scalar field topology for extremal feature
extraction has various advantages: The computation of separa-

1Minimum surfaces should not to be mixed up with Minimal Surfaces,
denoting surfaces of zero mean curvature in mathematics

Fig. 7. Separatrices
originating from a
repelling saddle. The
line is a minimal line
of steepest descent, the
surface is a watershed.

trices as stream lines and stream surfaces of the gradient field
is well understood, and stable tools exist for this purpose, see
[4], [12] and section IV. No higher than first derivatives of the
scalar field are being used, resulting in more stable algorithms
as opposed to curvature based methods. Also, recent advances
in scalar topology allow topological simplification of three-
dimensional scalar fields using the Morse-Smale-Complex [5],
answering the question, which topological features are most
persistent.

All topological separatrices are of global nature. E.g., it is
impossible to decide if a given point lies on a watershed by a
local analysis.

By the separation property of watersheds and watercourses,
watercourses of Q still have a meaning where Q > 0:
although they can not be regarded as strain structures there,
they still separate two regions of maximal vortex behavior (and
analogously for maximal structures where Q < 0). By using
this separation property of minimum surfaces and neglecting
their meaning as a strain structure, we can separate vortex
regions from each other, and analogously for strain regions,
see Figure 9. Using the notion of watersheds we define

Definition 2: (Vortex and Strain Skeletons)
1) The strain skeleton is the collection of minima, mini-

mum lines and minimum surfaces of the duality quanti-
ties Q (where Q < 0) and MZ. The minimum surfaces
partition the flow into vortex domains.

2) The vortex skeleton is the collection of maxima, maxi-
mum lines and maximum surfaces of the duality quanti-
ties Q (where Q > 0) and MZ. Following the notion of
[17], lines in the vortex skeleton of Q are Galilean in-
variant vortex core lines with respect to Q. The maximal
surfaces partition the flow into strain domains.

We argue to call the surfaces in the strain skeleton strain
surfaces. Accordingly, surfaces in the vortex skeleton are
called vortex surfaces as direct generalization of the approach
in [17] where Galilean invariant vortex core lines are extracted
as extremum lines of vortex region quantities. By intuition, a
vortex is a line with spiralling streamlines around it, but this
is not necessarily the case for all vortices, see [11].

Figure 8 shows how the vortex and strain skeletons of Q
can be used for hierarchical feature display, considering a sub-
region of the cylinder dataset as an example. Throughout this
paper, all strain structures are colored blue. Vortex structures
are colored red. In 8a, minima and minimum lines scaled
according to the scalar value of Q give a powerful overview
of the strain structures, showing the most prominent features
in one view. In 8b, the complete strain skeleton is shown. The
additionally displayed surfaces show that the lines of extremal
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(a) Lines of maximal strain. (b) Strain skeleton. (c) Maximal lines are vortex cores. (d) Vortex skeleton.

Fig. 8. Strain and vortex skeletons in a subregion of the cylinder dataset. 8a shows lines of maximal strain. 8b shows the complete strain skeleton with
the extremal strain surfaces displayed only where Q < 0. 8c shows the maximal vortex lines regarded as vortex core lines. 8d shows the complete vortex
skeleton, adding the maximal vortex surfaces that lie between the vortex core lines. Again, vortex surfaces are displayed only where Q > 0.

strain lie inside extremal strain surfaces. Analogously, Figure
8c shows the vortex core lines with respect to Q. The complete
vortex skeleton is shown in 8d where the vortex core lines
are complemented by the maximum vortex surfaces. Both for
the vortex and for the strain skeleton, just those parts of the
separatrices are shown where Q > 0 and Q < 0, respectively.

Figure 9 gives an example where the minimum surfaces
are used to subdivide a vortex in further regions. Only parts
are shown where Q < 0, so an isosurface of Q = 0 would
label all shown features as belonging to the same vortex. By
showing the minimum surfaces (blue) we see how the vortex
core line is subdivided into three parts, corresponding to the
three maxima of Q along the line.

The extremal structures give a complete overview of the
topology of the scalar quantities and hence of the vortex and
strain activities in the flow. Note that this includes primary
and secondary vortex structures. Primary vortex structures, e.g.
Kelvin-Helmholtz vortices, can be observed in the cylinder
flow as spanwise vortex core lines (Figure 2) – in this example
they correspond to patterns of swirling stream lines in a
certain frame of reference. Secondary vortex structures, e.g.
rib vortices, are streamwise vortex core lines in the cylinder
flow connecting neighboring Kelvin-Helmholtz vortices. This
pattern is typical to shear flows and can be observed in other
data sets as well (see Section V). Note that secondary vortex
structures can not be described as patterns of swirling motion
using an obvious frame of reference, i.e., their extraction has
to be based on measures independent of a certain reference
frame. While our technique is able to extract those features, it
does not allow to distinguish between primary and secondary
vortices. This is an open research issue.

Before we give details about our extraction scheme in
section IV, we motivate our choice of topological separatrices
as features.

B. Watersheds vs. Height Ridges

While there is just one reasonable definition for a local 0D-
extremum of a scalar quantity f , there is no canonical gener-
alization to higher-dimensional features. Topological separa-
trices (watersheds and watercourses) are just one choice, see
[3] and [18]. Another prominent approach is the height ridge

Fig. 9. A close-up of the cylinder dataset. Three maxima of Q (red ellipsoids)
are separated from each other by minimum surfaces (blue). This devides the
domain into three different vortex regions. The maxima are connected by a
maximum line (red), i.e., a vortex core line defined by Q.

definition (see e.g. Eberly [3]) that is based on a convexity-
analysis of the graph of f . We give a short introduction here
and discuss advantages and disadvantages of both approaches
to motivate our choice for the watershed definition. We refer
to [3] for a deeper discussion.

Basically, a height ridge line follows the least-convexity-
direction of the graph. More formally, a d-dimensional height
ridge of a smooth function f with gradient ∇f and Hessian
Hf with eigenvalues γ1 ≤ γ2 ≤ γ3 and corresponding
eigenvectors c1, c2, c3 is defined as the set of points x where

1) Pi(x) := ∇f(x)ci = 0 for all i = 1, . . . , 3− d and
2) γ3−d < 0.

d-dimensional height valleys of f are defined as d-dimensional
ridges of −f . As one expects of such a definition, 0-
dimensional height ridges are local maxima.

While implementational details on height ridge extraction
can be found in [3], we just sketch the procedure here: dr =
∇P1×∇P2 is the direction in which a person on a height ridge
line can walk along it. Given one point on each height ridge,
it is sufficient to integrate dr from each point to obtain the
complete set of height ridges. Accordingly, a two dimensional
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Fig. 10. 2D-terrain
exemplifying different
extrema definitions. The
closed green line is a
watershed separatrix. Both
the green and the orange
line conform to the height
ridge definition.

height ridge is given implicitly by the surface normal ∇P1.

With those two different extrema definitions at hand the
question arises, how they are related, and if the features of the
one definition are possibly a subset of the other feature set.
To this end, we note that at each saddle point with a Hessian
matrix of full rank 1) holds for i = 1, 2, 3 in the definition of
height ridges above. It is a consequence of the inverse function
theorem [21] that depending on the eigenvalue setting, either
a 2D height ridge and a 1D height valley or a 2D height valley
and a 1D height ridge emanates from the saddle point.

So for every topological separatrix there exists a height ridge
or valley counterpart. Note that although they have the saddle
point in common, they do not necessarily have to coincide.

In contrast, there usually exists a variety of height ridges that
are not topological separatrices. Figure 10 gives an example.
Here we see a circular watershed on the crater rib, separating
the local minimum inside the crater from the global minimum
outside the crater. Additionally, a small perturbation of the
symmetry of the crater rib creates a height ridge without
separation property. This can be regarded as a consequence
of the fact that watersheds are of global nature, whereas the
definition of height ridges is local.

This locality is the main advantage of the height ridge
definition. By this property it is possible to track a height
ridge point in time using the feature flow field approach [24],
but it is impossible to do so with a point on a watershed –
simply due to its global nature. Although the time tracking of
extremal features is beyond the scope of this paper, we want
to sketch how this disadvantage of topological separatrices
can be overcome: As a watershed is always a 2D-separatrix
of some saddle, it can be followed in time by tracking the
corresponding saddle point first [24], [27] and extracting the
separation surface again afterwards.

We see three disadvantages of the height ridge definition
for our purposes: Firstly, height ridge extraction is per se
less stable than watershed extraction, as the height ridge
definition is based on the 2nd derivative of the scalar, and
the watershed definition above uses first derivatives only.
See Section IV for comments on a discrete, derivative-free
implementation. Furthermore, height surface extraction suffers
from the additional difficulty that those surfaces are only
implicitly defined by the surface normal ∇P1, and can not be
regarded as a stream surface. Finally, we do not know of any
persistence considerations for height ridges, as they exist for
the topological separatrices using the Morse-Smale-Complex.

(a) Minimum. (b) Attracting saddle. (c) 1D-separatrix
integration.

Fig. 11. Discrete critical point extraction (exemplified using a regular grid).
Red nodes are larger than the central node, blue nodes are smaller. Saddles
can be extracted by counting the number of connected components of the 26
neighbors (11b). 11c shows that for separatrix integration, the continuously
extracted critical points must be used, because the zeros of the gradient do
not necessarily lie on grid nodes.

IV. EXTREMAL FEATURE EXTRACTION

In this section we provide implementational details for the
extraction of topological features required for the vortex and
strain skeletons. We discuss discrete and continuous extraction
methods. The provided discrete methods work for arbitrary
grids. The continuous versions require an interpolated gradient
of the quantities.

A. Critical points

Several numerical methods for continuous critical point
extraction of the gradient vector field are at hand. In tetrahedral
grids, zeros can be computed explicitely [22]. In regular and
curvilinear grids, we use a simple subdivision approach: a cell
is checked whether one of the three components of the gradient
is positive/negative at all 8 corners of the cell. If so, no zero
is found inside. Otherwise, we recursively subdivide into 8
subcells until their size is smaller than a certain threshold.

A discrete method on grids with monotone interpolation
works as follows: In this setting, all minima, saddles and
maxima necessarily lie on the grid nodes. It clearly can be
decided by looking at the direct neighbors, if the point is a
minimum or maximum. A saddle point can be decided by
labelling the neighbors as larger and smaller respectively.
If more than one connected component exists of any type,
the grid node is a saddle, see Figure 11b for a regular grid
example.

Note that both approaches result in similar, but not identical
sets of critical points. This is due to the fact that common
interpolation schemes are not necessarily differentiable, and
hence the continuously extracted critical points not necessarily
lie on the grid nodes, see Figure 11c.

B. 1D-separatrices

The 1D-separatrices are stream lines of the gradient field
by definition, being integrated from saddle points in direction
of their eigenvector corresponding to the unique negative or
positive eigenvalue, see Figures 6c and 6b. Two seeding points
are placed stepping away from the saddle in that eigenvector’s
direction. Afterwards, a forward integration from those two
points yields the separation line for a positive eigenvalue, and
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Fig. 12. Strain skeleton of the cylinder data set. It partitions the domain in
vortex regions. Inside the vortex regions, lines of maximal vortical behavior
are shown scaled by Q. Close-ups of the structures can be seen in Figure 8.

backward for a negative eigenvalue. Note that for the seeding,
the continuously extracted critical points must be used. Using
the discretely extracted points would cause missing parts of the
separatrix, because the two seeding points do not necessarily
lie on opposite sides of the critical point(Figure 11c).

Note that (minimum) 1D-separatrices are the lines where
the (minimum) 2D-separatrices join in non-manifold junctions,
Figure 8. This property can be used for a discrete extraction.

C. 2D-separatrices

A continuous method for 2D-separatrix extraction is a
gradient stream surface integration from saddle points. As a
seeding structure, a circle centered at the critical point can be
used that lies in the plane spanned by the two eigenvectors of
matching sign. From this seeding line a forward or backward
stream surface integration is performed, depending on the sign
of the eigenvalues. Again, the continuously extracted zeros
must be used.

A discrete method called the watershed transformation [18]
uses the watershed property of 2D-separatrices: Based on the
discretely extracted minima, the maximal topological separa-
trices can be obtained by shedding water in the following
way: At start, each minimum gets its own label and is put
in a priority queue. Now a region growing is performed. In
each step, the unprocessed grid node with the smallest scalar
value is grown by one grid node in each direction. The priority
queue decides which grid node is processed next. As a result,
we obtain a segmentation of the domain by label regions
with time complexity n log n. The watersheds can now be
extracted as the border surfaces between label regions. We use
the generalized marching cubes algorithm for this purpose due
to Hege et al. [8].

We use the discrete separation surface extraction as it is
faster and more robust.

V. APPLICATIONS

Figures 1, 3, 5, 8, 9 and 12 show the flow behind a circular
cylinder. The data set was derived by Bernd R. Noack (TU
Berlin) from a direct numerical Navier Stokes simulation by
Gerd Mutschke (FZ Rossendorf). It resolves the so called
‘mode B’ of the 3D cylinder wake at a Reynolds number
of 300 and a spanwise wavelength of 1 diameter. The data
is provided on a 265 × 337 × 65 curvilinear grid as a low-
dimensional Galerkin model [14], [29]. The examined time
range is [0, 2π]. The flow exhibits periodic vortex shedding
leading to the well known von Kármán vortex street. This

Fig. 13. SCCH airfoil
visualized using isosurface
Q = 0 and a LIC plane
colored by Q.

phenomenon plays an important role in many industrial appli-
cations, like mixing in heat exchangers or mass flow measure-
ments with vortex counters. However, this vortex shedding can
lead to undesirable periodic forces on obstacles, like chimneys,
buildings, bridges and submarine towers. Figure 12 shows
the complete strain skeleton of the cylinder dataset in blue,
partitioning the flow into compartments that correspond to a
single vortex each. Inside the compartments, the line structures
of the vortex skeleton are shown.

Figures 13 and 14 show the flow around a Swept-Constant-
Chord-Half-model (SCCH) of an airfoil that was simulated by
Bert Günther (TU Berlin) at a Reynolds number of 106 on a
curvilinear block structured grid with 1.3 million cells. Due to
the constant chord and periodic boundary conditions this is a
2.5D configuration. The sweep angle of the airfoil to the flow
direction is 30◦ and the angle of attack is 6◦. The turbulence
was simulated by a combined URANS and DES approach.
Figure 14b shows the line type structures of the vortex and
strain skeletons of Q. Note that by our method, the collection
of all extremal strain and vortex lines provide a good overview
over the dataset, while the isosurfaces in Figure 14a miss the
smaller features downstream.

In Figure 15 we applied our methods to a 3D time-
dependent turbulent mixing layer. The velocity field has been
computed with a pseudo-spectral direct numerical simulation
by Pierre Comte, employing the computational domain and
boundary conditions of [2]. The Reynolds number is 100 based
on the initial shear-layer thickness and convection velocity.
The velocity ratio between the upper and lower stream is
3 : 1 (Figure 15a). The data consists of 500 time steps of
a 480×48×96 uniform grid. Figure 15b shows the minimum
lines of MZ which correspond to lines of maximal strain. It
can clearly be seen that those structures lie in the shear layer
which corresponds to intuition. In 15c isosurfaces of Q display
the spatial evolution of Kelvin-Helmholtz vortices (primary
vortex structures), vortex pairing, and the spanwise formation
of streamwise rib vortices (secondary vortex structures). In
15d the vortex skeleton of Q is shown with lines scaled by
the value of Q. The whole vortex structure of the flow can
be seen at one view. In particular, our method is capable
of resolving secondary vortex structures as well as the less
vortical structures further upstream that are hidden by the
isosurfaces in 15c.

VI. CONCLUSIONS

In this paper we made the following contributions:
• We discussed and clarified the duality of vortex and strain

measurement.
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(a) Isosurfaces of Q < 0 denoting strain (blue) and Q > 0 denoting vortex
activity (red).

(b) Lines of maximal strain (blue) and maximal vortex activity (red) scaled
by |Q|.

Fig. 14. In the flow around an airfoil, isosurfaces of the Okubo-Weiss criterion Q are shown to the left. To the right, the line structures in the vortex and
strain skeletons extracted by our method are displayed, showing lines of maximal strain (blue) and lines of maximal vortex activity (red) that are vortex core
lines. Our method gives a complete overview of the location and extent of vortex and strain features in the flow, whereas the isosurfaces miss the smaller
features downstream and give only a rough location for the larger features upstream.

(a) Flow visualized using LIC. (b) Lines of maximal strain of MZ.

(c) Isosurface of Q. (d) Lines of maximal vortex activity scaled by Q.

Fig. 15. Turbulent mixing layer. The lines of maximal strain as indicated by MZ perfectly match up with the shear layer. The vortex skeleton of the
Q-criterion elucidates the spatial evolution of Kelvin-Helmholtz vortices, vortex pairing, and the spanwise formation of streamwise rib vortices.

• We extracted Galilean invariant strain features for the first
time, resulting in 0D, 1D and 2D features.

• We extracted Galilean invariant vortices including pri-
mary and secondary vortex structures.

• We introduced the notion of vortex and strain skeletons.
Due to the separation properties of the chosen extraction,
we are able to separate vortices as well as strain regions
and quantify their extent.

For the future we plan to incorporate topologically persistent
simplification to the extracted features. Feature tracking in
time is another interesting research topic for the extracted
skeletons.

The application to a number of data sets shows the feasi-
bility of our method even for complex settings. We conclude
that the visualization of the vortex and strain skeletons support
the quantification of both strength and extent of the features
in question.
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