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Abstract

As a supplement of the paper, we give further details and analysis of the globally consistent stream line segmentation
algorithm. Moreover, a more detailed description of the intrinsic similarity measure for comparing the resulting

segments is also provided.

Notation. We make use of the following formal concepts:
let v(x) denote steady differentiable vector fields with as-
sociated over two (d = 2) and three-dimensional (d = 3)
flow domains D C R with x € D. Parametric stream lines
¢(t) = xo + J§ v(e(u)) du are curves defined through integra-
tion along v starting from a seed point xg for an integration
time ¢. We partition stream lines ¢ into disjoint stream line
segments s;(t) by splitting ¢ at integration times #; such that
the points of ¢ and s; coincide for 7 € [t;,#;41]. For a stream
line integrated from #; to #,,, a segmentation is defined by the
sequence [y, ...1;,. ..t of segment boundaries #;. We denote
the length of s; by /;.

1. Globally Consistent Segmentation of Stream Lines
1.1. Curve Curvatures.

In this work, we demonstrate that all curve segmentation re-
quirements can be addressed by considering intrinsic curve
properties only. In particular, the requirements can be ex-
pressed only in terms of curve curvature: feature locations
along a curve are identified with high curvature values,
whereas low curvature points along the curve are possible
segmentation points. Also, segmentation consistency can be
achieved using a curvature-based normalization.

Let ¢(7) := %c =vand &(7) := %c = (V¢) ¢ denote the
first two stream line derivatives in terms of vector field quanti-
ties (cf. [WT02]). Then stream line curvatures K, (¢) are given
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Figure 1: Segment Merge Criteria. Pre-merge segment
boundaries are colored (o), and two different average seg-
ment orientations are colored (e) and (e). (a) A pair of seg-
ments is mergeable if they both have similar average orien-
tations. (b) A triplet of segments is mergeable if the center
segment (®) has a low average total curvature compared to
its neighboring segments, which have similar average orien-
tations.

in two and three dimensions d by the well-known expressions
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The signed curvature ¥, defines the geometry of 2D curves
up to rigid transformations (see, e.g., [dC76]), which allows
us to use Kp to represent their intrinsic geometry as a basis
for segmentation. Although unsigned curvature k3 does not
fully define 3D curves up to rigid transformations, we will
show that for segmentation it is sufficient to only consider
k3 for 3D curves. By only relying on curvature estimates,
our segmentation scheme supports 2D and 3D curves in a
unified way. Stream line segmentation proceeds in two phase,
curvature-based splitting and subsequent segment merging,
and we continue to describe both in more detail.
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Figure 2: Segmentation Scheme. (a) Starting from minimal segments (top) our segmentation scheme applies two phases of
iterative segment merging. Shown are two results for different B parameters (bottom, o. = %/2 in both cases). (b) For the three
segmentations of the p = 1.5 computation, the absolute curvatures K (e) and total discrete segment curvatures K; (box height)
together with average 2D segment orientation (positive , negative ) of a cutout region are shown. In the first phase, neighboring
segments of close average orientation are merged. In the second phase, compatible segments of low curvature are combined if its

two neighbors are compatible w.r.t. average orientation.

1.2. Segment Splitting.

Both curvature estimations k; and k3 differ in their signed-
ness. Hence, we consider absolute local curvatures k(1) =
[ /3| for a unified stream line segmentation scheme that is
applicable for both two and three dimensional stream lines.
Vector field features are usually coupled to high absolute
stream line curvatures (see, €.g., [MJL*13]). Therefore, to ob-
tain feature-preserving and distinct segmentations, points of
absolute local curvature minima that bound these high curva-
ture regions are candidates for possible segment boundaries.
Along a stream line, let #; denote the integration times corre-
sponding to absolute local curvature minima, i.e., k(¢) > ®(#;)
fort € [t; —€,1; + €]. We call these segments bounded by con-
secutive absolute local curvature minima minimal segments.
Minimal segments are the initial building blocks of the final
segmentation and will not be split further to preserve the
features of higher curvature they represent. Still, as the total
curvature of the features that minimal segments represent can
vary considerably, we merge minimal segments into segments
of higher significance.

1.3. Segment Merging.

We merge neighboring segments based on two segment prop-
erties: total segment curvature and average segment orien-
tation. Both properties are scale-invariant and are therefore
comparable for segments of different extend. The rotal seg-
ment curvature K; is given by

tit1 .
/ &l dr .
A

i

ki= 2)
Note that X; is invariant to rigid transformations of the seg-
ment as the intrinsic local curvatures are already invariant

to rigid transformations. Additionally, total curvature is also

invariant w.r.t. scaling and inversion, as the segment veloc-
ity ||¢|| scales linearly and local curvatures scale inversely
proportional to the scaling factor. Hence, total segment cur-
vatures are invariant w.r.t. similarity transformations. This
property allows us to relate segments in a scale-invariant and
intrinsic way based on total curvature. In general, the total
segment curvature is high for feature regions of a curve. Low
total segment curvature will indicate candidate segments for
merging.

Along each segment, the orthonormal Frenet-Serret frames
(t(t),n(z),b(t)) are given by the tangent, normal, and bi-
normal directions, respectively (cf. [dC76]). For stream lines,
tangent directions are given by the normalized vector field,
normals point to the center of the osculating circle, and b =
t X n. We observe that along a minimal segment the variation
of bi-normal directions is usually small, e.g., for 2D curves
they only vary at segment boundaries. Therefore, we assign
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an average orientation b; = I
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to each segment, which is based on averaged bi-normal direc-
tions. Note that average orientations are scale-invariant. In
addition, the angle o; = £ (b;,b; 1) between consecutive seg-
ments is invariant w.r.t. rigid transformations and is therefore
invariant w.r.t. similarity transformations. We observe that
averaged orientations don’t vary significantly along impor-
tant curve feature regions, which is considered for segment
merging.

Our algorithm for merging of segments consists in growing
segments of low total curvature with neighboring segments,
if they are merge-compatible. Compatibility is tested in two
phases based on two criteria: first, two neighboring segments
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s; and s;1 1 are mergeable if they have similar average orien-
tations, i.e., if the angle o; is smaller than a user-specified
upper bound a. This allows segments of similar average ori-
entation to be extended: for instance, two smaller arcs can be
combined to a bigger arc element, which increases the feature
distinction of the segmentation (see Figure 1 (a)). Second,
if one segment s; has a low total curvature, i.e., &; < B for
a user-specified upper bound B, it is mergeable with both
of its neighboring segments s;_| and s,y if these two seg-
ments have similar average orientations measured by o. This
criterion allows to remove less significant segments of low av-
erage curvature while the newly created segment still respects
the feature distinction property due to the preservation of av-
erage orientation (see Figure 1 (b)). The merging algorithm
iteratively processes segments based on a priority queue that
is ordered by the total segment curvature such that segments
of lowest curvature are processed first. In the first phase, the
first compatibility criterion is evaluated and compatible seg-
ments are merged. Merged segments are removed from the
priority queue and the new segment is inserted with updated
properties. Note that for closed stream lines, i.e., curves with
coinciding endpoints, we consider the first and last segment
to neighbor each other. The first phase terminates if no more
segments can be merged. The iteration is repeated for the
second compatibility criterion to give the final segmentation.

We illustrate the different steps of our segmentation
scheme in Figure 2. The initial minimal segments of a sin-
gle stream line are shown in Figure 2 (a) together with two
segmentation results for different 3 values. This parameter
steers the coarseness of the segmentation, and segmentations
are usually not sensitive w.r.t. small 3 variations. Note that
curve orientation is either positive or negative for all 2D curve
segmentations. Hence, it is sufficient to select o = 7/2 for this
case. For a closeup region, Figure 2 (b) shows segmentations
and relation to local absolute curvatures after each segmen-
tation phase. The graphs show that neighboring segments
of similar orientation are merged into segments of higher
total curvature. In the second phase, triplets of compatible
segments are merged. Figure 3 depicts the consistency of
segmentations along multiple stream lines for two different
flows. The results illustrate that our segmentation consistently
computes similar segments for similar flow patterns.

2. Intrinsic Similarity of Stream Line Segments

Based on our consistent curve segmentation scheme, we pro-
pose a general scale-invariant method for intrinsic curve seg-
ment comparison. Our flow pattern search approach will use
segment similarities computed this way for pattern retrieval.
Again, we represent the segment geometry using intrinsic
curve properties only. This way the computed similarities
are invariant to rigid transformations. In addition, we are
comparing the intrinsic properties at equal scales to obtain
scale-invariant similarities. Note that we don’t require nor
assume that segments originate from a common stream line
for comparison. This will make our pattern search applicable

(© The Eurographics Association 2014.

Figure 4: Scale-invariant Intrinsic Profile Discretization. The
signed curvatures (bottom left) of the two segments s; and s
of different lengths l; < l;, l; = 1 are discretized into n bins
of average property values (middle). Length normalization of
the bin values yields the scale-invariant intrinsic profiles I';
and TUj (right), which have comparable ranges of values.

in more general ways. Hence, we consider all segments to
only be given by a set of segment geometries 8 = {s;} with-
out connectivity or integration time information. To simplify
the discussion, we assume that all curve segment s;(s) are
reparameterized to the uniform range s € [0, 1].

Segment similarity estimation is based on comparison of
profiles of individual intrinsic curve properties denoted by
Y(s) that define the extrinsic geometry up to rigid transforma-
tion. For 2D curve segments we consider signed curvatures K
as their intrinsic properties Y, whereas for 3D curves we eval-
uate unsigned curvatures k3 and curve torsions T(s). Signed
curve torsion is given by

det([e, &, (VE)&])
o det(e, & (VE)E])
||é x &[]

(C)

and can be computed from vector field quantities only (cf.
[WTO02]). Similar to curvature, we exploit the fact that torsion
scales inversely proportional to the scaling factor of a segment
(see, e.g., [dCT6]).

Given a pair of curve segments (not necessarily originating
from the same stream line), we compute their intrinsic simi-
larity (or distance) based on discretized profiles of intrinsic
properties 7. This requires two operations: intrinsic profile
discretization and profile distance computation.

2.1. Discretization of Normalized Intrinsic Property
Profiles.

To enable an efficient and scale-invariant comparison of seg-
ments based on their intrinsic properties, we discretize the
continuous property Y along each segment into n > 0 uni-
formly sized bins: for a segment s;(s) defined over s € [0, 1],
the value of the k-th bin of uniform length %’ corresponding
to the property 7y is given by the scale-normalized average
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Figure 3: Consistent Stream Line Segmentation. Starting from the minimal segments (top left) our segmentation scheme extracts
segmentations for which intrinsically similar stream line segments are segmented in a compatible way. The closeup shows that
segmentations form orthogonal patterns to laminar flow regions. Removal of low curvature segments is steered by the [ parameter.
The slowly varying CYLINDER flow on the bottom illustrates the consistency of the segmentation.
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Note that we normalize each average property value by the
segment length /; to obtain comparable value ranges for seg-
ments of different scales. This is possible for both, curvatures
and torsion, as they scale inversely proportional to the scaling
factor. For the i-th segment this gives the discretized scale-
invariant intrinsic property profile Ti = [Yo, . .., Yo—1] of the
intrinsic property 7. Scale normalization yields scale-invariant
profiles that are comparable for segments of different length
and scale, e.g., a scaled segment will have an equal profile
compared to the original segment. Figure 4 exemplifies the
discretization of the continuous signed curvatures of two dif-
ferent 2D segments. Note that even slight variations in the
curve geometry result in strong intrinsic property variations
that are well represented in the discretized profiles. Discretiza-
tion of intrinsic properties of 3D segments along their uni-
variate parametrization is analog. The parameter n steers the
profile resolution and accuracy. In all our experiments, we
observe that a value of n = 40 is usually sufficient to enable
accurate segment comparison, e.g., for pattern retrieval. This
is because our consistent stream line segmentation scheme
ensures that each segment generally represents a single domi-
nant curve feature, e.g., a single arc element, whose global
intrinsic profile is similar even at lower resolutions. In addi-
tion, our segmentation guarantees that curvature profiles are
bounded by absolute curvature minima, which give common
reference points for the subsequent profile distance estima-
tion.

2.2. Scale-invariant Intrinsic Profile Similarity.

Given two curve segments s; and s; (not necessarily originat-
ing from the same stream line), we estimate their similarity
based on the distance of their normalized intrinsic profiles
I'; and I';. Both profiles have the corresponding numbers of
n bins, have comparable value ranges due to scale normal-
ization, and are approximately aligned at their bounds by

minima of absolute curvature. Hence, we need to compute
distances between aligned profiles with equal bin numbers
but varying total sum of values.

This problem is known as histogram distance estimation,
for which a number of standard alignment measures exists:
Rubner et al. [RTG98] review standard bin-to-bin measures
like the well known L” distances or the X? test (e.g., used
in [MJL*13] for intrinsic property comparison along whole
stream lines). They conclude that bin-to-bin measures are
too sensitive to profile discretizations given by the position
of bin boundaries. Instead, a cross-bin measure that is more
robust w.r.t. local deformations is proposed that is based on
the Earth Movers Distance (EMD), which is also known as
transportation distance (see also [LO07]). As standard EMD
is only defined for distribution-like profiles with equal total
bin sums, we use the recent hEMD generalization by Pele
and Werman [PW09], which is a well-defined metric also for
our setting of unequal total profile sums. Intuitively, EMD
measures the costs of transporting one profile to another
profile if both profiles are interpreted as mass distributions.
In addition, hREMD also penalizes moving mass in or out of
the domain to account for unequal total masses.

Let d(I';,I';) denote the (forward) intrinsic scale-invariant
distance based on the profiles I'; and I'; computed by hEMD.
Low values of d(I';,I';) indicate similar intrinsic profiles.
Backward distances d_ (I';,I';) are defined by inverting the
traversal order of one of the profiles. Note that hREMD is only
well-defined for profiles of positive values. In case negative
values are detected (e.g., for signed curvature or torsion), we
shift all values of both profiles to the positive value range
by adding the absolute value of the smallest negative value.
This operation does not change the profile distance, which
is given by their relative difference. We distinguish several
cases in terms of curve dimensions and transformation in-
variance, which consist of invariance to rigid and similarity
transformations, as well as invariance to segment orientation.

For 2D curves, we measure signed curvatures K, as the
intrinsic property Y. As curvatures are invariant to rigid trans-
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Figure 5: Signed Curvature Correspondences. Segments
are grouped by forward (left) and backward orientation
(right), and for each segment the curvature profile is shown.
Same-colored segments are equal w.r.t. the forward distance
d(I;,T'}) (rigid transformation invariance). Axis reflexion in-
variance is obtained by including d(T';, —T';). For additional
orientation-invariance, d_(I';,T'j) and d_(T';,—T'j) need to
be considered.

formations, it is sufficient to measure the scale and rigid trans-
formation invariant similarity of two segments by d(I';,T’;)
using a single hEMD evaluation. Figure 5 illustrates this in-
variance for same-colored segments.

In addition to invariance to scale and rigid transformations,
similarity transformations also allow axis reflexions. Reflex-
ions invert the curvature profile, so we measure scale and
similarity transformation invariant similarity by

mln(d(rl7rj)7 d(_rlarj)) ) (6)

i.e., by the smallest distance that also permits reflexions,
which requires two hEMD evaluations. Here, we denote an
inverted intrinsic profile by —I'; = [—Yp,..., —¥y,—1]. Note
that profile distance is symmetric w.r.t. profile inversion, i.e.,
d(-T;,T'j) = d(I;,—TI';). Both groups of segments in Fig-
ure 5 correspond to segments that are invariant under similar-
ity transformations w.r.t. this measure.

Finally, segment curvature still depends on the flow aligned
orientation of the original stream lines. If orientation should
not be respected by the similarity estimation, we use the
scale, orientation, and similarity transformation invariant
similarity

mln(d(rl7rj)7 d(_ri7rj)7 d- (Fivrj)7 d—(_riyrj)) (7)

by considering two additional backward differences, which
invert profile orientation. W.r.t. this most general similarity
all segments in Figure 5 are equal. It requires four hEMD
evaluations. This measure is also useful if no initial curve
orientation is defined, e.g., for curves integrated in orientation-
free direction fields [CZCEOS, JDL09].

For 3D segment similarity estimation, we combine differ-
ences in unsigned curvature k3 and torsion T: 3D similarity is
given by the weighted sum di;, (I';,T';) +wrde(I,T';) of in-
dividual profile distances in curvature dx, (I';,I';) and torsion
d-(I;,T;j). Our experiments indicate that torsion generally
has a much stronger value variation than curvature as it is
a third order segment quantity. Hence, usually a weight pa-
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rameter wr < 1 is chosen to reduce the influence of torsion
to the final similarity estimation. To compute d+(I';,I";) for
a given transformation invariance type, note that torsion is
a signed quantity similar to 2D curvature k;. Therefore, the
same rules for rigid, similarity, and orientation-invariance
apply and require a single, two, or four hEMD evaluations.
In addition, as the unsigned curvature is invariant to profile
inversion, orientation invariant similarity estimation requires
only two hEMD evaluations. Hence, for this most general
similarity estimation, six hEMD evaluations are required for
3D segments.
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