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Abstract
The expressiveness of many visualization methods for 3D vector fields is often limited by occlusion, i.e., interesting
flow patterns hide each other or are hidden by laminar flow. Automatic detection of patterns in 3D vector fields
has gained attention recently, since it allows to highlight user-defined patterns and separate the wheat from the
chaff. We propose an algorithm which is able to detect 3D flow patterns of arbitrary extent in a robust manner.
We encode the local flow behavior in scale space using a sequence of hierarchical base descriptors, which are
pre-computed and hashed into a number of hash tables. This ensures a fast fetching of similar occurrences in the
flow and requires only a constant number of table lookups. In contrast to many previous approaches, our method
supports patterns of arbitrary shape and extent. We achieve this by assembling these patterns using several smaller
spheres. The results are independent of translation, rotation, and scaling. Our experiments show that our approach
encompasses the state of the art with respect to both the computational costs and the accuracy.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation

1 Introduction
The visualization and analysis of vector fields play an impor-
tant role in various disciplines. In the past decade, feature-
based flow analysis has achieved impressive results. Amongst
these methods are a few approaches for finding patterns in a
2D or 3D flow: given a flow pattern template either from the
flow itself or from other resources, users are enabled to find
similar structures in the flow.

The current state-of-the-art of pattern-based flow analysis
still faces some challenges. We observe two major issues:

(I) Templates can often not describe interesting flow fea-
tures appropriately due to their shape, which is defined
by one single geometric object such as a rectangle or
a box. This is often not sufficient, since various mean-
ingful flow behaviors have irregular extents.

(II) In order to find similar occurrences of the pattern in the
flow, the existing approaches use a linear comparison,
i.e., they go through all possible locations, orientations,
and scale factors. In our observation, this is rather slow
for 3D vector fields.

In this paper, we present a fast and accurate pattern matching
approach for 3D flow fields that overcomes these two issues.
First, we allow the user to define a template by arranging a
number of spheres with arbitrary locations and radii. Flow

features with irregular extents can now be described and
searched for. In fact, our definition encompasses patterns
with more than one connected component.

Second, we propose a hierarchical hashing and matching
algorithm which can achieve a pattern search in 3D vector
fields in a few seconds with an affordable memory cost. We
achieve this using our novel hierarchical hashing approach. It
is based on rotation-invariant base descriptors that describe
the local flow behavior at different levels of a scale space
hierarchy. We hash these descriptors in an efficient and robust
manner, and store these hashes in a number of hash tables.
This leads to a fast query of similar occurrences within a
constant number of table lookups. The similarity of the entire
pattern is then essentially computed as the weighted sum of
base descriptors, which are queried in the corresponding loca-
tions and scales. Our method retrieves patterns independent
of rotation, scaling and translation.

The paper is organized as follows. Section 2 reviews re-
lated work. In Section 3 we introduce the concept of a scale
space of a 3D vector field and how we sample it using base
descriptors. Furthermore, we explain the hashing of these
descriptors. Section 4 uses this for the actual pattern search in
3D flows, where the patterns are defined as arrangements of
spheres. In Section 5 we evaluate the accuracy and robustness
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of our method. Section 6 showcases results using different
flow data sets. We conclude with a discussion in Section 7.

2 Related Work
The research about pattern-based analysis of flow fields can
be categorized into spatial and line-based pattern analysis.
Our method falls into the former category. We will discuss
these two different approaches in the following.

2.1 Spatial Pattern Analysis
Spatial pattern analysis refers to methods that work directly

on the domain of the vector field.
Critical points can be considered as the smallest patterns.

Topological analysis of vector fields has a long tradition
[TWHS03]. Several methods exist to track topological struc-
tures in time-dependent flows [TWSH02, GTS04, WTGP10].
Vortex structures can be seen as flow patterns as well. Their
definition varies greatly from the swirling behavior of particle
trajectories [WSTH07] to features in derived scalar quanti-
ties [SWH05].

Topological methods and vortex methods have in common
that the developer of the method defines the feature, and not
the user. This is very reasonable and suitable in many scenar-
ios. However, giving the user the flexibility to define what
constitutes a feature can lead to a more application-specific
focus in feature-based data analysis. This has been already
demonstrated for local features with the highly successful
SimVis approach [DGH03]. Here, the user is able to brush
local feature criteria. Patterns are not supported, i.e., the cri-
teria do not work on a region of the data, nor can shape or
orientation be constrained.

Several methods exist that support user-defined patterns.
Heiberg et al. [HEWK03] define a set of axis-symmetric
patterns as masks, then convolve the vector field by these
masks with several discretized rotations. For each possible
location, the characteristic is computed by spectral decom-
position of the tensor field constructed from the convolution
values. Ebling et al. [ES03,ES05,ES06] follow the same idea,
but use Clifford algebra to accelerate the convolution process.
The methods in this group performs rather slowly due to the
convolution and the sampling of rotations.

Instead of using a set of filters to summarize the rotation
space by discretization, Schlemmer et al. [SHM∗07] com-
pute moment-invariant descriptors for circular flow masks
to obtain invariance against scaling, translation, and rota-
tion. Recently, Bujack et al. [BHSE14] improved the method
of [SHM∗07] by normalizing the above-mentioned moments.
Both methods work only for 2D vector fields. Bujack et
al. [BKH∗15] later extend their method into 3D vector fields.

All spatial pattern matching methods above support only
patterns that are defined by a single geometric shape, either
a rectangle/box or a circle. In contrast to the above methods,
our approach works for 3D flows, performs fast, and allows
the definition of flow features with irregular extents.

2.2 Pattern Analysis using Flow Trajectories
Instead of finding similar patterns directly from the vec-

tor field, some approaches generate a large number of flow
trajectories first, and analyze them to reveal flow features.

Rössl and Theisel [RT12] perform spectral decomposi-
tion to find a low dimensional similarity between stream
lines. Li et al. [LWS13] propose a spatially sensitive bag-of-
features method to describe a stream line by several stream
line properties. McLoughlin et al. [MJL∗13] use a sequence
of intrinsic properties to characterize a stream line. By chang-
ing the size of the convolution kernel, they can search for
lines with different level of details. Lu et al. [LCL∗13] pro-
pose a distribution-based segmentation algorithm to split
long stream lines into segments, then compare the similarity
of stream lines based on the correlation of segments. Wei
et al. [WWYM10] achieves field line search by comparing
2D sketches with the projections of 3D field lines. Wang
et al. [WESW14] propose a globally invariant segmentation
algorithm. Tao et al. [TWS14] resamples streamlines based
on local features, and shapes the steamline comparison prob-
lem as string comparison. [BPM∗13, SGSM08, SS06] use
predicates to discover flow patterns.

3 Hierarchical Description, Hashing and Indexing
In the following, we discuss a hierarchical description of the
flow, its encoding using base descriptors, as well as their
hashing and indexing. Loosely spoken, we transform a 3D
vector field into a data structure suitable for fast querying of
flow patterns.

3.1 Scale Space
We consider a steady 3D vector field v(x) over the do-

main D ⊆ IR3. The scale space of v is an ordered set
V= [v0, . . . ,vn] of vector fields derived from v with decreas-
ing complexity and resolution. It is realized by alternating
the process of Gaussian smoothing and resolution reduction
as shown in Figure 1. It allows us to describe the features of
the flow at different scales and is the key to making the entire
algorithm scale-independent.

3.2 Base Descriptors
A base descriptor encodes the local flow behavior at a

certain level of the scale space. A base descriptor B(p`) is
located at the grid position p` in level ` of the scale space. We
equip this position with a local coordinate system. This will
allow us to compare different base descriptors in a rotation-
invariant manner. We choose the orthonormal Frenet-Serret
frames (t(p`),n(p`),b(p`)), where t(p`) is the tangent, n(p`)
is the normal, and the binormal b(p`) = t(p`)×n(p`). Hence,
this describes the local linearized behavior of the tangent
curve through p`. We encode the local flow behavior using
normalized flow samples of v` at the six neighbors around p`

(p`±u`t) (p`±u`n) (p`±u`b), (1)

where u` refers to the voxel size in level `. This gives us the
six normalized flow samples ṽ1, . . . , ṽ6.
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Figure 1: 2D illustration of the scale space of a vector field v. The scale space consists of a number of derived vector fields,
where every level is a smoothed version of the previous level at half the resolution. Our algorithm works with 3D vector fields.

Figure 2: Equidistant
point sampling on the
unit sphere. The Voronoi
cells of the shown points
are the bins for hashing
orientations.

Rotation invariance is achieved by relating the local co-
ordinate system to the global one by computing a rotation
matrix R(p`) (cf. Arun et al. [AHB87]):

(x,y,z) = R(p`) · (t(p`),n(p`),b(p`)) . (2)

After applying R(p`) to each of the six samples, we finally
obtain the normalized base descriptor by concatenating them
in a single vector

B(p`) = (Rṽ1, . . . ,Rṽ6). (3)

3.3 Base Descriptor Hashing
Hashing is used to speed up the search for similar descrip-

tors. The general idea is to quantize similar descriptors into
bins. A search is then only a matter of retrieving the right bin.

Base descriptors B(p`). consist of unit-length vectors, i.e.,
orientations. We use the unit sphere for hashing by segment-
ing it into a number of equally sized cells, or bins. Each
orientation in the base descriptor is mapped onto the sphere,
where it falls into a bin. The index of this bin is recorded.
In other words, this transforms B(p`) into a vector of six
indices.

The cells/bins are the Voronoi cells of an equidistant point
sampling on the unit sphere. In our implementation, we obtain
this by starting from an icosahedron, We subdivide it to obtain
a higher resolution while still maintaining an as-equidistant-
as-possible point sampling. Figure 2 shows the result that we
use in our implementation. It gives rise to 162 bins, which
allows us to discriminate two orientations if the angle between
them is larger than 17◦. Furthermore, we add an extra null-
cell to gather disappeared orientations, e.g., due to a singular
point. A null-cell is not a neighbor of any other bin.

Classic hashing fails to discriminate similar items at bin

boundaries. We employ two strategies to deal with this: Lo-
cality Sensitive Hashing (LSH) [IM98] and its extension
multi-probe Locality Sensitive Hashing [LJW∗07].

LSH [IM98] mitigates the problem by employing several
hashing functions. If two items are hashed into the same
bin by at least one of those hashing functions, then they are
considered to be similar. In our case, this means that we create
several randomly rotated copies of our hashing sphere. If two
orientations end up in the same Voronoi cell on at least one of
those spheres, then these orientations are considered similar.

The multi-probe extension of LSH [LJW∗07] affects the
querying stage. When querying using a particular base de-
scriptor B(p`), we do not only return its respective bin, but
also the neighboring bins. The benefit of multi-probe LSH is
that it can use fewer hashing functions and still achieve the
same discrimination quality as the original LSH. This makes
it faster. We refer to the literature for more details.

Let τ be the number of hashing spheres. This leads to 6τ

indices for a base descriptor. These codes are pre-computed at
each grid point and each level of V. They are stored in tables
where a hashing index points to a set of matching descriptors.
We have 6τ tables for each hashing sphere and each of the six
orientations.

3.4 Base Descriptor Querying and Comparison
Given a base descriptor B(p`), we find all similar base

descriptors in the domain as follows. We map an orientation
in B(p`) to the unit sphere. It falls into different bins on the
different hashing spheres. A lookup in the respective tables
yields τ sets of matching descriptors. The union of these
sets holds all matching descriptors with respect to this one
orientation. We perform this for all other orientations in B(p`)
as well and get six sets. Their intersection yields the set of
all base descriptors where all orientations are similar to the
queried one. Two base descriptors Bi and B j are considered
to be equal if either they both can be mutually queried, or
they are directly compared and considered to be similar. We
define the binary cost of two base descriptors as

EB(Bi,B j) =

{
0 Bi =B j

1 Bi 6=B j
. (4)
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level: 0 level: 1 level: 2

Figure 3: 2D illustration of a sphere descriptor (blue circle)
consisting of a number of base descriptors (black dots) at
different levels of the scale space.

Template

Sphere

base descriptorsCandidate

Sphere

Alignment

Figure 4: 2D illustration of finding a candidate sphere and its
corresponding base descriptors at a specific scale level. both
first base descriptors B0 marked with a coordinate system
are aligned. The red dots represent the closest integer grid
point for the rotated base descriptors of the template sphere.

4 Pattern Definition and Search
We describe a flow pattern as a layout of spheres in the flow,
i.e., the pattern is defined by selecting spherical parts of the
domain. We want to find other occurrences of this pattern
where the flow behavior within the spheres is similar and the
spheres themselves form a similar layout. To do so, we will
first discuss our definition of flow behavior within a sphere,
and how to query for it in the flow. Then we show how we
enforce a similar layout of spheres.

4.1 Sphere Descriptors
Consider a sphere with a certain origin o and radius r in

the domain of the vector field v(x). It covers a set of grid
points of the original vector field v(x) as well as its derived
versions in the scale space V. We sort the base descriptors
located at these grid points by their levels and natural grid
indices. This constitutes a sphere descriptor

D(o,r) = {B(p`) : ||p−o||< r, p ∈Nd(p`)} , (5)

where Nd is the neighborhood along dimension d. In short, a
sphere descriptor D consists of a sequence of base descriptors
B(p`) covered by the sphere. A 2D illustration of a sphere
descriptor is given in Figure 3. Note how the sphere covers
less grid points in higher levels of the hierarchy, since the
resolution is coarser there.

Given a sphere descriptor D, we are interested in finding
similar occurrences below a certain cost threshold. The query
is processed in a coarse-to-fine framework, i.e., we start at the
highest level in scale space. Let B0 be the first base descriptor
in D at the coarsest level of the sphere descriptor. We find a
set of possibly matching candidate spheres D′ by querying

all base descriptors similar to B0. Let us denote a member of
this set as B′0.

We continue by matching neighboring base descriptors as
follows: we first transform the coordinates of Bi ∈D into the
local coordinate system of the sphere’s first base descriptor
B0. This is done by applying the rotation matrix R0 (cf. (2)).
We denote the new coordinates of Bi as pi. Note that the
content of the descriptors does not change. For a candidate
sphere D′, we look up the same location pi in the local coor-
dinate system of B′0, and get the base descriptor at the closest
integer grid point as the corresponding base descriptor B′i .
If the computed integer grid point is out of the domain, we
simply mark the base descriptor as not similar. Figure 4 gives
a 2D illustration of the base descriptor matching process.

When matching spheres, we give different weights w` to
the base descriptors depending on their level in scale space.
Note that the volume of a voxel in a level `+ 1 is 8 times
bigger than the volume of a voxel at level `. This leads to the
following weights for base descriptors:

w(`+1) = 8 w(`) . (6)

We compute the cost between a sphere descriptor D and
its candidate D′ by accumulating the cost of all the base
descriptors

ED(D,D′) = ∑
i

wiEB(Bi,B
′
i) . (7)

Since the cost EB of two base descriptors is a binary value
(see (4)), the largest possible sphere matching cost ED is
the sum of all weights of the sphere’s base descriptors. The
smallest matching cost is 0. This allows us to normalize the
cost and define a normalized similarity measure

SD(D,D′) =
∑i wi−ED(D,D′)

∑i wi
, (8)

where i is the index of the base descriptor, and S is within
the range of [0, 1]. Especially, S= 0 if D and D′ are entirely
different, while S= 1 if D and D′ match up completely.

4.2 Sphere Layout Filtering
Consider P as a template pattern defined by m sphere

descriptors Di. This is the flow pattern that the user wants
to find in a flow. Using the sphere descriptor matching from
the previous section, we can find matching spheres for each
individual Di, but this would neglect the arrangement or
layout of these spheres. In this section, we introduce our
approach to finding the layouts of spheres from the set of all
matching spheres. A sphere in the flow matches to a sphere in
the pattern, if their first base descriptors match. Such a match
may have a low similarity SD, but we account for that when
computing the similarity of the entire pattern below.

We define the local coordinate system Γ
i of each sphere

descriptor Di(oi,ri) as the local coordinate system of its first
base descriptor Bi

0. It provides a stable orientation, since
it is anchored at the coarsest level in scale space. We also
define the level of each sphere descriptor Λ

i as the level of
Bi

0. Furthermore, we define the center of a template pattern
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Figure 5: Layout verification illustrated in 2D. Four circles
define a template pattern in 2D. The yellow circle in the
middle is the central circle as it is closest to the center of the
pattern. Red dotted lines indicate the pairwise verification
of scaling and rotation. The green dotted lines indicate the
pairwise verification of translation.

P by weighting the origins of all its spheres

O=
∑

m
i=1 rioi

∑
m
i=1 ri . (9)

We designate one of the spheres in P as the center sphere Dc,
namely the one whose origin is closest to O. Furthermore, we
denote P′ as candidate pattern, Di′ are its sphere descriptors,
and Dc′ is its center sphere descriptor.

A candidate pattern is produced by selecting a candidate
sphere for each of the spheres in the template P. The layout
of the spheres is verified with respect to scaling, rotation, and
translation by the following constraints (see also Figure 5):
• Scaling The level difference of Di′ and Dc′ should be the

same as that of Di and Dc, which can be written as

Λ
i−Λ

c = Λ
i′−Λ

c′ . (10)

• Rotation The coordinate systems Γ
i and Γ

i′ should be
similar in their own coordinate system of the center sphere,
i.e.Γc and Γ

c′. The constraint is defined as

](RcΓ
i
j,Rc

′
Γ

i′
j)< θ, j ∈ {1,2,3} , (11)

where j represents the index of three axes, i.e., tangent,
normal, and binormal. Rc and Rc

′ are the rotation matrices
which rotate the world coordinate system to their center
sphere coordinate system. θ is the discrimination angle of
the hashing sphere as discussed in Section 3.3.
• Translation A distance ratio threshold λ is introduced to

constrain the distance deviation for any pair of spheres as

∀i, j

∣∣∣∣∣∣
∣∣∣∣∣∣oi−o j

∣∣∣∣∣∣− ∣∣∣∣∣∣oi′−o j′
∣∣∣∣∣∣

||oi−o j||

∣∣∣∣∣∣< λ , (12)

where i and j are the indices of spheres.
If a combination of spheres satisfies all three constraints, we
accept this combination as a match of the template pattern,
and its similarity value is computed as the average of the

similarities of the single spheres

SP(P,P
′) =

1
m

m

∑
i=1

SD(D
i,Di′) . (13)

5 Evaluation and Discussion
In the following, we discuss and evaluate our method. We
render the detected patterns by coloring the parts of stream
lines running through these areas. The color transitions from
red to white to indicate the pattern similarity SP, i.e., high
similarity is indicated in red, low similarity is shown in white.
In regions where no pattern has been detected, we display
fainted stream lines.

5.1 Parameter Overview
Our pattern matching approach contains two parameters

that can be adjusted by the user: the distance ratio threshold
λ from (12), and a threshold on the pattern similarity value
SP from (13). Larger values for the threshold on SP reduce
the number of found patterns. Smaller values of λ make the
template being searched for more rigid.

Let us explain their behavior using an example from the
BENZENE data set, shown in Figure 6. We select a template
pattern with three spheres. The middle sphere contains lami-
nar flow, while the other two contains a source each. We show
the matching results with different parameters in the form of
a grid in Figure 6. Along the horizontal axis SP is increased
from 0.7 to 0.9, and along the vertical axis λ spans from 0.1 to
0.2. We can see in the upper left corner that a small threshold
on SP and a large λ lead to a massive number of matches. To
further filter the results, we can either increase the threshold
on SP or reduce λ. As observed, both ways achieve similar
effects. For an unknown data set, we recommended to choose
a small threshold on SP and a large λ at the beginning. Then
users see a superset and can approach a smaller set by tuning
SP and λ.

Other parameters are on an algorithmic level and not ex-
posed to the user. In fact, we fixed them in our implementation
as well. They include the number of Voronoi cells on the hash-
ing sphere (Section 3.3), and the number of such (randomly
rotated) hashing spheres. We fixed the former to 162, and the
latter to 20.

5.2 Sensitivity to Vortex Orientation
Our method is sensitive to the orientation of swirling flow,

i.e., it detects whether the flow swirls in clockwise or coun-
terclockwise orientation. Figure 11 shows this at the von
Kármán vortex street in the flow behind a square cylinder.

5.3 Robustness to Transformations and Noise
We evaluate the robustness of our approach to different

transformations using the analytical 3D flow

v(x,y,z) =

 y
(x−0.5)(x+0.5)

(z−0.5)(z+0.5+2y)

 , (14)

which has four critical points at the locations [±0.5,0,±0.5].
As the reference pattern, we select four spheres with a radius
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SP

λ

SP = 0.7
λ = 0.2

SP = 0.9
λ = 0.1

SP = 0.9
λ = 0.2

SP = 0.8
λ = 0.1

SP = 0.8
λ = 0.2

SP = 0.7
λ = 0.1

SP

1.0

0.0

P

Figure 6: Pattern search in the BENZENE data set using different combination of parameters. We perform pattern search using
the template pattern with three spheres on the left. The results are demonstrated in the coordinates of parameter combinations.
We choose SP ∈ {0.7, 0.8, 0.9} and λ ∈ {0.1, 0.2}.

of 0.5 around the critical points. After the transformation, we
record the similarity to the ground truth. Figure 7 shows the
results.

For all experiments, the similarity increases with the vol-
ume resolution, since this allows for a better pattern align-
ment. For Translation and Rotation, we conducted two tests:
(i) translation/rotation along a number of randomly selected
axes (solid lines in the plots), (ii) translation/rotation along a
coordinate axis (dashed lines). The latter indicates full simi-
larity when the grid point arrangement is perfect. A similar
observation can be made in the plot for Scaling. For the Noise
validation, we pollute our pattern by adding white noise to
each component of the flow. The level of noise is based on
the range of component-wise magnitude inside the reference
pattern. For the Deformation validation, we scale the pattern
in one of three dimensions, and record the average similarity.

5.4 Timings
Table 1 summarizes the timings for all the experiments. All

the timings are measured in single thread processing. Several
factors influence the processing time. First, if a massive num-
ber of similar occurrences exist in a data set, then searching
becomes slow. Second, as discussed in Section 5.1, a small
threshold on the pattern similarity SP as well as a big distance
ratio threshold λ can also increase the processing time. The
timings for hashing table generation is comparatively slow.
It needs couple of minutes for preprocessing a big data set.
However, it is still acceptable as this process only needs to
run once for each data set.

6 Results
Figures 8 and 9 show further results from the BENZENE data
set. Note how a pattern consisting of a single sphere in Figure
8 is able to capture the 6-fold rotational symmetry of this

Data set Dimensions Spheres SP λ Timing (sec.)

BENZENE 129×129×65 1 0.73 − 3.7
BENZENE 129×129×65 3 0.7∼ 0.9 0.1,0.2 ≈ 24
BENZENE 129×129×65 4 0.7 0.1 16
BÉNARD 257×65×129 2 0.8 0.1 10
CYLINDER 257×129×65 5 0.85 0.08 44
DELTAWING 257×129×65 2 0.7 0.1 40

Table 1: Timings. For each experiment, we list the dimensions
of the data set, number of spheres in the template pattern, the
pattern similarity threshold SP, the distance ratio threshold
λ, and the timing measured in single thread processing.

SP

1.0

0.0

P

Figure 8: Detection of the rotational symmetry in the BEN-
ZENE data set using a saddle-like template pattern.

data set. The pattern in Figure 9 has a higher complexity
and is irregular. It consists of four spheres. This example
shows how our method provides great flexibility when defin-
ing flow patterns. In Figure 10, we perform pattern search
in the RAYLEIGH-BÉNARD flow. The template pattern con-
sists of two spheres describing a narrowing spiral in 3D. The
RAYLEIGH-BÉNARD flow has eight vortices. Two of them ro-
tate downward in clockwise manner, two others rotate down-
ward in counterclockwise manner. The other four have the
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Figure 7: Robustness validation. All validations are conducted with resolutions of 653 and 1293. The dashed curves in the
translation and rotation figures indicate a transformation along/around a coordinate axis, e.g., x-axis.

P P

Figure 11: Pattern search in the CYLINDER flow. The template pattern P consists of five spheres describing an extended arc.
Since base descriptors are sensitive to the orientation of swirling flow. This enables us to distinguish between clockwise and
counterclockwise rotating vortices.

P

1.0

0.0

SP

Figure 9: Pattern search in the BENZENE data set. The tem-
plate pattern P links four spheres. Each of them consists a
singularity inside.

Figure 10: Pattern search in the RAYLEIGH-BÉNARD flow.
The template pattern P uses two spheres to describe a nar-
rowing spiral.

SP

1.0

0.0

P

Figure 12: Pattern search in the DELTAWING flow. We select
two small nearby spheres to describe a small segment of a
vortex core. The result shows that we detect occurrences at
different scales.

same behavior, but upwards. As the result shows, our method
is able to distinguish between these differently oriented vortex
structures. See also the corresponding discussion in Section
5.2. In Figure 11, we test two similar symmetric arc with
different orientations. The result nicely shows the symmetric
results which reflects the different orientations of swirling in
the flow. Figure 12 illustrates an example in the DELTAWING

flow. This is a flow around a jet. The most distinct features
are two gradually expanding vortices above the wing. We
can see from the figure that the detections are continuous,
and their sizes are gradually increasing. This implies that our
algorithm works well with continuously changing scales.

7 Conclusion, Discussion and Future Work
In this paper, we propose a hashing-based pattern search
algorithm in 3D vector fields, which is invariant against trans-
lation, rotation, and scaling. The first contribution of this

c© The Eurographics Association 2014.
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paper is to allow for template patterns with irregular extent.
This is by arranging a number of spheres in 3D space. This
way of defining templates is flexible and users are able to intu-
itively cover flow features with arbitrary extents. The second
contribution is the hierarchical hashing strategy used to find
similar patterns, which gives rise to the good performance of
the algorithm. Although the proposed algorithm can obtain
good results most of the time, it still has some limitations.
For example, it works best on vector fields with cubic voxels.
This is because of the rotational alignment when comparing
sphere descriptors, as illustrated in Figure 4. However, we
can virtually create such a grid over the domain if the data set
has highly non-uniform voxels. We think a possible direction
for further improvement is to define an interpolation method
between hashing codes. With the help of code interpolation,
we can query the neighboring descriptor quickly, and also get
rid off the limitation mentioned above.
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