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Figure 1. Our method allows pattern matching in multi-fields such as the Hurricane Isabel data set. The user selects the eye of the
hurricane at T = 20 using a red box. This is the input pattern. Our algorithm uses the 3D SIFT features of 11 scalar fields simultaneously
to find matching patterns in the following time steps. This amounts to a tracking of the eye of the hurricane.

Abstract—We present an approach to pattern matching in 3D multi-field scalar data. Existing pattern matching algorithms work on
single scalar or vector fields only, yet many numerical simulations output multi-field data where only a joint analysis of multiple fields
describes the underlying phenomenon fully. Our method takes this into account by bundling information from multiple fields into the
description of a pattern. First, we extract a sparse set of features for each 3D scalar field using the 3D SIFT algorithm (Scale-Invariant
Feature Transform). This allows for a memory-saving description of prominent features in the data with invariance to translation,
rotation, and scaling. Second, the user defines a pattern as a set of SIFT features in multiple fields by e.g. brushing a region of interest.
Third, we locate and rank matching patterns in the entire data set. Experiments show that our algorithm is efficient in terms of required
memory and computational efforts.

Index Terms—Pattern matching, multi-field visualization.

1 INTRODUCTION

Pattern matching algorithms have proven useful for scalar [10, 12, 22]
and vector fields [3, 9, 13, 33]. The general idea is to compute the
similarity between a user-supplied pattern and every location in the
data set. A pattern can be given in different forms such as a small
subset of the domain or a selection of stream lines. A desired property
for pattern matching is invariance to translation, rotation, and scaling,
i.e., a translated, rotated and scaled copy of the pattern can be found in
the data despite these transformations. To achieve this, some existing
algorithms require substantial computation time. Furthermore, existing
algorithms work for a single field only.

To the best of our knowledge, we present the first pattern matching
method in the context of multi-field visualization. Our approach offers
fast responses to the user by performing a large part of the pattern
search using a sparse set of feature points. Features are computed
using the 3D SIFT algorithm [7, 29]. A 3D SIFT feature is located at a
point and describes the behavior of the scalar field in its neighborhood
with invariance to translation, rotation, and scaling. We compute SIFT
features for scalar fields. We deal with vector fields indirectly by means
of computing SIFT features for derived scalar fields such as the vorticity
magnitude of a flow. Scalar fields for which we compute SIFT features
are called trait fields.

Pattern matching using our method works as follows: a user selects
a search pattern as a region of interest in the domain (a small box).
For each SIFT feature within this region, we find similar ones in the
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entire data set. This is a very fast procedure and yields candidate
transformations of the search pattern. In other words, instead of testing
the search pattern against every other location in the domain (as well
as all possible rotations and scale factors), we test it only against a
sparse and sufficient set of candidates. The actual similarity value
is then computed using a weighted L2-norm over all considered trait
fields. The final result is a scalar field that indicates regions in the
multi-field data set where all trait fields show a similar behavior as in
the user-selected region.

We give the following technical contributions:

• We introduce a novel pattern matching method for 3D multi-field
data sets, which bundles the information from different fields into
the description of a pattern.

• We achieve response times for pattern matching of less than a
second even for large data sets by working with a sparse set of
prominent features.

• In contrast to the two previous versions of the 3D SIFT algorithm
[7, 29], we achieve full invariance to 3D rotation by finding a
robust local coordinate system. This increases the accuracy of
pattern matching.

The next section provides an overview of related work. Section 3
recapitulates the 3D SIFT algorithm and explains our improvement to
it. Section 4 presents our pattern search algorithm for multi-fields. We
evaluate and discuss our method in Section 5. Results are shown in
Section 6.

2 RELATED WORK

Revealing the complexity of a multi-field data set is a challenging
task. Showing all fields within the same visualization leads to massive
occlusions, while individual visualizations fail to communicate the
commonalities. Several approaches have been proposed to deal with



these issues such as multiple coordinated views [8], correlation analy-
sis [27], or the rather recent topological approaches of Joint Contour
Nets [6] and Pareto Optimality [14]. In all these approaches, finding
similarities between different parts of the data is essentially a manual
process.

Pattern matching automates the process of finding similarities in a
data set. Region-based algorithms define a pattern as a compact spatial
region and aim at finding similar regions within a scalar or vector
field. The challenges are two-fold. First, it is necessary to detect a
similar region even if it is a translated, scaled and rotated version of the
pattern. Invariance to other transformations, such as small distortions
or brightness changes, is desirable. Second, the computation times are
often very long, which hinders interactive approaches. Ebling et al. [9]
and Heiberg et al. [13] independently introduced pattern matching for
vector fields to the visualization community. Both approaches use a
convolution to compute the similarity between a pattern and a location
in the field. This requires to sample all possible rotations, translations
and scales, and typically leads to high running times. Moment-invariant
descriptors are used by Schlemmer et al. [28] and Bujack et al. [3]
to achieve pattern invariance with respect to translation, rotation, and
scaling. These approaches are fast, but treat 2D vector fields only.

Feature-based approaches aim at finding similar structures by com-
paring features with each other. Several approaches use topology to
compare structures in scalar fields. Thomas et al. [31, 32] concentrate
on finding all symmetric structures in a scalar field using the contour
tree. Saikia et al. [26] perform a similarity search for any structurally
significant region as given by a subtree in the merge tree.

A number of methods for vector fields deal with the comparison of
stream lines. Li et al. [19] uses the bag-of-features approach to describe
the characteristics of stream lines. This leads to a clustering of line
fields. Several approaches [17, 25] use the spatial distance between
pairwise closest points as the similarity measure for clustering stream
lines. Wang et al. [33] define patterns using segmented stream lines
and compute the similarity of a pattern to the entirety of the data set.
Tao et al. [30] extract shape invariant features and compare them using
a string-based algorithm.

Pattern matching for scalar fields has mainly be developed in the
computer vision community and found a large number of applications.
One of the most successful approaches is SIFT, which stands for Scale-
Invariant Feature Transform. It was introduced by David Lowe [20] in
1999 and refined in 2004 [22] to describe local feature points in photos
(2D images) in a translation-, rotation-, and scale-invariant manner.
Since then, it has been applied to a number of domains including image
registration [36], object recognition [21], image stitching [2], and video
tracking [1].

Generalizations to higher dimensions have been proposed by Sco-
vanner et al. [29] and Cheung et al. [7] independently. The former
provided a 3D version of the SIFT algorithm, the latter a generalization
to n-dimensional domains. For 3D domains, they both boil down to the
same algorithm. As we will show in the next section, these existing
approaches fail to capture rotation invariance in the sense that they only
determine one axis of the 3D local coordinate system. The results are
sensitive to rotations around this axis.

Our algorithm is a hybrid method combining aspects of feature-based
and region-based pattern matching. We apply feature-based matching
using SIFT to obtain a set of candidate patterns, which are then con-
firmed using a region-based approach. This yields fast computation
times, dense results and a high accuracy at the same time.

3 SCALE-INVARIANT FEATURE TRANSFORM

In the following, we recapitulate the basics of the 3D SIFT algorithm
based on the work of Scovanner et al. [29] and Cheung et al. [7] as well
as the original 2D work of Lowe [22]. Especially the original work
comes with a lot of background information both on a theoretical and
practical level, which serves as justification for the individual steps
of the algorithm and for the parameter choices. In this paper, we
follow these choices and refer the interested reader to [22] for more
background information.

Figure 2. Localization of SIFT features in different scales. A sequence of
Gaussian blurred fields with increasing σ is generated. DoG (Difference-
of-Gaussian) fields are computed by subtracting neighboring blurred
fields. The extrema in the DoG fields denote the SIFT feature locations.
For a given location, the neighborhood in the blurred field of the corre-
sponding scale (orange box) serves as a description of the SIFT feature
(see also Figure 3).

3.1 Background on 3D SIFT
There are two aspects about a SIFT feature: its location and its descrip-
tion. The computation of these aspects is related, as we shall see in the
following.

Consider a 3D scalar field S(x,y,z) on a 3D uniform grid. The scale
space of S is constructed using a convolution with a Gaussian blur
G(x,y,z,σ)

L(x,y,z,σ) = G(x,y,z,σ)∗S(x,y,z) (1)

where σ refers to the standard deviation of the Gaussian distribution.
Note that σ spans the new scale-dimension and larger σ correspond to
blurrier versions of the scalar field. The location of the SIFT features is
computed from a derived space, namely the convolution of the scalar
field S with the Difference-of-Gaussian function

D(x,y,z,σ) = (G(x,y,z,kσ)−G(x,y,z,σ))∗S(x,y,z), (2)

where k > 1. This can be computed as the difference between two
neighboring scales

D(x,y,z,σ) = L(x,y,z,kσ)−L(x,y,z,σ). (3)

The locations of the SIFT features are the extrema of D(x,y,z,σ).
In practice, the fields are constructed as shown in Figure 2. One

starts with an initial blur; Lowe [22] suggests σ0 = 1.6. The following
scales are computed using a repeated convolution with G(x,y,z,k). The
value of k is set such that a doubling of σ is achieved after a certain
number s of steps. Doubling σ is referred to as an octave. Lowe [22]
suggests k = 21/s with s = 3. The Difference-of-Gaussian (DoG) fields



Figure 3. Computation of the SIFT descriptor. Based on a proper
orientation (green arrows), a neighborhood of size 9×9×9 is sampled
in the blurred scalar field (see also Figure 2). It is split into 27 blocks. For
each block, a 3D histogram of the gradient is computed and stored in the
SIFT descriptor.

are computed from two neighboring scales as shown in Figure 2. Note
that the total number of blurred scalar fields needs to be s+3 such that
the SIFT feature locations can later be computed from a full octave.
The next octave starts with 2σ0 and a halved resolution. We use a total
of three octaves throughout the paper.

The locations of the SIFT features are found as extrema in the DoG
fields. More precisely, a grid vertex in the DoG field is marked as an
extremum if all its grid neighbors in the previous, current and next scale
are smaller/larger, i.e., a 3×3×3×3 neighborhood is checked. See
the right part of Figure 2 for an illustration. It does not matter whether
an extremum is a minimum or a maximum.

The description of a SIFT feature is derived from a neighborhood in
the blurred scalar fields. This is illustrated in Figure 2 as orange boxes
over the blurred fields. Note that the effective physical size of these
boxes is larger in higher octaves due to the changed resolution.

The computation of the SIFT descriptor is illustrated in Figure 3.
The key here is to achieve rotation invariance by choosing a consistent
orientation for the neighborhood box based on local properties of the
data. For 2D SIFT features, Lowe [22] uses the local image gradi-
ent, i.e., a 2D vector, which uniquely defines the orientation of a 2D
neighborhood. For the 3D case, the existing methods by Scovanner et
al. [29] and Cheung et al. [7] use the 3D gradient vector as orientation.
More precisely, they parameterize it to the spherical coordinate system
and compute a 3D rotation matrix from that. We will show in the next
section that this does not define the orientation of a 3D neighborhood
in a unique manner.

However, after assigning an orientation, a neighborhood with size
9×9×9 is considered around the extrema position. It is split into 27
small blocks with size 3×3×3 each. For each block, the gradient of
the blurred scalar field is sampled at the vertices and recorded in a 3D
orientation histogram. It has 12 bins as defined by a Platonic icosa-
hedron. The histogram records the magnitude of the gradient. Each
histogram comprises a part of the SIFT descriptor. The complete SIFT
descriptor has 12×27 = 324 elements. The descriptor is considered a
vector and normalized to have unit length. The process of computing a
SIFT descriptor is shown in Figure 3.

Euclidean distance is used to measure the cost (dissimilarity) be-
tween two SIFT descriptors k and m:

cost(k,m) = ||k−m||. (4)

This direct and fast comparison is possible, since we transformed them
already into a common space w.r.t. rotation and scale. Two SIFT

Existing approaches [7, 29] Our approach

Figure 4. Rotation invariance of the SIFT descriptor can only be achieved,
if the 3D orientation of the neighborhood is properly fixed. See also Figure
3. Previous approaches attempt this using a single vector encoded in
spherical coordinates. The result is sensitive to rotation around this
vector itself. We compute a stable local coordinate system using (10),
which makes the 3D SIFT descriptor properly rotation invariant.

descriptors are said to be matching, if their cost is below a certain
threshold. This parameter is quite unproblematic in our setting since a
larger set of matching features will just have a slight impact on running
time. We fixed it to 0.2 in our implementation, where 0 means that
the two descriptors are identical, and 2 is the largest possible distance
between two diametrically opposed descriptors.1

3.2 Obtaining Rotation Invariance for 3D SIFT

A single vector does not suffice to fix the orientation of a 3D neigh-
borhood. Figure 4 shows how the existing methods by Scovanner et
al. [29] and Cheung et al. [7] use the gradient direction T to fix two out
of three possible rotations. Specifically, any rotation around T cannot
be detected with their SIFT descriptors.

We fix this issue by computing the Frenet-Serret frame in the gradient
field as the base coordinate system. This gives us a local, orthogonal
coordinate system. We use it to assign a unique orientation to the
neighborhood box before computing the SIFT descriptor.

The Frenet-Serret frame has three orthogonal axes, i.e., tangent T,
normal N, and bi-normal B. They are computed from local derivatives,
but conceptually they refer to the tangent, normal and bi-normal of the
gradient curve r passing through a given point:

T =
dr
ds

(5)

N =
dT
ds

(6)

B = T×N. (7)

To make the frame more reliable, we compute the averages of the
tangent, normal and bi-normal of all the Frenet-Serret frames within
a 3× 3× 3 neighborhood. Let us denote them with T, N, and B. To
obtain a orthogonal coordinate system, we apply the Gram-Schmidt
process, which can be written as

T′ = T (8)

N′ = N− N ·T′

T′ ·T′
T′ (9)

B′ = B− B ·T′

T′ ·T′
T′− B ·N′

N′ ·N′
N′ , (10)

where T′, N′, and B′ are further normalized to have unit lengths.
This coordinate system gives us a reliable basis for a rotation-

invariant SIFT descriptor. Figure 4 gives an illustration. We tested
the rotation invariance in a practical setting, see Section 5.5.

1 Since the descriptors are normalized to unit length, two descriptors k and
m have a cost of 2, iff k =−m.



Figure 5. The pipeline of the proposed algorithm. Firstly, vector fields
and scalar fields are all converted to trait fields. Later, SIFT features are
extracted from each trait field independently. We select SIFT features
which have intersection with the user brushed box as the reference
features. For each reference feature, each of its matchers within a cost
threshold determines a location of the candidate pattern regarding to
the transformation between features. The actual pattern cost for each
candidate pattern is the weighted sum of the costs in all trait fields.

4 PATTERN MATCHING IN MULTI-FIELDS

We define a pattern as a user-defined 3D box in the data. It is character-
ized by its orientation, extent, location, and, most importantly, by the
data values of the individual fields in the multi-field data set within this
box. To match this pattern means to find locations in the domain where
the individual fields of the multi-field data set attain similar values.
Figure 5 depicts the algorithmic pipeline.

In the following, we show how we use the SIFT features from
the previous section to effectively and efficiently match such patterns.
Section 4.2 discusses the first stage of our algorithm, which is feature-
based. Section 4.3 deals with the subsequent region-based part that
leads to a dense output: a scalar field giving the similarity between
the pattern and any other location. Before we come to that, we will
first discuss how to incorporate vector fields into our setup in the next
section.

4.1 Trait fields
SIFT features are defined for scalar fields. We are not aware of an
extension to vector fields. For the purpose of this paper, we choose
to incorporate vector fields indirectly by computing SIFT features for
derived scalar fields. These fields can be directly incorporated into our
multi-field approach. In general, all scalar fields for which we compute
SIFT features will be called trait fields in the following, as they bear a
characteristic trait of the underlying multi-field.

For a 3D vector field v = (u,v,w)T with its Jacobian J = [vxvyvz],
we consider the following trait fields, which reflect important character-
istics of v:

• magnitude ||v||
• norm of the Jacobian || dv

dx
dv
dy

dv
dz ||

• divergence ux + vy +wz

• vorticity magnitude ||(wy− vz,uz−wx,vx−uy)
T ||
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(a) Borromean data set.
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(b) Rayleigh-Bénard flow.

Figure 6. Trait correlations. Some traits correlate strongly with each other
(dark blue patches).

• helicity u(wy− vz)+ v(uz−wx)+w(vx−uy)

• λ2-criterion [16]
• Okubo-Weiss criterion [15]
• curvature of the stream lines [35].

Some of these trait fields will only make sense in some applications. As
an example, most fluid simulations are executed under the assumption
of a divergence-free fluid, i.e., the divergence field is constant zero.
Other trait fields may be highly correlated and therefore redundant. For
example, both the λ2-criterion and the Okubo-Weiss criterion describe
vortex structures in flows.

In essence, each application has to decide on the specific set of trait
fields. To aid such a decision, we provide some guidance in Figure 6.
Here, we computed the pairwise correlation between trait fields. We
employ the gradient similarity measure (GSIM) with the correlation
characteristic acN as discussed in Sauber et al. [27]. The correlation
patterns are rather similar for the two examined vector fields in Figure 6.
Helicity, λ2, and Okubo-Weiss are highly correlated. A high correlation
can also be observed between magnitude, the norm of the Jacobian, and
the stream line curvature. In our experiments, we often choose just one
member of such a correlation group for the actual pattern matching.

A similar approach can also be taken to incorporate tensor fields.
We leave this for future work.

4.2 Feature-Based Search for Candidate Patterns
Consider a user-brushed 3D box as the reference pattern P. We define
its center cP as the geometric center of the box, its orientation OP is
given by the world coordinate system, and the scale is given as sP = 1.

The following procedure is carried out individually for each trait
field. We define the set of reference SIFT features K as those SIFT
features whose supporting neighborhood fully or partly overlaps with
the box of the reference pattern P. A SIFT feature k ∈K comes with a
position ck, an orientation of its neighborhood Ok = (T′, N′, B′), and
a scale sk.

For each k ∈K, we find the set of matching SIFT features Mk (cf.
Section 3). Only SIFT features from the same trait field are compared
with each other. Again, each SIFT feature m ∈ Mk comes with a
position cm, an orientation Om, and a scale sm.

Given (ck,Ok,sk) and (cm,Om,sm), we can compute a linear trans-
formation that maps the neighborhood box of k to the neighborhood
box of m. We apply this transformation to the user-defined reference
pattern P and obtain a candidate pattern P′ by computing its center cP′ ,
orientation OP′ , and scale sP′ as follows:

cP′ = cm +Om(Iv) (11)

OP′ = OmO−1
k (12)

sP′ =
sm
sk

(13)

with v = sP′ O−1
k · (cP− ck) , (14)

where I is the identity matrix. Figure 7 depicts how we find candidate
patterns from matching SIFT features.



Figure 7. Finding candidate patterns from matching SIFT features. The
solid blue box denotes the user-defined reference pattern P. The colored
circles denote different types and scales of SIFT features. The SIFT
features overlapping with P are called reference features. Matching them
to other SIFT features in the data set leads to transforming the reference
pattern P to several candidate patterns P′, shown as dashed boxes. A
subsequent region-based cost computation yields the final result.

4.3 Region-Based Cost Computation
After matching the SIFT features, we have a number of candidate
patterns. They are transformed versions of the reference pattern, i.e.,
translated, rotated, and scaled 3D boxes. Each candidate pattern has
been computed using the SIFT features of a specific trait field. We
disregard this information now. We are only interested in the boxes
themselves. More precisely, we want to know whether the trait fields
attain similar values in a candidate pattern versus the reference pattern.

We compute the cost between the reference pattern and a candidate
pattern in each trait field using the L2-norm within these boxes. The
final cost is then a weighted sum of the individual costs:

cost(P′) = ∑
t

∑
i

wt ||Pit −P′it ||2, (15)

where t denotes the trait field, i is the index of the grid vertices of P,
and wt is the importance weight for trait field t.

The costs of all candidate patterns are combined in one global scalar
field, which we use to visualize the matching result.

5 EVALUATION AND DISCUSSION

5.1 Rationale Behind the Feature-Based Approach
A straightforward way of computing the cost scalar field without the
help of SIFT features would be the following: We could sample the
space of all possible rotations, translations, and scales that can be
applied to the reference pattern. After transforming the reference
pattern, we would evaluate (15) for each transformed box and combine
all these costs in the global cost scalar field.

A simple example shows that this approach is more time-consuming
than our matching using SIFT features. Consider a single scalar field
such as the electrostatic potential of the Benzene molecule shown in
Figure 11. It is sampled on a 2573 grid. In order to shift the reference
pattern to every grid vertex, we require just as many translations. Sam-
pling 3D rotations is not as straightforward as many sampling schemes
typically oversample the polar regions. Such matters are discussed in
the Robotics community; Kuffner [18] shows how unit quaternions
help in uniformly sampling rotations. Let us assume that 100 rotation
samples allow for enough accuracy. Finally, let us use the same 18
scale samples we use in our approach (see Section 3). We end up with
a total of over 30 billion transformations.

On the other hand, our approach uses sparse feature sampling to
drastically decrease the number of considered pattern transformations.
The numbers are shown in Table 1. For the Benzene data set, we have
38 SIFT features and the pattern overlaps with 8 of those. We have
to compare those 8 features with the others, and create a transformed
candidate pattern if they match. The entire pipeline including the cost
computation is done in under 0.2 seconds. The detection of the SIFT
features themselves takes about 80 seconds, but they can be reused for
any pattern.

Our computation time depends on the total number of SIFT features
n, and the number of selected SIFT features m, where m≤ n but typi-
cally m� n. Every selected feature is compared against all others. Our

current implementation does this straightforwardly using linear search
with a computational complexity of O(mn). For very large numbers of
SIFT features, it may be beneficial to use a hashing function for a faster
comparison. We refer the interested reader to the extensive discussions
of this topic by Paulevé et al. [24] as well as Muja and Lowe [23]. The
latter comes with a public domain software library for this purpose.

For very small numbers of SIFT features, one may have the issue
that parts of the domain are not covered and therefore unavailable for
defining patterns. We did not encounter this issue in our experiments,
and deem it rather negligible for two reasons:

• Consider a region in a scalar field with uniform behavior, i.e.,
constant scalar value or no monotony breaks. Such a region is
typically of low interest to a user and will also not have SIFT
features. On the contrary, SIFT features indicate regions with
non-uniform behavior in a scalar field, which are typically the
regions of highest interest in an analysis.

• Our method works with multi-fields. A lack or sparsity of SIFT
features in one trait field is compensated by the SIFT features of
the other trait fields. In fact, our method needs only a single SIFT
feature in the user-defined reference pattern P.

Table 1 shows that we find a high number of SIFT features in all our
experiments. Figure 12 shows a number of trait fields with their SIFT
features, some of which are covered densely and some sparsely.

Ultimately, it is a data- and application-dependent question whether
the patterns of interest are covered by SIFT features. We will discuss
this in the next section for the special case of pattern matching in vector
fields.

5.2 Comparison to Vector-Based Matching Methods
In the following, we compare our method to the pattern matching
methods for vector fields due to Ebling et al. [9] and Heiberg et al. [13].
We implemented both approaches in our system.

The major difference is that the above approaches work directly
and only on vector-valued data, whereas our method deals with vector
fields indirectly by considering multiple derived scalar fields. This has
consequences when analyzing numerical flow simulations:

• Flow data sets are multi-fields. They contain the vector-valued
flow velocity as well as scalar-valued traits such as viscosity,
pressure, and density. Our method is able to incorporate these
scalar fields, at the expense of treating the velocity field indirectly.

• The matching results of Ebling et al. [9] and Heiberg et al. [13] are
not Galilean invariant, since they are directly obtained from the
velocity vectors. Many interesting flow features such as the von
Kármán vortex street (cf. Figure 16) can only be observed in the
velocity field when choosing a particular frame of reference. This
is often not trivial. On the other hand, our method incorporates
Galilean invariant scalar fields and is therefore able to detect many
flow features directly.

We devised a fair comparison to Ebling et al. [9] and Heiberg et al.
[13] by concentrating on a single vector field and selecting a feature
that can be observed in the original frame of reference. We chose
the Rayleigh-Bénard flow as shown in Figure 8. It is a flow due to
thermal convection of heated and cooled boundaries, obtained using
the software NaSt3DGP [11]2. The flow has 8 vortex structures. Half
of them have a left-handed sense of rotation, and the other half a right-
handed one. We selected a vortex with a left-handed sense of rotation
as the search pattern (Figure 8a).

All three methods correctly identify the 4 left-handed vortices.3
Figures 8b–e show the matched regions as well as stream line renderings

2NaSt3DGP was developed by the research group in the Division of Scientific
Computing and Numerical Simulation at the University of Bonn.

3As a side note, our method picks up on the rotation sense due to the Helicity
trait field (the sign gives the chirality), whereas the other methods detect the
rotation sense from the orientation of the velocity vectors.



(a) Selection of a vortex with a left-
handed sense of rotation.

(b) Detections of all three methods over-
laid.

(c) Stream lines seeded in the voxels detected by our method. Computation time
for the pattern matching is 8 s, and requires the reusable SIFT features (49 s).

(d) Stream lines seeded in the voxels detected by Ebling et al. [9]. Computation
time: 284 s.

(e) Stream lines seeded in the voxels detected by Heiberg et al. [13]. Computation
time: 158 s.

Figure 8. Comparison of the results using our multi-field method and
the vector-based methods from Ebling et al. [9] and Heiberg et al. [13].
Shown is the Rayleigh-Bénard convection flow. All three methods cor-
rectly identify the four vortices with left-handed sense of rotation, but
require significantly different computation times.

highlighting these vortices.4

The computation times are rather different. Our method needs 8
seconds for the pattern matching itself, and 49 seconds for the pre-
computation of the SIFT features in seven trait fields. Note that these
SIFT features can be reused for further pattern matching in this flow,
i.e., to identify the right-handed vortices. The vector-based pattern
matching methods need significantly more computation time. The
method of Ebling et al. [9] requires 284 seconds, the method of Heiberg
et al. [13] requires 158 seconds.

As a second experiment, we designed 12 vector field patterns in the
spirit of Ebling et al. [9] and Heiberg et al. [13], including vortices,
convergent/divergent flow, and all first-order critical points. We made
sure to include all patterns mentioned in these papers. As we show in
the supplemental material, we find SIFT features for all these patterns.
Hence, our method can handle the same vector field patterns as these
previous methods.

4Note that we seeded the stream lines in the matched regions, but their
integration was unrestricted.

There is one exception. One pattern cannot be observed with our
method: parallel flow as in v(x) = (1,0,0)T . Such a flow does not
contain any flow features and all conceivable derived scalar fields do
not contain SIFT features.

5.3 Discussion of False Negatives and False Positives
A false negative is a pattern P′ that has not been found despite it being
a translated, rotated, and scaled copy of the reference pattern P. It is
easy to see that our algorithm cannot have false negatives: Each SIFT
feature k in the reference pattern P has a corresponding SIFT feature k′
in P′, because SIFT features are exceptionally invariant to translation,
rotation, and scaling as we show in Section 5.5. The SIFT features k
and k′ are practically identical, which makes it easy to find P′.

It becomes more interesting when noise or other deformations cause
a difference between P and P′. SIFT features react gradually to such
changes (see the noise experiment in Section 5.5), i.e., the difference
between k and k′ is comparable to the difference between P and P′.
Considering an increasing difference between k and k′, we will stop
computing the cost between P and P′ after exceeding a certain threshold.
As already discussed in Section 3.1, we can afford a larger threshold,
since this will just have a slight impact on running time.

A false positive is a pattern B that has been found despite it being
rather different from the reference pattern P. It is easy to see that our
algorithm cannot have false positives: Consider that B and P have no
matching SIFT features. Then B will also not be considered a matching
pattern of P. Alternatively, consider that B and P have matching SIFT
features. Then the region-based cost computation (15) will return the
actual cost between these two patterns.

5.4 Discussion of Parameters
The following parameters pertain to the computation of the SIFT fea-
tures. We list their values here and refer to the literature [22] for
background information. See also Section 3.

• Number of octaves: 3
• Number of Gaussian blurred fields: 6
• Initial blur σ0 = 1.6
• Factor for subsequent blurring k = 21/3

• DoG extrema neighborhood: 3×3×3×3
• SIFT descriptor neighborhood: 27×27×27
• Number of SIFT histograms: 3×3×3
• Number of bins per histogram: 12

Two parameters pertain to the core of our method:

SIFT descriptor matching cost threshold Two SIFT descriptors
match, if their cost from Equation (4) is below this threshold. Increas-
ing this threshold gives more matching SIFT features, which leads to
more region-based cost computations using Equation (15), i.e., it has a
slight impact on performance, but not on the quality of the matching.
Decreasing this threshold gives less matching SIFT features, which im-
poses less flexibility for deformation of patterns other than translation,
rotation and scaling. We suggest to err on the side of increasing this
threshold.

Pattern matching cost threshold After computing the region-
based costs using Equation (15), this threshold is defined by the user for
the isosurface or volume rendering visualizations showing the matching
patterns. Examples are shown throughout the paper, e.g., in Figures
8b and 11b. Increasing this threshold shows more matching patterns,
decreasing it shows less.

5.5 Evaluation of the Invariance of the SIFT Features
We made the following experiment to evaluate how invariant the 3D
SIFT features are under rotation, translation, scaling, and noise. Figure
9 shows the setup: a single scalar field with values in the range [0,1]
and the isosurface at 0.5 is a round, axis-aligned box. This field has 8
SIFT features corresponding to the corners of the cube. Let us denote
this set with A.
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Figure 10. Evaluation of the invariance of the SIFT features against rotation, translation, scaling, and adding noise. The setup is shown in Figure 9.
For the rotation evaluation, we included the results of existing approaches [7,29]. In these plots, lower values are better.

Figure 9. Setup for the evaluation of the
invariance of the SIFT features. The
scalar field has values in the range [0,1]
and the isosurface at 0.5 is a round, axis-
aligned box. For the evaluation, we rotate,
translate and scale the domain as well
as adding noise to the data. Results are
shown in Figure 10.

After transforming or adding noise to the scalar field, we compute
the set of new SIFT features B. We compare the sets A and B using
Hausdorff distance H(A,B):

D(x,Y) = min{cost(x,y) | y ∈ Y} (16)

H(A,B) = max{max{D(a,B) | a ∈ A},max{D(b,A) | b ∈ B}} (17)

Figure 10 shows the results. For interpretation, remember that the SIFT
feature descriptors have unit length, i.e., the largest possible cost is 2.
We will detail the experiments in the following.

Rotation We rotate the domain in steps of 10 degrees around
the axis (1,1,1)T . We also made this experiment with the existing
approaches [7, 29]. As discussed earlier, they are not fully invariant
against rotation as the blue curve shows. Our results are shown by the
red curve and show a high rotation invariance.

Translation We translate the domain along the x-axis until the
shifted distance reaches the size of the box. The result shows the
expected high invariance against translation.

Scaling We scale the domain uniformly with the factors
[0.5,1.0,1.5,2.0,2.5,3.0]. The cost between 1.0 and 3.0 is constant
zero, which shows full scale invariance. The cost is slightly higher for
the factor 0.5, because when the box becomes small enough, the largest
scale in the scale space sees the corners as one feature.

Noise We add white noise with increasing amplitude to the data.
The shown noise ratio refers to the amplitude. A noise ratio of 1 means
that the value range of the noise and the data are equal. The cost remains
quite low until a noise ratio of 1.5. After that, the data is corrupted
and the cost increases rapidly. As it can be seen in Figure 10, a noise
ratio of 1 creates already a highly distorted field, yet the cost is still
within an acceptable range. This shows how stable the SIFT features
are against noise.

5.6 Invariance against Intensity Scaling or Shifting
The invariances discussed above relate to transforming the domain.
What about transformations of the data values such as a scaling or
shifting? SIFT features are naturally invariant against it, since the SIFT
descriptor contains only gradient information and is normalized.

In detail: A multiplication of the scalar field with a constant factor
(value scaling) changes only the magnitude of the gradient and not its
direction. The normalization of the SIFT descriptor makes it invariant
against this. An addition of a constant value (value shifting) does
not change the gradient of the scalar field at all. Hence, the SIFT
descriptor is invariant against it. Finally, the locations of SIFT features
are computed as extrema of the DoG fields, which are unaffected by
these transformations.

(a) Selection. (b) Matching patterns.

Figure 11. Selection of an area around a carbon atom in the electrostatic
potential of the Benzene molecule. This pattern can be found six times
in this scalar field, namely around all six carbon atoms.

6 RESULTS

All results have been computed in a single thread on a 3.1 GHz Intel
Xeon E31225 with 16 GB main memory. Computation times as well as
the number of SIFT features are shown in Table 1.

Benzene We start with a single scalar field to showcase the match-
ing qualities of our algorithm in a setting that is easy to understand.
The electrostatic potential of the Benzene molecule in Figure 11 ex-
hibits a 6-fold symmetry. We selected the area around one of the six
carbon atoms that make up the inner ring of this molecule. The result
of the pattern matching highlights all six carbon atoms. This real-world
example shows once more that our 3D SIFT descriptors are rotation
invariant.

Borromean Magnetic Flux Vector Field Figures 12-14 show the
Borromean magnetic flux – a vector field from an experiment studying
magnetic energy decay [5]. In its initial state, it features interlocked
magnetic rings. The shown state exhibits already a large amount of
decay. We include this vector field to show how our multi-field pattern
matching can help in understanding vector fields despite working only
with derived scalar fields.

Figure 12 shows the six trait fields we computed from the original
vector field: magnitude, norm of the Jacobian, stream line curvature,
helicity, λ2, and Okubo-Weiss. Besides a volume rendering of each
trait field, Figure 12 also shows their SIFT features as spheres. The size
of the spheres denotes the scale of the SIFT feature, i.e., the size of the
supporting neighborhood. Some of the trait fields are densely covered
with SIFT features, while others exhibit them only in distinguished
regions. This is not much of an issue, since (i) all regions have coverage
by at least one of the trait fields, and (ii) SIFT features are only used
to generate candidate patterns and the subsequent cost computation
involves again all traits (see Section 4.3).

We made two pattern selections in this data set. In Figure 13 we
selected one of the outer rings. The pattern matching yields the other
outer ring on the opposite side of the volume. The stream line rendering
highlights these structures. Note how our multi-field approach is able
to address structures that are inherent to the vector field.

For Figure 14 we selected a region in the middle of the domain. The
matching result shows a ring-like structure. The stream line rendering



Data set Dims # Traits # SIFT features Timings in Seconds

total selected SIFT localization SIFT Descriptor Feature Matching Cost Computation

Benzene 257×257×257 1 38 8 82 0.002 0.001 0.154
Borromean 256×256×256 6 5773 92 6 × 120 0.1 - 0.8 0.008 8.5

45 0.006 2.5
Climate 480×241×27 3 737 20 3 × 5 0.07 - 0.13 0.005 0.1
Isabel 500×500×100 11 23057 2047 11 × 120 1 1.6 3.5

Rayleigh-Bénard 127×127×127 7 1054 56 7 × 7 0.1 - 0.2 0.01 7.7
Square Cylinder 115×64×48 7 1207 670 7 × 0.5 7 × 0.03 0.03 2

Table 1. Running times and number of SIFT features for the data sets used in this paper.

(a) Flow magnitude and its
SIFT features.

(b) Norm of the Jacobian
and its SIFT features.

(c) Curvature and its
SIFT features.

(d) Helicity and its
SIFT features.

(e) λ2 and its
SIFT features.

(f) Okubo Weiss and its
SIFT features.

Figure 12. Trait fields of the Borromean magnetic flux vector field. Their SIFT features are shown as spheres.

(a) Selection (top) and
matching patterns.

(b) Stream lines shown for the entire vector field and
highlighted within the matching patterns.

Figure 13. Borromean data set with matching outer rings.

reveals that these are the remains of the interlocked rings from the
beginning of the magnetic energy decay experiment.

Climate Multi-Field Data Set Figure 15 shows a multi-field cli-
mate data set. This is a time step of a large re-analysis of the world’s
climate in the years 1979–2013. The data set is courtesy of Dim
Coumou and Thomas Nocke from the Potsdam Institute for Climate
Impact Research (PIK). This 3D multi-field data set spans the entire
planet and several kilometers of the atmosphere. Figures 15c–e show
volume renderings of the considered trait fields iso-pressure height,

(a) Selection (top) and
matching patterns.

(b) Stream lines shown for the entire vector field and
highlighted within the matching patterns.

Figure 14. Borromean data set with the inner ring revealed by our
method.

temperature, and wind speed. We selected a region at the North-West
coast of the USA. Interestingly, the iso-pressure height did not produce
any matching patterns, since this particular location does not contain
SIFT features. This is not much of a surprise, since this data set shows
only structures near the ground, but the isosurfaces are almost planar
in higher regions. Anyway, we got plenty of matches in the other two
trait fields. In Figure 15b we show the final pattern matching result for
all traits combined.



(a) Overview (b) Multi-field pattern matching result with all three traits.

(c) Iso-Pressure Height: selection (top) and matching
patterns (none).

(d) Temperature: selection (top) and matching patterns. (e) Wind speed: selection (top) and matching patterns.

Figure 15. Climate multi-field data set with three traits.

Hurricane Isabel Multi-Field Data Set In Figure 1 we applied
our method to the Hurricane Isabel data set from the IEEE Visualization
2004 contest. This is a complex 3D time-dependent data set produced
by the Weather Research and Forecast (WRF) model courtesy of NCAR
and the U.S. National Science Foundation (NSF). It contains 10 scalar
fields and 1 vector field. For our purposes, we considered all 10 scalar
fields as well as the magnitude of the flow (wind speed).

We made a more advanced experiment with this data set: we select
the eye of the hurricane in the time step T = 20 and make this our
reference pattern. However, we apply the pattern matching to the
following time steps T ∈ [21, . . . ,41]. All 11 trait fields are considered
for this. As Figure 1 as well as the accompanying video show, this
leads to a stable tracking of the eye of the hurricane.

Square Cylinder Flow In Figure 16 we take this approach even
one step further. Instead of applying a pattern from one time step
to another, we apply a pattern from a different data set to the square
cylinder flow [4, 34].

The interesting part in this flow is the von Kármán vortex street.
It is characterized by alternating vortices created by periodic vortex
shedding directly behind the cylinder. In our experiment, we attempt
to capture these vortices using pattern matching. However, unlike our
other experiments, the pattern is not a selection from the same data set,
but an analytic vortex description often referred to as the Stuart Vortex:

v =

(
sinh(2y) ,

1
4

sin(2x) , z (cosh(2y)− 1
4

cos(2x))
)T

.

We sampled this field and computed the same trait fields that we also
have for the square cylinder flow, namely: magnitude, stream line
curvature, helicity, divergence, vorticity magnitude, λ2, and Okubo-
Weiss.

Figure 16a shows the selection in the Stuart Vortex. This selected
vortex pattern has been applied to the unrelated square cylinder flow.

(a) Analytic vortex description (Stuart
Vortex) used to define a reference
pattern.

(b) Matching patterns in the numerical
simulation of a flow behind a square
cylinder.

Figure 16. A pattern has been analytically “designed” and then applied to
a real-world flow in order to find all vortex structures in the von Kármán
vortex street. Both images show a volume rendering of the vorticity
magnitude trait field of the respective flow.

Figure 16b shows the matching result, which nicely covers the vortices
in the von Kármán vortex street. This example shows that our algorithm
can also be applied in scenarios, where a reference pattern is “designed”
beforehand as a way to describe features of interest.

7 CONCLUSION

We introduced a novel pattern matching approach for multi-field data
sets. It bundles the information from different fields into the description
of a pattern. The method is very efficient, since we work with a sparse
set of features to drastically reduce the search space for the pattern
matching. We discussed how to achieve full rotation invariance for the
SIFT features.

For future work, tensor fields should be taken into consideration. Is
there a set of characteristic traits for tensor fields that can be used for
our multi-field approach?
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