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Abstract—In nature and in flow experiments particles form patterns of swirling motion in certain locations. Existing approaches
identify these structures by considering the behavior of stream lines. However, in unsteady flows particle motion is described by
path lines which generally gives different swirling patterns than stream lines. We introduce a novel mathematical characterization of
swirling motion cores in unsteady flows by generalizing the approach of Sujudi/Haimes to path lines. The cores of swirling particle
motion are lines sweeping over time, i.e., surfaces in the space-time domain. They occur at locations where three derived 4D vectors
become coplanar. To extract them, we show how to re-formulate the problem using the Parallel Vectors operator. We apply our
method to a number of unsteady flow fields.

Index Terms—unsteady flow visualization, feature extraction, particle motion.
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1 INTRODUCTION

Flow fields play a vital role in many areas. Examples are burning
chambers, turbomachinery and aircraft design in industry as well as
blood flow in medicine. As the resolution of numerical simulations
and experimental measurements like PIV have evolved significantly in
the last years, the challenge of understanding the intricate flow struc-
tures within massive result data sets has made automatic feature ex-
traction necessary.

Among the features of interest, vortices are the most prominent:
they play a major role due to their wanted or unwanted effects on the
flow. As an example, Figure 1 shows the vortex in the wake of an air-
plane. Its influence on the flow at the runway lasts for several minutes
and is high enough to cause serious trouble for other airplanes that fol-
low too closely. Understanding vortex structures is important in order
to manipulate and control them successfully.

Several definitions of a vortex have been proposed [7, 8, 12, 5] and
a number of extraction schemes are based upon them [1, 10, 13, 14].
Thorough overviews of algorithms for the treatment of vortical struc-
tures can be found in the literature [11, 10].

One way to assess vortices in experiments is to emit particles into
the flow and to examine their behavior: patterns of swirling flow in-
dicate vortices. This has been done in the experiment shown in Fig-
ure 1. By injecting smoke, i.e., a huge amount of particles, swirling
flow caused by the wake vortex becomes visible. For numerical and
measured data sets, Sujudi and Haimes [16] proposed a scheme to ex-
tract centers of swirling flow. Peikert et al. formulated the idea of
Sujudi/Haimes using the Parallel Vectors operator and presented a fast
and robust extraction technique [10]. Bauer et al. [2] and Theisel et al.
[17] proposed different algorithms to track these centers over time in
unsteady flows. All these approaches have in common that they assess
the behavior of stream lines only.

However, most flow phenomena are unsteady in nature. In unsteady
flows (as shown in Figure 1), particle motion is described by path lines
instead of stream lines. This generally gives different swirling pat-
terns. In this paper we aim at extracting the cores of swirling particle
motion in unsteady flows based on the behavior of path lines. To do
so, we develop a novel mathematical characterization of such cores
as a generalization of the original idea of Sujudi/Haimes. We do this
for 2D and 3D flows. In the latter case, the resulting core structures
are lines sweeping over time, i.e., surfaces in the space-time domain.
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Fig. 1. Wake vortex study from NASA Langley Research Center [9]. The
flow around a starting agricultural plane is made visible using smoke
injection. A huge pattern of swirling particle motion is created by the
aircraft’s wake vortex. This paper aims at extracting the cores of such
areas.

At a single time step, particles group around these core lines forming
patterns of swirling motion similar to Figure 1. That is why we refer
to those features as swirling particle cores. Mathematically, they are
characterized by the coplanarity of three 4D vectors. In order to ex-
tract them, we show how to re-formulate the problem using the Parallel
Vectors operator [10] and apply it accordingly.

The paper is organized as follows: In section 2 we review the basic
principles of characteristic curves and swirling motion of stream lines.
In section 3 we develop our description of cores of swirling particle
motion. Furthermore, we introduce a unified notation of swirling mo-
tion in 2D and 3D flows. In section 4 we re-formulate this description
using the Parallel Vectors operator and show how to extract the cores.
In section 5 we apply our technique to a number of 2D and 3D flows.
We draw conclusions in section 6.

2 THEORETICAL BACKGROUND

2.1 Stream Lines and Path Lines

In a time-dependent vector field v(x, t) there are two important types
of characteristic curves: stream lines and path lines. In a space-time
point (x0, t0) we can start a stream line (staying in time slice t = t0) by



v(x,y, t) = (1− t) · + t ·

(a) Stream lines of s correspond to the
stream lines in v. See (5).

(b) Stream lines of p correspond to the
path lines in v. See (4).

Fig. 2. Characteristic curves of a simple 2D time-dependent vector field
shown as illuminated field lines. The red/green coordinate axes denote
the (x,y)-domain, the blue axis shows time.

integrating

d
dτ

x(τ) = v(x(τ), t0) with x(0) = x0 (1)

or a path line by integrating

d
dt

x(t) = v(x(t), t) with x(t0) = x0. (2)

Path lines describe the trajectories of massless particles in time-
dependent vector fields. The ODE system (2) can be rewritten as an
autonomous system at the expense of an increase in dimension by one,
if time is included as an explicit state variable:

d
dt

(
x
t

)
=
(

v(x(t), t)
1

)
with

(
x
t

)
(0) =

(
x0
t0

)
. (3)

In this formulation space and time are dealt with on equal footing –
facilitating the analysis of spatio-temporal features. Path lines of the
original vector field v in ordinary space now appear as stream lines of
the vector field

p(x, t) =
(

v(x, t)
1

)
(4)

in space-time. To treat stream lines of v, one may simply use

s(x, t) =
(

v(x, t)
0

)
. (5)

Figure 2 illustrates s and p for a simple example vector field v. It
is obtained by a linear interpolation over time of two bilinear vector
fields.

A vector field is called steady if v(x, t) = v(x, t0), i.e., it is constant
over time. In this setting, stream lines and path lines coincide and are
given as the solution of

d
dτ

x(τ) = v(x(τ)) with x(0) = x0. (6)

A number of visualization techniques originally designed for steady
vector fields can be applied to unsteady fields by considering each time
step independently. In this case equations (6) and (1) coincide – hence,
these approaches address the behavior of stream lines. Examining the
behavior of path lines (particles) requires to consider time explicitly.

(a) Cores of swirling motion in 2D
steady flow fields are critical points
where the Jacobian has a pair of
conjugate complex eigenvalues.

(b) Cores of spiraling stream lines in
2D unsteady flows are certain
critical points (foci and center)
tracked over time. Example vector
field from Figure 2a.

Fig. 3. Swirling motion of stream lines in 2D steady and unsteady flows.

2.2 Swirling Motion of Stream Lines
Patterns of spiraling stream lines in 2D and 3D flows have already
been treated in the literature. These patterns are assessed by examining
eigenvalues and eigenvectors of the first derivative J (the Jacobian) of
the respective flow field v. A necessary condition for spiraling stream
lines in v is that J has a pair of conjugate complex eigenvalues. In the
following we give a short overview of the literature.

2.2.1 2D Flows
A steady 2D flow field is given as

v(x,y) =
(

u(x,y)
v(x,y)

)
. (7)

The Jacobian of this field has either two real or one pair of conjugate
complex eigenvalues. Swirling motion occurs in the latter case only
– stream lines spiraling around a common point (see Figure 3a). The
velocity at this point must be zero, i.e., v(x,y) = 0. This means that
cores of swirling motion in 2D steady flow fields are certain types of
critical points, namely foci and centers. Thus, they can be treated using
steady flow field topology as described in [6].

An unsteady 2D flow field is given as

v(x,y, t) =
(

u(x,y, t)
v(x,y, t)

)
. (8)

Following (5), the stream lines of this field always stay in the same
given time slice t0 (Figure 2a). Thus, swirling motion in a single time
slice can be captured by applying the scheme known from the steady
case. By changing the given time slice, the critical points will move
over time and form line-type structures in space-time. In order to ex-
tract all locations of all foci and centers one has to apply algorithms for
tracking critical points as known from [20, 18, 19]. Figure 3b shows
this for the simple example vector field known from Figure 2a.

Throughout the paper, swirling stream line cores will be colored
blue, whereas swirling particle cores will be colored red.

2.2.2 3D Flows
A steady 3D flow field is given as

v(x,y,z) =

u(x,y,z)
v(x,y,z)
w(x,y,z)

 . (9)

Centers of swirling motion in these fields have first been treated by
Sujudi and Haimes [16]. Their inspiration was the flow pattern around
a certain type of critical point: a focus saddle (see Figure 4 for an
illustration). Here, the Jacobian of the flow field has one real and two



Fig. 4. Flow pattern
around a focus sad-
dle. The blue plane is
spanned by the eigen-
vectors corresponding
to the complex eigen-
values. Swirling motion
takes place in this plane
around the real eigen-
vector denoted by the red
arrows.

(a) Cores of swirling motion in 3D steady flows are lines where v||e. Shown is a
simple vortex model: the Stuart vortex (11).

(b) Cores of spiraling stream lines in 3D unsteady flows are lines sweeping over
time. Blue denotes the past of the core, gray shows the future. Shown is a
certain time step of the Stuart vortex moving over time from left to right with a
constant velocity. This added convection velocity results in an upward shift of
the stream line core compared to the steady case. The LIC plane shows the
stream line pattern at the chosen time step.

Fig. 5. Swirling motion of stream lines in 3D steady and unsteady flows.

complex eigenvalues. The eigenvectors corresponding to the complex
eigenvalues span a plane in which the flow spirals around the critical
point. The eigenvector corresponding to the real eigenvalue denotes
the axis of rotation.

Sujudi and Haimes generalized this flow pattern to non-critical
points by considering the so called reduced velocity. At a point x,
the reduced velocity w(x) is given as the projection of the steady flow
field v(x) to the plane normal to the real eigenvector e by

w(x) = v(x)− (v(x) · e(x))e(x). (10)

They show that centers of swirling flow are line-type structures where
w(x) = 0. Peikert et al. [10] formulated this using the Parallel Vectors
operator and showed that w(x) = 0 is equivalent to v(x)||e(x), i.e., v
and e are parallel. Figure 5a shows the core line of swirling flow for
the Stuart vortex, a simple vortex model given by

v(x,y,z) =

 sinh(y)/(cosh(y)−0.25cos(x))
−0.25sin(x)/(cosh(y)−0.25cos(x))

z

 . (11)

As expected, the swirling patterns in the LIC image correlate with the
extracted center of swirling flow.

An unsteady 3D flow field is given as

v(x,y,z, t) =

u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)

 . (12)

At each time step t0, locations of swirling stream line behavior can be
extracted using the method known from the steady case. This yields
lines sweeping over time, resulting in 4D surfaces in the space-time
domain. Two approaches for extracting those surfaces exist [2, 17].
Both address swirling motion of stream lines, not particles.

Figure 5b gives an example for sweeping stream line cores, ex-
tracted by the method in [17]. The flow field is derived from the steady
model (11) by superimposing a constant flow of velocity (1,0,0)T .
This leads to structures moving constantly from left to right over time.
The swirling stream line core at t = 0 is depicted as a blue line. Past
and future is encoded in the surface, where blue means the past and
grey encodes future. Note that by adding the convection velocity, the
swirling stream line loci moved up relative to the steady case.

3 CORES OF SWIRLING PARTICLE MOTION

In the last section we reviewed the approaches for extracting swirling
motion of stream lines in steady and unsteady flows. To the best of
our knowledge, there exists no approach for capturing swirling motion
of path lines. We believe that studying the behavior of path lines is
important since particle motion in unsteady flows is described by path
lines instead of stream lines. Furthermore, many flow phenomena are
unsteady and examining them solely based on the behavior of stream
lines in certain time steps may not give the complete picture.

In the course of this section we develop a novel mathematical char-
acterization of swirling particle motion in 2D and 3D unsteady flows
– sections 3.1 and 3.2 respectively. Afterwards, we give a comprehen-
sive summary of all discussed types of swirling flow leading to a more
generalized notation (section 3.3).

3.1 Swirling Particle Motion in 2D
Following (4), the path lines of an unsteady 2D flow field v(x,y, t) are
given as the stream lines of the steady 3D vector field

p(x,y, t) =
(

v(x,y, t)
1

)
=

u(x,y, t)
v(x,y, t)

1

 . (13)

This formulation of path lines as stream lines in a higher-dimensional
vector field reduces the identification of swirling particle motion to a
known case: it can be treated similar to swirling stream line motion
of a steady 3D vector field by applying the original approach of Su-
judi/Haimes [16] to p. This yields line structures where the Jacobian
of p has a pair of conjugate complex eigenvalues and the only real
eigenvector is parallel to p. The Jacobian of p is

J(p) =

ux uy ut
vx vy vt
0 0 0

 (14)

and has the eigenvalues e1,e2,0 with the respective eigenvectors(
e1
0

)
,

(
e2
0

)
, f, (15)

where e1,e2,e1,e2 constitute the eigensystem of the spatial Jacobian[ux uy
vx vy

]
and

f =

det(vy,vt)
det(vt ,vx)
det(vx,vy)

 . (16)

Note, that f is the so-called Feature Flow Field for tracking critical
points in time-dependent 2D vector fields known from [18]. In order
to track critical points of v, this field f was designed such that the



(a) View similar to Figure 2b. (b) View from top. Additionally, the
core line of spiraling stream lines is
shown in blue (cf. Figure 3b).

Fig. 6. Core line (shown in red) of swirling particle motion of a simple 2D
unsteady vector field v (see Figure 2). The path lines of v spiral around
this core line.

values of v do not change along the stream lines of f. In other words,
the directional derivative of v in direction of f is zero. This means that
J(v) · f = 0 and consequently J(p) · f = 0 · f. Hence, f necessarily is an
eigenvector of J(p) corresponding to the eigenvalue 0.

Figure 6 shows the core of swirling particle motion for the simple
2D unsteady vector field introduced in Figure 2. The core line is de-
picted in red. Additionally, Figure 6b shows the core line of spiraling
stream lines in blue. It can clearly be seen that both structures are dif-
ferent and that the particle core line lies in the center of the spiraling
path lines.

3.2 Swirling Particle Motion in 3D
We aim at extracting swirling particle cores of an unsteady 3D flow
field v(x,y,z, t), i.e., locations around which spiraling patterns of path
lines occur. Following (4), path lines of v are stream lines of the steady
4D vector field

p(x,y,z, t) =
(

v(x,y,z, t)
1

)
=

u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)

1

 . (17)

There is no existing tool to identify swirling motion in a steady 4D
vector field. In the following we develop a new approach. The key
is, again, the eigensystem of the Jacobian of p. In the 3D unsteady
setting, the Jacobian of p is

J(p) =

ux uy uz ut
vx vy vz vt
wx wy wz wt
0 0 0 0

 (18)

and has the eigenvalues e1,e2,e3,0 with the respective four eigenvec-
tors (

e1
0

)
,

(
e2
0

)
,

(
e3
0

)
=: es, f, (19)

where e1,e2,e3 are the eigenvectors of the spatial Jacobian

Js(v) =

ux uy uz
vx vy vz
wx wy wz

 (20)

and the fourth eigenvector f can be written as

f(x,y,z, t) =

+det(vy,vz,vt)
−det(vz,vt ,vx)
+det(vt ,vx,vy)
−det(vx,vy,vz)

 . (21)

(a) Swirling particle core as a line at t = 0 shown in red. Particles are grouping
around that line in a spiraling pattern. Additionally, the core of swirling stream
line motion is shown in blue. This clearly shows that stream lines and path
lines spiral around different centers (compare with Figure 5b).

(b) Swirling particle cores in 3D unsteady flows are lines sweeping over time, i.e.,
surfaces in the 4D space-time domain. Red denotes the past of the core line,
gray shows its future.

Fig. 7. As an illustration of our new technique, swirling particle motion is
shown in the example of the Stuart vortex moving over time from left to
right with a constant velocity.

Note, that f is the Feature Flow Field for tracking critical points in
3D unsteady vector fields [21] – here, the same explanation as in the
2D case applies (section 3.1). The eigenvalue corresponding to f is
always zero. Therefore, J(p) has always one real eigenvalue and only
the following cases can occur:

• All eigenvalues of J(p) are real.

• J(p) has a pair of conjugate complex eigenvalues and two real
eigenvalues – let them be sorted such that e1,e2 are complex and
e3 is real.

Since complex eigenvalues are a necessary condition, swirling motion
is only possible in the latter case. At any given point x in the 4D do-
main, the eigenvectors corresponding to e1,e2 span a plane Pc in which
locally the swirling motion occurs. The two real eigenvectors es and
f denote the part of the flow which is independent of swirling – they
span a plane Pr in which no swirling occurs at all. In order to see what
the core of swirling motion in 4D is, consider the following rephrasing
of the definitions of swirling motion cores in other dimensions:

Although a point x on the core structure is surrounded by
spiraling integral curves, the flow vector at x itself is solely
governed by the non-swirling part of the flow.

This is a direct generalization of the “reduced velocity”-idea of Su-
judi/Haimes. For our case this means that x is a point on the swirling
particle core if the flow vector p(x) lies in the plane of non-swirling
flow Pr, i.e., the plane spanned by es and f. In other words, the swirling
particle cores are at locations where

λ1p+λ2es +λ3f = 0 with λ
2
1 +λ

2
2 +λ

2
3 > 0. (22)

This is a coplanarity problem: swirling particle cores are at locations
where the 4D vectors p, es and f are coplanar. We call the operator
solving this equation the Coplanar Vectors operator, which reads in
the general setting

λ1a+λ2b+λ3c = 0 with λ
2
1 +λ

2
2 +λ

2
3 > 0. (23)



In order to show that our approach is reasonable, we study what
happens if we require the flow field v to be steady, i.e., v(x,y,z, t) =
v(x,y,z, t0). In this setting, path lines coincide with stream lines and
our approach needs to reduce to the steady case, i.e., the method of
Sujudi/Haimes. As the temporal derivative vt = 0, the fourth eigen-
vector becomes f = (0,0,0,−det(vx,vy,vz))T following (21), and the
coplanarity condition (22) reads

λ1

v

1

+λ2

e3

0

+λ3

 0
0
0

−det(vx,vy,vz)

= 0. (24)

The last component of this equation requires λ1 = λ3 det(vx,vy,vz).
Hence, in the steady setting our approach reduces to v||e3, i.e., the
method of Sujudi/Haimes.

In Figure 7 the core of swirling particle motion has been extracted
and visualized for the moving Stuart vortex. In Figure 7a the core
is shown for t = 0 as a red line. A number of particles have been
seeded uniformly and advected over time. They form a spiraling pat-
tern around the core line. That is why we call the structures fulfilling
(22) swirling particle cores. Additionally, Figure 7a shows the core
of swirling stream line motion in blue. It can clearly be seen that the
structures are different. Note, that swirling particle cores of 3D un-
steady fields are surfaces, i.e., the particle core lines of a single time
step sweep over time. This is shown in Figure 7b where the past of the
core line is encoded in red and its future in gray.

In section 4 we will show how to extract swirling particle cores. In
the next section we will give a summary on swirling motion in general.

3.3 A Unified Notation of Swirling Motion Cores
As we have seen in the previous sections, one may find swirling motion
of

• stream lines in steady fields,

• stream lines in unsteady fields,

• path lines in unsteady fields.

All three cases can be found in 2D as well as 3D fields, summing up
to a total of six cases. In the following we show how all those cases
can be written using a unified notation.

Let V be the autonomous system of the characteristic curves in
question, i.e., v for the steady case (6), s for the stream lines of an
unsteady flow (5), and p for path lines (4). Let ei be the eigenvectors
corresponding to the real eigenvalues of J(V). The point x is part of
the respective core of swirling motion, if V(x) lies in the span of ei(x).
In other words, this reads

λ1V(x)+∑λiei(x) = 0 with ∑λ
2
i > 0. (25)

We want to illustrate this: depending on the dimension of V, this is
equivalent to

• extraction of critical points in 2D,

• solving the Parallel Vectors operator in 3D,

• solving the Coplanar Vectors operator in 4D.

Table 1 illustrates this. The first column of this table covers the
steady case, i.e., critical point extraction in 2D and the method of Su-
judi/Haimes in 3D. They have been discussed in section 2.2. The third
column refers to swirling particle cores as developed above. It remains
to explain the second column where swirling motion of stream lines in
unsteady flows is treated. In the 2D unsteady case, the Parallel Vectors
operator is applied to s and its only real eigenvector e. We need to
show that this describes critical points (foci and centers) tracked over
time as discussed in section 2.2.1. Indeed,

λ1s+λ2e = λ1

u
v
0

+λ2

e1
e2
e3

= 0 (26)

requires λ2 = 0 and hence v = (u
v ) = 0, as needed. This means that the

Parallel Vectors operator can be used to track critical points in time-
dependent 2D vector fields. In fact, the critical point in Figure 3b has
been tracked this way. See also Figures 9a-b.

A similar statement holds for the 3D unsteady case, where the
Coplanar Vectors operator is used to describe swirling stream line
cores swept over time.

4 EXTRACTION OF SWIRLING PARTICLE CORES

In the following we show how to extract swirling particle cores of
unsteady 3D flows. In the next section we re-formulate the coplanarity
problem (22) using the Parallel Vectors operator [10] – a common tool
for feature extraction in the visualization community, which we will
briefly explain in section 4.2.

4.1 Formulation using Parallel Vectors
We identified cores of swirling particle motion in unsteady 3D flows
as locations where the three 4D vector fields p,es, f are coplanar. This
is given by (22), which reads component-wise

λ1

u
v
w
1

+λ2

es
1

es
2

es
3
0

+λ3

f1
f2
f3
f4

= 0, (27)

By setting λ1 = −λ3f4 we can eliminate the fourth component, and
the reformulation reads

λ2

es
1

es
2

es
3


︸ ︷︷ ︸

a

+λ3

f1
f2
f3

− f4

u
v
w


︸ ︷︷ ︸

b

= 0. (28)

This is a 3D Parallel Vectors problem. The reformulation a||b is equiv-
alent to the coplanarity of the vector fields p,es, f, and hence a||b is
satisfied exactly at the cores of swirling particle motion in unsteady
flow fields. With this reformulation at hand we can use the powerful
extraction techniques available for the Parallel Vectors operator.

Note that although the eigenvectors corresponding to the eigenvalue
zero can be calculated explicitly using formulae (16) and (21), it is
more stable to calculate all involved eigenvectors using an eigenvector
solver, especially in degenerate cases where det(vx,vy) = 0 in 2D or
det(vx,vy,vz) = 0 in 3D.

4.2 Extraction using Parallel Vectors
Applying the Parallel Vectors operator to our problem yields lines
sweeping over time, i.e., surfaces in the 4D space-time domain. Dif-
ferent methods of extracting these surfaces exist [2, 17] – both being
extensions of the original approach presented in [10], which can be
summarized as follows: to extract the solution lines for a specific time
step, one has to iterate over all faces of the grid and search for points
where a||b. For example, in a triangle (being the face of a tetrahe-
dral mesh) one can find such points by solving a certain three-by-three
eigenvalue problem. The extracted points have to be connected to lines
in a post-processing step by considering the solution points at the faces
belonging to the same volume element (tetrahedron, voxel, etc.). On
volume elements with more than two adjacent solutions, a decision is
necessary which points should be connected. We use a simple angle
criterion: the line segments with the smallest angle to each other are
connected.

As Peikert et al. [10] already pointed out, one expects swirling
stream line cores to point in direction of the flow field, but the par-
allelity condition a||b does not ensure this. Indeed, the solution lines
can be orthogonal to the input vectors. Whenever this is not desired,
one can filter the output such that only lines are displayed that do not
exceed a defined threshold angle towards a, or b. For both the swirling
stream line and particle cores we use the angle between the solution
lines and e as a criterion.



steady unsteady
stream lines stream lines path lines

2D

CRITICAL POINTS

λv = 0
CP finder

can be treated using [6]

TRACKED CRITICAL POINTS

λ1s+λ2e = 0
PV operator

can be treated using [18]
and, as proven, using [16, 10]

SWIRLING PARTICLE CORES

λ1p+λ2e = 0
PV operator

treated in this paper
can be extracted using [16, 10]

3D

SWIRLING STREAM LINE CORES

λ1v+λ2e = 0
PV operator

original idea of Sujudi/Haimes
treated in [16, 10]

TRACKED STREAM LINE CORES

λ1s+λ2es +λ3f = 0
CV operator

treated in [2, 17]

SWIRLING PARTICLE CORES

λ1p+λ2es +λ3f = 0
CV operator

treated in this paper

Table 1. Summary of swirling motion in 2D and 3D flows. Depending on the dimension of the autonomous system the conditions can be written
using the notations of Critical Points (CP), Parallel Vectors (PV), and Coplanar Vectors (CV).

(a) Complete extraction result prior to
filtering. Lines shorter than a
threshold are depicted in gray.

(b) Orthographic view from top showing
the dominant particle core (red) in
the center of the clouds.

Fig. 8. Hurricane Isabel data set at t = 33.5. Shown are the dominat-
ing swirling particle core line (red) and a volume rendering of the cloud
moisture mixing ratio.

Note that the extraction of core lines of swirling motion is nonlin-
ear in general, since eigenvectors do not depend linearly on the input
fields. While this makes the extraction using linear techniques more
difficult in general, we found that filtering the resulting lines by length
was sufficient to rule out the nonlinearity.

5 APPLICATIONS

As we use the Parallel Vectors operator for the extraction of swirling
particle cores, we refer the reader to the literature [10] for the discus-
sion of timings and memory consumption. In our implementation, a
single time step of dimension 1283 is processed in a single thread in
about 15 seconds on an AMD64 X2 4400+.

In 3D unsteady flows, swirling particle cores are lines sweeping
over time, i.e., 4D surfaces. In the previous sections we used semi-
transparent surfaces to encode past and future (e.g. Figure 7b). How-
ever, for more complex data sets these surfaces might contain self in-
tersections. We found that displaying the core lines only – at a certain
time step or in an animation – results in clearer visualizations in most
cases.

In Figure 8 we applied our method to the Hurricane Isabel data set
from the IEEE Visualization 2004 contest. This is a complex 3D time-
dependent data set produced by the Weather Research and Forecast
(WRF) model. Figure 8a shows the unfiltered extraction result at t =
33.5 consisting of 1533 core lines. We have chosen to filter all lines
shorter than 10% of the diagonal of the bounding box. The result is the
single swirling particle core line in the eye of the hurricane – verified
by the volume rendering of the cloud moisture (Figure 8b).

Figure 9 shows an unsteady flow over a 2D cavity. This data set was
kindly provided by Mo Samimy and Edgar Caraballo (both Ohio State
University) [4] as well as Bernd R. Noack and Ivanka Pelivan (both TU
Berlin). 1000 time steps have been simulated using the compressible

Navier-Stokes equations. The data is almost periodic, with a period of
about 100 time steps in length, and only the first 100 time steps are
shown.

As shown in section 3.3, the Parallel Vectors operator can be used
to track certain critical points (foci and centers) over time. Figures 9a-
b exemplify this: the blue lines denote swirling motion of stream lines
– once extracted by tracking critical points using Feature Flow Fields
and once by applying the Parallel Vectors operator. Both results coin-
cide very well. Note that additionally Figure 9a shows tracked saddle
points as yellow curves. Figure 9c stresses again the difference be-
tween swirling particle and stream line cores: the blue swirling stream
line core goes through the center of spiraling stream lines at a spe-
cific time step (shown as LIC plane), but it does not lie in the center
of spiraling path lines (shown as illuminated lines). Since unsteady
motion is described by path lines, existing approaches fail to capture
swirling motion in unsteady flows correctly: they are based on stream
lines. Our approach captures this behavior correctly as shown by the
red swirling particle core. Figure 9d shows the 181 extracted particle
core lines, where the majority (154) is shorter than 3.5% of the diag-
onal of the bounding box and has been filtered accordingly. Figure 9e
shows the filtered result.

Figure 10 demonstrates the results of our method applied to a flow
behind a circular cylinder. The data set was derived by Bernd R. Noack
(TU Berlin) from a direct numerical Navier Stokes simulation by Gerd
Mutschke (FZ Rossendorf). It resolves the so called ‘mode B’ of the
3D cylinder wake at a Reynolds number of 300 and a spanwise wave-
length of 1 diameter. The data is provided on a 265×337×65 curvi-
linear grid as a low-dimensional Galerkin model. The flow exhibits
periodic vortex shedding leading to the well known von Kármán vor-
tex street [22]. This phenomenon plays an important role in many
industrial applications, like mixing in heat exchangers or mass flow
measurements with vortex counters. However, this vortex shedding
can lead to undesirable periodic forces on obstacles, like chimneys,
buildings, bridges and submarine towers.

Figures 10a-b show particles seeded at a vertical line on the left-
hand side of the bounding box. Due to the periodic vortex shed-
ding these particles form patterns of swirling motion after some in-
tegration steps – a clear indication of the von Kármán vortex street.
These patterns perfectly match up with the cores of swirling particle
motion (red) extracted using our method (filtered by angle criterion
with |cos(`,e)| < 0.3 and by length with 0.1%). Figure 10c shows
stream lines at a certain time step as depicted by the LIC plane: ex-
isting approaches based on stream lines have to fail to detect the von
Kármán vortex street here, since the original frame of reference does
not exhibit any spiraling stream lines. However, our method is based
on the behavior of path lines and captures the vortex street correctly.
Stream line based approaches are able to capture the features only if
one chooses a reference frame matching their convection velocity. In
this frame of reference, swirling motion of stream lines is present and



(a) Time evolution of critical points.

(b) Swirling stream line cores.

(c) Close-up of a swirling particle core (red) in comparison to a swirling stream line core (blue).

(d) Swirling particle cores as identified by our new
approach. Short, filtered lines are depicted in gray.

(e) Illuminated path lines verify that our cores are centers
of swirling particle motion.

Fig. 9. Unsteady flow over a 2D cavity. Red and green axes span the spatial domain, the blue axis denotes time.

its cores can be extracted by the method of Sujudi/Haimes. This has
been done in Figure 10d by applying a priori knowledge [22]. As a
reference, the swirling particle cores (red) are also displayed. The ex-
tracted structures are very close to each other (Figure 10e). However,
our method is able to extract these features in the original frame of
reference without a priori knowledge.

6 CONCLUSIONS AND DISCUSSION

In this paper, we made the following contributions:

• For the first time, we addressed the identification of cores of
swirling motion of path lines in unsteady flows.

• We developed a mathematical characterization of swirling parti-
cle cores.

• We introduced the Coplanar Vectors operator for deducing the
characterization for 3D unsteady flows.

• We showed how to re-formulate and extract swirling particle
cores in 3D unsteady fields using the Parallel Vectors operator
– a common tool for feature extraction in the visualization com-
munity. This eases the implementation of our approach in other
visualization systems.

• We presented a unified notation of swirling motion in 2D and 3D
flows.

• We applied our technique to a number of 2D and 3D unsteady
data sets.

Our method is a generalization of the approach by Sujudi/Haimes
and clearly inherits its limitations. In particular, the method can result
in false positives, i.e., lines that actually lie off the desired core line.
Also when noise is present the method may extract a variety of short
lines. Both issues have been treated in the literature [10] by filtering
the output by length and certain angle criteria as discussed in section

4.2. Also, Roth and Peikert pointed out in [12] that the method of Su-
judi/Haimes has its limitations in settings where curved boundaries are
involved. Our method might have comparable limitations and it is an
interesting point for further studies to see if the higher-order methods
in [12] can be extended to path lines in an analogous way.

A different notion of swirling motion in unsteady flows is currently
under development and intermediate results are available [3].

Note that different vortex definitions exist and swirling motion is
only one way to assess vortices. While most vortex definitions given
in the fluid dynamics community are either Galilean invariant or even
objective (see [5, 7, 8, 13, 14]), all types of swirling motion cores are
not invariant under such transformations. However, cores of swirling
motion have an intuitive interpretation, accompany the behavior of in-
tegral curves and their extraction is comparatively simple and fast.
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