
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 1

Stable Feature Flow Fields
Tino Weinkauf, Holger Theisel, Allen Van Gelder, Alex Pang

Abstract—Feature Flow Fields are a well-accepted approach for extracting and tracking features. In particular, they are often used to
track critical points in time-dependent vector fields and to extract and track vortex core lines. The general idea is to extract the feature
or its temporal evolution using a stream line integration in a derived vector field – the so-called Feature Flow Field (FFF). Hence, the
desired feature line is a stream line of the FFF. As we will carefully analyze in this paper, the stream lines around this feature line may
diverge from it. This creates an unstable situation: if the integration moves slightly off the feature line due to numerical errors, then it will
be captured by the diverging neighborhood and carried away from the real feature line. The goal of this paper is to define a new FFF
with the guarantee that the neighborhood of a feature line has always converging behavior. This way, we have an automatic correction
of numerical errors: if the integration moves slightly off the feature line, it automatically moves back to it during the ongoing integration.
This yields results which are an order of magnitude more accurate than the results from previous schemes. We present new stable
FFF formulations for the main applications of tracking critical points and solving the Parallel Vectors operator. We apply our method to
a number of data sets.

F

1 INTRODUCTION

F EATURE Flow Fields (in the following abbreviated
FFF) are a common approach to extract and track

different kinds of local features in scalar, vector, and ten-
sor fields. After their introduction in [22], FFF have been
applied to track critical points in time-dependent vector
fields, extract extremal structures in scalar fields, extract
features described by the parallel vectors operator, or to
extract degenerate lines in 3D symmetric tensor fields.

The main idea of FFF is to derive a new vector field f
out of the given (scalar, vector, or tensor) field such that
the desired features are stream objects of f . Then the
features can be extracted in a two-step approach. Firstly,
an appropriate set of seeding structures has to be found,
then secondly the features are obtained by a numerical
stream object integration starting from the seeding struc-
tures. Although introduced in a more general context,
FFF are mostly used to extract line features. In this paper,
we focus on line features as well.

FFF allow to extract and track a large variety of
features in scalar, vector and tensor fields [28]. It is
attractive for these reasons:
• numerical algorithms for finding seed points and

integrating stream lines are well-established,
• the method is independent of the underlying grid

structure of the data,
• and FFF can also be used to find and classify

bifurcations in the evolution of the features [21].
However, numerical instabilities have been reported
about FFF [27], [12]. At a rather abstract level they are

• Tino Weinkauf is with Courant Institute of Mathematical Sciences, New
York University, E-mail: weinkauf@courant.nyu.edu.

• Holger Theisel is head of the Visual Computing Group at University of
Magdeburg, E-mail: theisel@isg.cs.uni-magdeburg.de.

• Allen Van Gelder is with UC Santa Cruz,
Web: http://users.soe.ucsc.edu/~avg/.

• Alex Pang is with UC Santa Cruz, E-mail: pang@cse.ucsc.edu.

due to the fact that most FFF formulations use first
order derivatives of the original fields, and that the FFF
approach therefore consists of a subsequent derivation
and integration of the original field which is potentially
prone to numerical errors. On a more concrete level,
there are two reasons for the instability of FFF:

1) A numerical integration starting on a feature line
may (due to numerical integration errors) slightly
move off the feature, then the integration may
get carried away due to a diverging stream line
behavior in the neighborhood.

2) Previous FFF formulations are designed to preserve
the data value along any stream line in the whole
domain and not only on the feature line. Once the
integration is off the feature line, FFF will try to
preserve this error and does not attempt to return
to the feature.

Note that reason 1 generally holds for any numerical
stream line integration, while reason 2 is specific for
the FFF integration. A first solution to this instability
problem has been presented in [27] which is based on
an alternating stream line integration and root finding
to enforce a return to the original feature line. This way,
[27] is a predictor-corrector approach.

Numerical integration errors cannot be avoided un-
less the field is trivial. However, for the case of FFF
integration they can be automatically corrected. In this
paper we introduce a new approach to deal with the
instability problem of FFF. As a modification of the
FFF formulation we define a new FFF h such that the
feature lines are not only stream lines of h but that a
stream line of h starting in a neighborhood of the feature
line converges to it. This ensures that small numerical
integration errors are automatically corrected during the
ongoing integration. Figure 1 illustrates the main idea of
the paper. Note that we do not use a predictor-corrector
approach here. Instead, only a numerical stream line

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 2

(a) Original FFF approach with
diverging stream lines.

(b) Stable FFF approach guarantees
converging flow behavior.

Fig. 1. The same feature line (red) encoded as inte-
gral curve in two different Feature Flow Fields. With the
original approach, starting the integration slightly off the
feature may move away from it. Our new stable FFF
approach brings the integration back to the feature line.

integration is necessary.
In this paper we establish the concept of stable FFF

only for the two most common FFF approaches: track-
ing critical points in time dependent vector fields, and
extracting parallel vector lines.

The rest of the paper is organized as follows: section
2 collects related work. Section 3 analyzes the converg-
ing/diverging behavior of stream lines in non-critical
points and gives a formal definition of stable FFF. Section
4 introduces the new FFF for tracking critical points in
2D time-dependent vector fields. Section 5 does so for
extracting parallel vector lines in 3D fields. An overview
of the complete extraction pipeline is given in section 6.
Section 7 applies the techniques to different data sets,
while conclusions are drawn in section 8.

2 RELATED WORK

Topological methods have been introduced as a visu-
alization tool by Helman and Hesselink [11], where
first order critical points are classified by an eigen-
value/eigenvector analysis of the Jacobian matrix. Later,
topological methods have been extended to 3D [10],
higher order critical points [19], [31], and closed sepa-
ratrices [32], [5]. Overviews of feature-based flow visu-
alization techniques are given in [17], [13].

For parameter-dependent vector fields, one aims at
capturing the evolution of the topological structures. An
important class of such fields are time-dependent flows.
Tricoche et al. [25] track the location of critical points
over time and detect local bifurcations like fold and
Hopf bifurcations. This approach works on a piecewise
linear 2D vector field and computes and connects the
critical points on the faces of a prism cell structure, which
is constructed from the underlying triangular grid. An
extension to 3D has been given by Garth et al. [9]
together with a novel visualization of the paths of the
critical points that uses principal component analysis to
plot these four-dimensional paths in two dimensions.

Theisel and Seidel [22] introduced an alternative fea-
ture tracking approach to the visualization community
called Feature Flow Fields (FFF). It allows to track a
feature by means of a simple stream line integration. FFF
were applied to track critical points in time-dependent
[23], [7] and two-parameter-dependent vector fields [30].
Furthermore, FFF can be used to extract and track lines
defined by the parallel vectors operator [21], which has
been introduced by Peikert and Roth [16] as a general
feature extraction tool to describe different features such
as vortex core lines [29] and ridge lines [26]. FFF have
been applied to extract degenerate lines in 3D symmetric
tensor fields [34]. Klein and Ertl [12] use FFF to track
critical points in scale space.

Tracking critical points in 2D time-dependent vector
fields is equivalent to finding the intersection of two
3D isosurfaces as we will see in section 4. Various
approaches for intersecting such surfaces were surveyed
in [15]. However, numerous difficulties regarding these
techniques have been identified in this survey as well.
Also note that not all FFF problems can be described
as an intersection of surfaces, e.g., extracting vortex core
lines as treated in section 5.

The instability problem of FFF has been addressed
for the first time by Van Gelder and Pang [27] in the
context of tracking parallel vector lines. The solution
presented there is a predictor-corrector approach: after
every integration step, the particle is moved back to the
feature line by applying a root finding in 3D. This has
two consequences: the additional root finding requires
substantial computing time, and one major FFF advan-
tage is lost, namely reducing feature tracking to a simple
stream line integration. In the following we show how
to stabilize the FFF by introducing a new FFF in a closed
form. This way, we can use any off-the-shelf numerical
integrator instead of a predictor-corrector approach.

Addressing issues such as numerical instabilities,
noise, or uncertainty during analysis and visualization
is an active field of research. For example, visualizations
may be augmented with uncertainty indicators such
as glyphs [14] or blur in texture-based visualizations
[2]. Several topological methods allow to simplify the
topological skeleton. The general idea is to reduce the
noise-induced wealth of topological structures to a much
smaller set that still exhibits the most relevant structures.
Different approaches exist for scalar [8], [3] and vector
fields [24], [31], [18]. Chen et al. [6] give a robust method
for the extraction of the topology of vector fields that
addresses the issue of numerical instabilities by comput-
ing the Morse decomposition instead of relying on the
computation of individual trajectories.

3 MOTIVATION

We start with a formal definition of Feature Flow Fields.

Definition 1 (Feature Flow Field): Let F be a (scalar,
vector, or tensor) field, and let L be a set of feature lines

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 3

x=p(x)
y

p(y)

(a) Poincaré map p with the fix
point x = p(x) correspond-
ing to the closed stream line.
p describes a discrete dynam-
ical system on the plane which
can have attracting, repelling,
or saddle behavior.

w(x0)
w(x)

x0 x w’(x)

(b) Projecting a 3D vector field w
onto a plane in order to get
the local stream line behavior
at x0.

Fig. 2. Analyzing the global and local behavior of stream
lines in a 3D vector field.

(of the same type) in F . The vector field f is a Feature
Flow Field (FFF) if all lines of L are stream lines in f .

In this paper we will focus on three-dimensional FFF.
In order to make statements about the (in)stability of a
stream line integration in such fields, we give a formal
description of converging or diverging stream lines in
the following. This will lead us to a formal definition of
stable FFF in section 3.2.

3.1 Converging and Diverging Stream Lines
The behavior of stream lines can be discussed in a
global or a local manner. For a global treatment, note
that the feature curves are usually closed curves (unless
they hit the boundary of the domain). Therefore, the
FFF f to extract them has a closed stream line. Such
lines in 3D vector fields have an attracting, repelling, or
saddle behavior which can be obtained by considering
the Poincaré map on a plane intersecting the closed
stream line [1]. Figure 2a illustrates this. Obviously, the
analysis of the Poincaré map needs a global analysis of
the field. However, we can introduce a local measure
which describes the converging and diverging behavior
of a vector field.

Given a 3D vector field w, the analysis of the local
converging/diverging behavior around a critical point is
well-understood by doing an eigenanalysis of the Jaco-
bian. Here we are interested in a non-critical point x0. In
fact, we want to analyze the behavior of the stream lines
passing through a small neighborhood of x0: they may
converge or diverge to/from the stream line through x0.
To get the local stream line behavior of w in x0, we
consider a plane π through x0 perpendicular to w(x0).
We construct a 2D vector field on π in the following
way: for every point x ∈ π, we project w(x) into π and
obtain a 2D vector field w̃. Figure 2b illustrates this. The
field w̃ has a critical point in x0. By computing the two
eigenvalues β1, β2 of its Jacobian, we can characterize
the local converging/diverging behavior around x0. A
similar construction has already been applied in [23] in

(a) Attracting. (b) Repelling. (c) Saddle-like.

Fig. 3. Local behavior of stream lines around a non-
critical point x0 (images from [23]).

the context of 2D time dependent path lines. Note that βi

do not describe geometric properties of w: any positive
scaling of w will change the values of βi, but not their
signs and therefore not the local stream line behavior.

In order to describe geometric properties of the stream
lines around x0, we consider the Jacobian of the normal-
ized vector field w = w

‖w‖ . The Jacobian ∇w describes
the local changes of the stream lines without considering
their acceleration. The eigenvalues of ∇w are 0, λ1, λ2,
where both λi are in close relation to the βi obtained by
the projection method described above: βi = ‖w‖λi. In
other words, βi and λi have the same sign and therefore
both lead to the same classification of the behavior of
stream lines around a non-critical point in the domain
(similar to a 2D critical point):

repelling behavior: 0 <Re(λ1)≤Re(λ2)
saddle-like behavior: Re(λ1)< 0 <Re(λ2)
attracting behavior: Re(λ1)≤Re(λ2)< 0.

Furthermore, the two eigenvectors of ∇w corresponding
to λi lie in the plane π that is orthogonal to w, i.e., the
same plane that has been used to compute βi by projec-
tion as described above. The proof of these properties of
∇w is a straightforward exercise in algebra.1

For the rest of the paper, we favor λi over βi not only
because it allows for a simpler computation, but also
since λi describe geometric properties of the stream lines
of w, i.e., they are independent of the magnitude of w.
Figure 3 illustrates the behavior of stream lines around
a non-critical point x0: we integrate a stream surface
starting from a small circle in π around x0 and illustrate
attracting, repelling and saddle behavior.

A simple way of computing λ1, λ2 is through the
following properties, that we will use later:

λ1 + λ2 =: sw = div
(

w
‖w‖

)
(1)

λ1 λ2 =: pw =
w · dw

‖w‖4
(2)

1. We have included a Maple sheet of the proof in the additional
materials of the paper.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 4

with

dw =

 det(w,wy,wz)
det(wx,w,wz)
det(wx,wy,w)

 . (3)

The partial derivatives of w are denoted as wx,wy,wz .

3.2 Stable Feature Flow Fields
Now we are ready to give a formal definition of a stable
FFF:

Definition 2 (Stable Feature Flow Field): Let f be a FFF
of a number of feature lines L. f is stable if for every
point on a feature line in L the stream lines of f have
an attracting behavior, i.e. Re(λ1) ≤ Re(λ2) < 0 where
λ1, λ2 are obtained by (1)–(3) with w = f .

In a stable FFF f , stream lines of f adjacent to the feature
line converge to it under forward integration. Also note
that a stable f implies an attracting Poincaré map if the
feature line is closed.

4 STABLE FFF FOR TRACKING CRITICAL
POINTS

In this section we introduce a stable FFF which tracks
critical points in 2D time-dependent vector fields. Given
such a field

v(x, y, t) =
(
u(x, y, t)
v(x, y, t)

)
, (4)

the FFF for tracking critical points as shown in [22] is

f(x, y, t) = (∇u)T × (∇v)T =

 det(vy,vt)
det(vt,vx)
det(vx,vy)

 . (5)

If the paths of critical points of v form closed lines in the
(x, y, t)-space-time domain (i.e., if they do not touch the
domain boundary), the Poincaré map around a feature
curve is the identity. This holds because f as described
in (5) is divergence-free since it is the cross product of
two gradient fields f = (∇u)T × (∇v)T . Therefore, the
stream lines of f in a neighborhood of a closed feature
line are closed curves as well. However, note that a zero
Poincaré map does not prevent us from local integration
errors summing up.

In order to get the local converging/diverging behav-
ior of f at a feature line (i.e., at lines where v vanishes),
we have to check the eigenvalues of ∇f as described in
the previous section by means of pf = f ·df

‖f‖4 and sf = div f
following (1) – (3). Unfortunately, nothing can be said
about the signs of the non-zero eigenvalues of ∇f . They
can be positive or negative, meaning that f can act as
source, sink or saddle. To overcome this, we introduce a
correction vector field

g =
f
‖f‖
×

 det(v,vx)
det(v,vy)
det(v,vt)

 (6)

which has the following properties:
Property 1: For the corrector field g described in (6),

the following properties hold:
1) Feature lines of v are critical lines of g.
2) On a feature line, the Jacobian ∇g has the eigenval-

ues 0,−‖f‖,−‖f‖. The eigenvector corresponding
to the eigenvalue 0 is f , while the eigenplane
corresponding to the other two eigenvalues is per-
pendicular to f .

The proof of property 1.1 follows directly from (6) and
the fact that v = 0 gives g = 0. The proof of property
1.2 is a straightforward exercise in algebra.1 Note that
property 1.2 has the following interpretation: in a small
neighborhood of a feature line, g acts as a sink, meaning
that a forward integration of g converges to the feature
line. With this we can define the new FFF

h = f + α g. (7)

Since g = 0 on a feature line, h is indeed a FFF describing
the same feature lines as f . In other words, starting an
integration in either f or h from the same set of feature
seed points (see section 6) yields the same results in
theory (no false positives), but the integration in h is
numerically more stable if α is chosen properly.

Informally, the role of α in (7) can be described as
follows: if α is large enough, then h is dominated by g,
meaning that stream lines of h are converging towards
the feature line. In other words: if α is large enough, h
is a stable FFF.

Figure 4 illustrates the vector fields v, f ,g,h for a
closeup in the cavity data set (explained in section 7).
Here we have a source (red) and a saddle point (yellow)
between two fold bifurcations (gray balls), i.e., the critical
points appear at the birth fold bifurcation (lower ball)
and disappear at the death fold bifurcation. This yields a
closed feature line (see figure 4a). The vector fields f ,g,h
are depicted on a 2D plane in figures 4b - d. As shown in
figure 4e, an integration of f gets carried away from the
feature line due to an accumulation of integration errors,
which occur especially at the sharp bendings near the
fold bifurcations. After some integration time (t = 40) the
stream line leaves the area completely and runs towards
the boundary of the domain. This is clearly not desired.
Integrating the feature line in the new FFF h proves to be
stable as shown in figure 4f. This is due to the influence
of the correction field g that changes the neighborhood of
the feature line to contain converging stream lines only
(see figure 4d).

We define α from (7) as a non-constant, smooth scalar
field. This way, we can react to the different stream
line behaviors in different locations and create a stable
FFF that ensures converging behavior everywhere in the
domain with a constant strength.

4.1 Obtaining α

In order to find an α that is large enough to ensure a
converging behavior, we have to analyze the eigenvalues

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 5

(a) Tracked critical points. (b) Original FFF f . (c) Correction vector field g. (d) Stable FFF h = f + αg.

(e) Integration in f at t = 1, t = 20, and t = 40. The integration diverges
from the feature line due to locally diverging stream line behavior and
accumulated integration errors.

(f) Integration in h at t = 1, t = 20, and t = 40. The integration stays on
the feature line since h has been designed to have only converging
stream line behavior in the proximity of feature lines.

Fig. 4. Closeup of a source (red) and a saddle point (yellow) in the cavity data set. The tracked critical points form lines
in the 2D+time diagram shown in a. The blue axis denotes time. The critical points appear at a birth fold bifurcation
(lower gray ball) and disappear at a death fold bifurcation (upper gray ball) – thereby forming a closed feature line.
The integration of this feature line in the original FFF f leads eventually away from the actual feature. The integration
in the new FFF h stays on the feature line and is therefore stable. We used a Runge-Kutta scheme of 4th order with
adaptive step size control for the integrations.

of ∇h. To do so, we analyze the product ph and the sum
sh of the two non-zero eigenvalues of ∇h. We get for
the partials of h:

hx = fx + αx g + α gx (8)
hy = fy + αy g + α gy

ht = ft + αt g + α gt.

On a feature line (i.e., for v = 0) we know g = 0 which
simplifies (7) and (8) to

h = f , hx = fx + α gx (9)
hy = fy + α gy , ht = ft + α gt.

Following equation (3) this gives

dh =

 det(h,hy,ht)
det(hx,h,ht)
det(hx,hy,h)

 (10)

=

 det(f , fy, ft)
det(fx, f , ft)
det(fx, fy, f)


+α

 det(f , fy,gt) + det(f ,gy, ft)
det(f , ft,gx) + det(f ,gt, fx)
det(f , fx,gy) + det(f ,gx, fy)


+α2

 det(f ,gy,gt)
det(gx, f ,gt)
det(gx,gy, f)

 .

From this we get the product of the eigenvalues (cf.
equation (2))

ph =
h · dh

‖h‖4
= p0 + α p1 + α2p2 (11)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 6

with

p0 = pf (12)

p1 =
f
‖f‖4

·

 det(f , fy,gt) + det(f ,gy, ft)
det(f , ft,gx) + det(f ,gt, fx)
det(f , fx,gy) + det(f ,gx, fy)

 (13)

p2 =
f
‖f‖4

·

 det(f ,gy,gt)
det(gx, f ,gt)
det(gx,gy, f)

 . (14)

Furthermore, we get for their sum (cf. equation (1))

sh = div
(

h
‖h‖

)
= s0 + α s1 (15)

with

s0 = div
(

f
‖f‖

)
= sf (16)

s1 =
div(g)
‖f‖

. (17)

On a feature line, the following properties hold:

s1 = −2 , s21 − 4 p2 = 0 , 2 s0 s1 − 4 p1 = 0. (18)

The proof of this is a straightforward exercise in algebra.1

For the two non-zero eigenvalues of ∇h we have

λ1,2(α) =
sh
2
±
√
s2h
4
− ph (19)

where λ1, λ2 with Re(λ1) ≤ Re(λ2) depend on α. (19)
can be rewritten for λ2 as

λ2(α) =
1
2

(
s0 + α s1 +

√
b α2 + c α+ d

)
(20)

with b = s21 − 4 p2 , c = 2 s0 s1 − 4 p1

d = s20 − 4 p0.

Inserting (12), (16), (18) into (20) gives

λ2(α) =
sf
2
− α+

√
s2f − 4 pf

2
. (21)

In order to obtain α, we introduce a positive parameter
k > 0 which controls the strength of the attracting
behavior of h along the feature line. In fact, we want
to set α such that

Re(λ1(α)) ≤ Re(λ2(α)) = −k < 0. (22)

Following definition 2, any k > 0 guarantees that h
is a stable FFF, i.e., h has attracting behavior around
its feature lines. The larger the value of k, the more
negative are the eigenvalues of ∇h, and the stronger is
the attracting behavior of h. Figure 5 illustrates this.

Inserting (21) into (22) gives the solution for α:

α = k +
sf
2

+
Re
(√

s2f − 4 pf
)

2
. (23)

Note that (23) does not have any numerical problems as
long as f is not vanishing. However, a critical point of f
on a feature line is a structurally unstable feature which
we neglect. A critical point of f outside a feature line

k = 0.1

k = 1

k = 10

Fig. 5. A feature line (thick) with surrounding stream
lines of h. The larger the value of k, the stronger is the
attracting behavior of h.

is structurally stable, but the choice of g there does not
affect the stable FFF property of h. In case of a vanishing
f outside a feature line we restrict α to a certain pre-
defined upper limit αmax. We used αmax = 100 for all
our experiments.

Remark: The α computed in (23) refers to a forward
integration of f . If we want to do a stabilized backward
integration of f , we do a forward integration of

h′ = −f + α′ g, (24)

which is a modified version of equation (7) with

α′ = k +
s−f

2
+
Re
(√

s2−f − 4 p−f

)
2

(25)

= k − sf
2

+
Re
(√

s2f − 4 pf
)

2
.

5 STABLE FFF FOR PARALLEL VECTOR
LINES

It is known that the parallel vectors operator [16] can
be extracted using a (non-stable) FFF formulation as
given in [21]. In this section, we present a stable version
to extract it. Given two 3D vector fields w1,w2, we
search for all locations with w1 ‖ w2. The original FFF
formulation of [21] defines

q = w1 ×w2 (26)

which gives the FFF

f =

 det(qy,qz,a)
det(qz,qx,a)
det(qx,qy,a)

 (27)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 7

where a is an almost arbitrary vector field whose choice
is discussed in [21]. Note that no statement can be made
about the local stability of f : ∇f may have both positive
and negative eigenvalues. Moreover, since (27) is gener-
ally not divergence-free, no statements are possible about
the Poincaré map around the feature line either.

In order to make f stable, we use the same approach
as in section 4: we define a correction field

g =
f
‖f‖
×

 det(q,qx,a)
det(q,qy,a)
det(q,qz,a)

 (28)

where f refers to (27) and a must be the same field as in
(27). Note that g = 0 on a feature line (i.e., for q = 0).
Furthermore, property 1.2 from section 4 also holds for
the g in (28).1

The new stable FFF h can be computed by (7) where
the choice of the adaptive α is identical to the description
in subsection 4.1.

6 ALGORITHM IN A NUTSHELL

Here we give an overview of the complete extrac-
tion pipeline by recapitulating the FFF-based extraction
schemes from [23], [21] and collecting our findings from
the previous sections. Table 1 accompanies this.

Both feature types (tracked critical points and PV
lines) are defined as lines where a vector field becomes
zero. The computations start with estimating the first
and second derivatives of these fields. Note, that a rough
estimate of the second derivative suffices since it only
affects the strength of the converging behavior in the
neighborhood of the feature line and not the direction
of the FFF on the feature line itself, i.e., the second
derivative is only needed to compute α. In fact, we
used a rather simple estimation with finite differences in
our implementation that we compute on the fly during
integration.

Based on this we compute f ,g, α as given in table 1.
These are the ingredients for the integration of the stable
FFF h. The integration is started at seed points that are
extracted as isolated zeros of certain 2D and 3D fields as
given in table 1. The choice of these seeds is explained in
detail in the literature, e.g. see [23] for the critical point
case and [21] for seeding PV lines.

7 APPLICATIONS

Throughout this paper we use a Runge-Kutta integration
scheme of 4th order with adaptive step size control
(except for the analysis of the step sizes in figure 6h
as detailed below). All computations have been carried
out on an AMD64 X2 4400+. The computation times for
the integrations in the original FFF and the stable FFF
did not differ much – both integrations were finished in
under a second for all data sets in this section.

Figure 6 shows an unsteady flow over a 2D cavity.
This data set was kindly provided by Mo Samimy and
Edgar Caraballo (both Ohio State University) [4] as well

Feature Type

Tracked Critical Points
v(x, y, t) = 0

Parallel Vector Lines
q(x, y, z) = w1 ×w2 = 0

Estimate Derivatives

∇v , ∇∇v ∇q , ∇∇q

Compute Vector Fields for Tracking and Stability

f =

(
det(vy ,vt)
det(vt,vx)
det(vx,vy)

)

g = f
‖f‖ ×

(
det(v,vx)
det(v,vy)
det(v,vt)

) f =

(
det(qy ,qz ,a)
det(qz ,qx,a)
det(qx,qy ,a)

)

g = f
‖f‖ ×

(
det(q,qx,a)
det(q,qy ,a)
det(q,qz ,a)

)

Compute Strength of Converging Behavior

α = k+
sf
2

+
Re
(√

s2
f
−4 pf

)
2

with sf = div
(

f
‖f‖

)
, pf =

f ·df
‖f‖4

Find Seed Points

at domain borders: v = 0

fold bif.:
(

v
det(vx,vy)

)
= 0

at domain borders: q = 0

inside:
(

q
det(qy ,qz ,a)

)
= 0

Integrate Feature Lines

h = f + αg

TABLE 1
Overview of the algorithm.

as Bernd R. Noack and Ivanka Pelivan (both TU Berlin).
1000 time steps have been simulated using the com-
pressible Navier-Stokes equations. It exhibits a non-zero
divergence inside the cavity, while outside the cavity the
flow tends to have a quasi-divergence-free behavior. The
data is almost periodic, with a period of about 100 time
steps in length, and only the first 100 time steps are
shown.

Figure 6a shows the critical points that have been
tracked using the new stable FFF. These lines are com-
pared to the results of the original FFF approach in figure
6b. The main differences are highlighted in figures 6c-
d. The critical point of figure 6c is a very prominent
structure in this data set that persists over all time steps.
The tracking of this critical point starts at the first time
step and ends at the last one. The results of the original
FFF and the stable FFF differ clearly. As elucidated by
the LIC plane, the stable FFF managed to keep the
integration on the critical point while the original FFF
did not. More insight into the integration of this critical
point is provided by the diagram in figure 6e. Here we
plotted the magnitude ‖v‖ over the integration time to
measure the error of the extraction process. The error of
the stable FFF is clearly below the error of the original

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 8

(a) Tracked critical points and fold bifurcations.
The spatial domain is denoted by the LIC
plane, the third dimension denotes time.

(b) Comparison of the results of the original FFF
(gray) and the stable FFF (red).

(c) Close-up of 6b (view from below).

(d) Close-up of 6b. Same structure as in
figure 4.

0

0.01

0.02

0 0.25 0.5 0.75 1

‖v‖

integration time

Original FFF
Stable FFF

(e) Plot of ‖v‖ over integration time for the critical point of 6c.

0

0.01

0.02

0 0.25 0.5 0.75 1

‖v‖

integration time

Original FFF
Stable FFF

(f) Plot of ‖v‖ over integration time for the critical point of 6d.

‖v‖

10−5

10−4

10−3

10−2

10−1

lowest low default high highest

seed extraction accuracy

Original FFF Stable FFF

(g) Plot of total, minimum and maximum (10%) average of ‖v‖ for all
critical points over different seed extraction accuracies.

‖v‖

10−5

10−4

10−3

10−2

10−1

10−1 10−2 10−3 10−4

Runge-Kutta step size

Original FFF Stable FFF

(h) Plot of total, minimum and maximum (10%) average of ‖v‖ for all
critical points over different step sizes.

Fig. 6. Cavity data set. Topological visualizations and statistical analysis of the results of the original and the stable
FFF approaches. The results have been obtained using an adaptive Runge-Kutta scheme of 4th order except for 6h.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 9

FFF. Note, how the stable FFF is able to correct itself as
‖v‖ becomes lower towards the end. Figure 6d shows the
closed structure already known from figure 4. Here we
seeded also from the second fold bifurcation: the original
FFF integration diverges towards the inside of the circle.
The plot of ‖v‖ in figure 6f shows that the original FFF
integration is constantly moving away from the critical
point.

In figures 6g-h we analyze whether and how the
integration step size and the seed extraction accuracy
influence the outcome of the integrations. To do so,
we computed the average of ‖v‖ for all tracked critical
points and plotted it as a dot. Furthermore, we averaged
the highest and lowest 10% of all values of ‖v‖ and
plotted them as a bracket around the total average to
get an estimate of the distribution. Note that the y-axis
has a logarithmic scale.

The default seed extraction accuracy matches the
resolution of the data set (256 × 96 × 100). The
two coarser/finer resolutions are two and four times
lower/higher. It can be seen in figure 6g that the lower
resolutions have a negative impact on the quality of the
extraction result as the averages of ‖v‖ are higher here.
Note for the lowest resolution how the original FFF is not
able to return to low magnitudes: the minimum average
is about 10−2 for this case while it is 10−3 for the other
resolutions. The stable FFF is able to reach the same
minimum average of 10−4 for all resolutions. Also note
that all average values of the stable FFF are at least one
order of magnitude below their respective counterparts
of the original FFF.

In order to control the step size explicitly we used a
4th order Runge-Kutta scheme with fixed step size and
monitored our adaptive integration scheme first. It turns
out that the step sizes taken by the adaptive scheme
are in the interval [0.001, 0.02]. How does the step size
influence the quality of the results? For example, would a
smaller step size give better results for the original FFF?
As evidenced in figure 6h, the choice of the step size
does not play a significant role in this setup (as long
as it is chosen within reason, of course). However, all
average values of the stable FFF are at least one order
of magnitude below their respective counterparts of the
original FFF. This clearly shows the benefit of using the
stable FFF approach over the original one.

In the following we apply our scheme for solving
the PV operator to extract vortex core lines in 3D flow
fields following the definition of Sujudi/Haimes [20] in
the common fashion of Peikert and Roth [16] as lines
fulfilling v||e, where e is the real eigenvector of ∇v. In
other words, we choose w1 = v and w2 = e.

Figure 8 demonstrates the results of our method ap-
plied to a flow behind a circular cylinder. The data set
was derived by Bernd R. Noack (TU Berlin) from a direct
numerical Navier Stokes simulation by Gerd Mutschke
(FZ Rossendorf). It resolves the so called ‘mode B’ of
the 3D cylinder wake at a Reynolds number of 300
and a spanwise wavelength of 1 diameter. The data is

(a) Core line traced using the stable
FFF.

(b) Comparison between origi-
nal (gray) and stable (red)
FFF.

Fig. 7. Vortex structures in the post data set.

provided on a 265× 337× 65 curvilinear grid as a low-
dimensional Galerkin model. The flow exhibits periodic
vortex shedding leading to the well-known von Kármán
vortex street [33]. This phenomenon plays an important
role in many industrial applications, like mixing in heat
exchangers or mass flow measurements with vortex
counters. However, this vortex shedding can lead to
undesirable periodic forces on obstacles, like chimneys,
buildings, bridges and submarine towers.

Figure 8a shows the vortex core lines that have been
integrated using the stable FFF. Figures 8b-c visualize the
original and the stable FFF in the proximity of the core
lines. The original FFF is almost parallel to the core line.
Hence, any inaccuracy in finding the seeds will result
in a spatial offset from the real core. With the stable
FFF, such inaccuracies are not much of a problem as the
stable FFF converges to the real core. Note that figure
8c shows h for k = 1, i.e., the convergence is rather low
for illustration purposes. Figure 5 shows h for k = 10,
which is the usual setting that we use.

Figure 7 visualizes the vortex core lines in the post
data set, which is essentially a cylinder standing on a
platform. There are two major vortex core lines in this
data set directly behind the cylinder. It has been reported
in [27] that this data set poses a problem to the original
FFF approach. Indeed, the core line traced in the original
FFF bends sharply at the lower end of the core line
(figure 7b). The core line traced using the stable FFF does
not have this problem. As shown in figure 7a it is in the
center of swirling stream line motion.

8 CONCLUSIONS

In this paper we introduced the novel notion of a stable
Feature Flow Field. It extends the common concept of
Feature Flow Fields by requiring that the stream lines of
the FFF have an attracting behavior in the proximity of a
feature line. This stabilizes the integration of the feature

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 10

(a) Vortex core line extracted using the stable FFF.

(b) Vortex cores visualized together with stream lines of the original FFF. (c) Vortex cores visualized together with stream lines of the stable FFF.

Fig. 8. 3D flow behind a cylinder exhibiting the well-known von Kármán vortex street.

line and integration errors are automatically corrected.
We developed stable FFF formulations for tracking crit-
ical points in 2D time-dependent vector fields and for
extracting Parallel Vector lines in 3D vector fields. The
results show that in some applications the integrations
of the original FFF diverge from the real feature lines,
whereas with the new stable FFF the feature lines are
captured accurately.

For future work we are interested in developing stable
FFF formulations for tracking critical points in 3D time-
dependent vector fields as well as tracking vortex core
lines over time. Both applications deal with the 4D space-
time domain and should bear some similarities.

All numerical computations exhibit a certain amount
of error. The shortcoming of the original FFF is to not
compensate for this error. With the stable FFF approach
we automatically correct errors by always converging to
the feature line within a certain region around it. This al-
lows to extract features even in numerically challenging
situations using off-the-shelf integrators.

Acknowledgments
Tino Weinkauf is supported by a Feodor Lynen research
fellowship of the Alexander von Humboldt foundation.
Holger Theisel is partially supported by the SemSeg

project under the EU FET-Open grant 226042. The work
of Dr. Van Gelder and Alex Pang was partially supported
by the UCSC/Los Alamos Institute for Scalable Scientific
Data Management (ISSDM).

REFERENCES

[1] D. Asimov. Notes on the topology of vector fields and flows.
Technical report, NASA Ames Research Center, 1993. RNR-93-
003.

[2] R.P. Botchen, D. Weiskopf, and T. Ertl. Texture-based visualization
of uncertainty in flow fields. In Proc. IEEE Visualization 2005, pages
647–654, 2005.

[3] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A
topological hierarchy for functions on triangulated surfaces. IEEE
TVCG, 10(4):385 – 396, 2004.

[4] E. Caraballo, M. Samimy, and DeBonis J. Low dimensional
modeling of flow for closed-loop flow control. AIAA Paper 2003-
0059.

[5] Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, Pawel
Pilarczyk, and Eugene Zhang. Vector field editing and periodic
orbit extraction using Morse decomposition. IEEE Transactions on
Visualization and Computer Graphics, 13(4):769–785, July - August
2007.

[6] Guoning Chen, Konstantin Mischaikow, Robert S. Laramee, and
Eugene Zhang. Efficient Morse decompositions of vector fields.
IEEE Transactions on Visualization and Computer Graphics, 14(4):848–
862, 2008.

[7] S. Depardon, J. Lasserre, L. Brizzi, and J. Borée. Automated
topology classification method for instantaneous velocity fields.
Experiments in Fluids, 42(5):697–710, May 2007.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 11

[8] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical
Morse complexes for piecewise linear 2-manifolds. In Proc. 17th
Sympos. Comput. Geom. 2001, 2001.

[9] C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector
field singularities in unstructured 3D time-dependent datasets. In
Proc. IEEE Visualization 2004, pages 329–336, 2004.

[10] A. Globus, C. Levit, and T. Lasinski. A tool for visualizing
the topology of three-dimensional vector fields. In Proc. IEEE
Visualization ’91, pages 33–40, 1991.

[11] J. Helman and L. Hesselink. Representation and display of vector
field topology in fluid flow data sets. IEEE Computer, 22(8):27–36,
August 1989.

[12] T. Klein and T. Ertl. Scale-space tracking of critical points in
3D vector fields. In H. Hauser, H. Hagen, and H. Theisel,
editors, Topology-based Methods in Visualization, Mathematics and
Visualization, pages 35–50. Springer, 2007. Topo-In-Vis 2005,
Budmerice, Slovakia, September 29 - 30.

[13] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology-based
flow visualization, the state of the art. In H. Hauser, H. Hagen,
and H. Theisel, editors, Topology-based Methods in Visualization,
Mathematics and Visualization, pages 1–19. Springer, 2007. Topo-
In-Vis 2005, Budmerice, Slovakia, September 29 - 30.

[14] Alex Pang, Craig M. Wittenbrink, and Suresh K. Lodha. Ap-
proaches to uncertainty visualization. The Visual Computer,
13(8):370–390, November 1997.

[15] N.M. Patrikalakis. Surface-to-surface intersections. IEEE Computer
Graphics and Applications, 13:89–95, 1993.

[16] R. Peikert and M. Roth. The parallel vectors operator - a vector
field visualization primitive. In Proc. IEEE Visualization 99, pages
263–270, 1999.

[17] Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee,
and Helmut Doleisch. The state of the art in flow visualisa-
tion: Feature extraction and tracking. Computer Graphics Forum,
22(4):775–792, 2003.

[18] J. Reininghaus and I. Hotz. Combinatorial 2D vector field topol-
ogy extraction and simplification. In Proc. Topological Methods in
Visualization (TopoInVis) 2009, 2009. to be published.

[19] G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood.
Visualizing non-linear vector field topology. IEEE Transactions on
Visualization and Computer Graphics, 4(2):109–116, 1998.

[20] D. Sujudi and R. Haimes. Identification of swirling flow in 3D
vector fields. Technical report, Department of Aeronautics and
Astronautics, MIT, 1995. AIAA Paper 95-1715.

[21] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel.
Extraction of parallel vector surfaces in 3d time-dependent fields
and application to vortex core line tracking. In Proc. IEEE
Visualization 2005, pages 631–638, 2005.

[22] H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visual-
ization 2003. Proc. VisSym 03, pages 141–148, 2003.

[23] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological
methods for 2D time-dependent vector fields based on stream
lines and path lines. IEEE Transactions on Visualization and Com-
puter Graphics, 11(4):383–394, 2005.

[24] X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topol-
ogy simplification of planar vector fields. In Proc. Visualization 01,
pages 159 – 166, 2001.

[25] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen.
Topology tracking for the visualization of time-dependent two-
dimensional flows. Computers & Graphics, 26:249–257, 2002.

[26] Xavier Tricoche, Gordon Kindlmann, and Carl-Fredrik Westin.
Invariant crease lines for topological and structural analysis of
tensor fields. IEEE Transactions on Visualization and Computer
Graphics (Proceedings IEEE Visualization 2008), 14(6):1627–1634,
2008.

[27] A. Van Gelder and A. Pang. Using PVsolve to analyze and locate
positions of parallel vectors. IEEE Transactions on Visualization and
Computer Graphics, 15(4):682–695, 2009.

[28] T. Weinkauf. Extraction of Topological Structures in 2D and 3D Vector
Fields. PhD thesis, University Magdeburg, 2008.

[29] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. Cores of
swirling particle motion in unsteady flows. IEEE Transactions on
Visualization and Computer Graphics (Proceedings IEEE Visualization
2007), 13(6):1759–1766, November – December 2007.

[30] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological
structures in two-parameter-dependent 2D vector fields. Computer
Graphics Forum, 25(3):607–616, September 2006. Eurographics
2006, Vienna, Austria, September 04 - 08.

[31] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Ex-
tracting higher order critical points and topological simplification
of 3D vector fields. In Proc. IEEE Visualization 2005, pages 559–566,
2005.

[32] T. Wischgoll and G. Scheuermann. Detection and visualization
of closed streamlines in planar flows. IEEE Transactions on
Visualization and Computer Graphics, 7(2):165–172, 2001.

[33] H.-Q. Zhang, U. Fey, B.R. Noack, M. König, and H. Eckelmann.
On the transition of the cylinder wake. Phys. Fluids, 7(4):779–795,
1995.

[34] X. Zheng, B. Parlett, and A. Pang. Topological lines in 3D tensor
fields and discriminant Hessian factorization. IEEE Transactions
on Visualization and Computer Graphics, 11(4):395–407, 2005.

Tino Weinkauf studied computer science with
the focus on computer graphics at the University
of Rostock, Germany, where he received his
M.S. degree in 2000. Based on his research
carried out at the Scientific Visualization depart-
ment of Zuse Institute Berlin (ZIB) on feature-
based analysis and comparison techniques for
flow fields he received his awarded PhD in com-
puter science from the University of Magdeburg
in 2008. Since 2009 he performs research at
the Courant Institute of Mathematical Sciences,

New York University, based on a Feodor Lynen research fellowship of
the Alexander von Humboldt foundation. His current research interests
focus on flow and tensor analysis, geometric modeling, and information
visualization.

Holger Theisel received his M.S. (1994), Ph.D.
(1996) and habilitation (2001) degrees from
the University of Rostock (Germany) where he
studied Computer Science (1989 – 1994) and
worked as a research and teaching assistant
(1995 – 2001). He spent 12 months (1994 –
1995) as a visiting scholar at Arizona State Uni-
versity (USA), and 6 months as a guest lecturer
at ICIMAF Havana (Cuba). 2002 – 2006 he was
a member of the Computer Graphics group at
MPI Informatik Saarbrücken (Germany). 2006 –

2007 he was a professor for Computer Graphics at Bielefeld University
(Germany). Since October 2007 he is a professor for Visual Computing
at the University of Magdeburg. His research interests focus on flow
and volume visualization as well as on CAGD, geometry processing and
information visualization.

Allen Van Gelder received the BS degree in
mathematics from the Massachusetts Institute of
Technology, and the PhD degree in computer
science from Stanford University in 1987. He
is currently Professor of Computer Science at
the University of California, Santa Cruz. He has
worked in the areas of computer animation, sci-
entific visualization, algorithms, and logic. He is
a member of the IEEE Computer Society.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2010 12

Alex Pang received the BS degree in industrial
engineering from the University of the Philip-
pines, and the MS and PhD degrees in com-
puter science from the University of California
at Los Angeles in 1984 and 1990, respectively.
He is currently Professor of Computer Science
at the University of California, Santa Cruz. He
has worked in the areas of comparative and
uncertainty visualization and flow and tensor
visualization. He is a senior member of the IEEE
and a member of the IEEE Computer Society.

