EL2310 — Scientific Programming
Lecture 15: OOP in C++

iy

Fy,
FKTHS

VETENSKAP
39 OCH KONST 9%

Ramviyas Parasuraman (ramviyas@kth.se)

Royal Institute of Technology — KTH

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Overview

Overview

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

So far..

> OOP concepts in C++
> Classes: definition and declaration

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



> Inheritance, Overloading and Polymorphism

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++
@0000

Reminders

Lecture 15: OOP in C++
Reminders




Group presentation today

> Group 10 (Helmi and Pang)
- How to optimize C code. Explain with examples

> Group 12 (Victor, Anton.D, and Bjorn)
- Introduce Genetic Algorithms (GA)
- Implement a GA solution for a problem in C++, e.g., Traveling
Salesman Problem

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Group presentation on Wednesday (14/10)

> Group 13 (Nikhil and Sanel)
- Huffman Coding for compression
- Implement it in C++

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Group presentation on Thursday (15/10)

> Group 14 (Roberto, Paul and Adam):
- Expectation-Maximization (EM) algorithm
- Monte Carlo Sampling for inference and approximation
- Implement an example in C++

> Group 15 (Pablo and Anton.l)
- Introduce Multi-threading
- Show some implemented examples in C++

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Reminders

The C++ project

> Is announced! http://www.csc.kth.se/ yaseminb/cplusplus.html
Deadline: Monday 26.10.2014

Help session:
Friday 16.10.2014, 1-3:00pm, Room 22:an, Teknikringen 14

Reminder: C project deadline today (extended)!

v

v

v

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

Lecture 15: OOP in C++

Wrap Up




Lecture 15: OOP in C++
@®0000C

Wrap Up

Destructor

>
>
>
>

To free memory (DMA) when an object is deleted
Only 1 destructor in a class
Syntax: ClassName () ;

Class A {

public:
A(); // Constructor
A(); // Destructor

}

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++
[o] le]e]

Wrap Up

Source and header file

> The definition goes into the header file .h
> The declaration goes into the source file .cpp

> Header file ex:
class A{
public:
AQ);
private:
int mX;
}i
> Source file ex:
#include "A.h"
A::A() :mX(0)

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

this pointer

> Inside class methods you can refer to the object with this
pointer

> The this pointer cannot be assigned (your program decides it
run-time)

Royal Institute of Technology — KTH

Ramviyas Parasuraman

EL2310 - Scientific Programming



Lecture 15: OOP in C++

To make some parameters as "read-only”
const function arguments:
Ex: void fcn(const string &s);

const function type:

Yy v vV VY

Ex: wvoid fcn(int arg) const;

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

Static members

> A static member (data/function) is the same across all
objects.

> |t's a member of the class, not of any single object

> Ex: int A::m._Counter = 0; if m_Counter is a static data
member of class A

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++
000

Operator Overloading

Lecture 15: OOP in C++

Operator Overloading




Lecture 15: OOP in C++
00

Operator Overloa

Operator overloading

> Operators behave just like functions

» Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

> You can overload (provide your own implementation of) most
operators

> This way you can make them behave in a “proper” way for your
class

> It will not change the behavior for other classes only the one
which overloads the operator

> Some operators are member functions, some are defined
outside class

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++
(o] ]

Operator Overloading

Task 1

> Use the Complex number class from before.
Overload/implement:

> std::ostream& operator<<(std::ostream &os,
const Complex &c);

> Complex operator+ (const Complex &cl, const
Complex &c2)

> Complex operator+ (const Complex &c); (member
function)

> Complex& operator=(const Complex &c); (member
function)

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Operator Overloading

Function overloading

> We can create functions and methods with the same name, but
different arguments
> |t is not possible to overload by changing return type
> Example:
void method () ;
void method (int a);
vold method (int b, double c);
void method(int b); WRONG!
int method (int b); WRONG!

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Operator Overloading

Dynamic allocation of objects

>

vV vy vy VvYVvYyy

One reason to use dynamic memory allocation (new/delete):
> Moving around pointers to BIG chunks of memory (avoiding
unnecessary copying)

Makes sense not only for arrays

Objects can also be BIG (e.g. database object can be 500MB!)
Typically, we dynamically allocate objects

We free memory when the object is no longer needed

We pass objects by reference (* or &) to functions

Example:

Database db = new Database ("mydatabase.db");
useDb (db); // void useDb (Database =*db)

delete db;

db = NULL;

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 -

Scientific Programming



Lecture 15: OOP in C++

Inheritance

Lecture 15: OOP in C++

Inheritance




Lecture 15: OOP in C++
)0@00

Inheritance
Inheritance
> Inheritance is a way to show a relation like “is a”
> Ex: acaris a vehicle
> A car inherits many of its properties from being a vehicle
> These same properties could be inherited by a truck or a bus
> Syntax:
class Car : public Vehicle

specifies that Car inherits from Vehicle

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Inheritance and Constructors

v

If you have three classes A, B and C,

where

> Binherits from A (class B: public A)

> Cinherits from B (class C: public B)

When you create C:

C c;

the constructor from the base classes (B and A) will be run first
Execution order

1. Constructor of A
2. Constructor of B
3. Constructor of C

v

v

v

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++
elele] }

Inheritance

Access specifiers

> private: can be accessed from:
> inside of the class

> public: can be accessed from:

> inside of the class
> subclasses
> outside of the class

> protected: can be accessed from:

> inside of the class
> subclasses

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



morphism and Virtual Functions

Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology — KTH

ific Programming



Lecture 15: OOP in C++
00000000

Polymorphism and Virtual Functions

Polymorphism

> A variable/function can have more than one form
Example of polymorphism: operator/function overloading

We can have sub-type polymorphism:
a variable can be of more than one form

> A variable of a base type can hold an object of a sub-type

In C++ implemented using references or pointers to base
classes

A\

v

\

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



O@0000000

Polymorphism example

> class Vehicle

ilasi Car: public Vehicle
(..}

Vehicle *vl = new Vehicle();
Vehicle *v2 = new Car();

v2 is a Car hidden inside a variable of type pointer to Vehicle!
We can then write: v1 = new Car();

So, v1 can hold both a Car and a Vehicle (or even a Truck!)
Polymorphism!

vy vV v v Y

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++
{elele] lelele]ele]e]

Polymorphism and Virtual Functions

Subclasses as arguments to function

> If a function requires as argument a pointer/reference to an
object of class A

> We can provide a pointer/reference to any subclass of A

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



O0000@00000

Accessing methods

> class Vehicle

{

void drive();

}

class Car: public Vehicle

{

void openTrunk () ;

}

> Vehicle *v = new Car();

» v->drive () ; runs drive() from the Vehicle part of the Car
> v—>openTrunk () ; NOT POSSIBLE!

> But: ((Car x)v)->openTunk (); WORKS!

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

)OO000@0000

Polymorphism and Virtual Functions

Overloading in sub-classes

>

vvyVvyYyy

v

We can overload a method in a sub-class
class Vehicle {
void drive();

class Car: public Vehicle {
void drive();
}

Vehicle *v1l = new Vehicle();
Vehicle *v2 = new Car();
Car xc = new Car();

vl->drive (); and v2->drive () ; run drive() from the
Vehicle
c->drive () ; runs drive() from the Car

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 -

Scientific Programming



O000000e000

virtual functions

>

vy vyYvyYyy

What if we want the object know what it “really” is and run the
correct drive () method?
Declare the method with the keyword virtual
class Vehicle {
virtual void drive();
}
class Car: public Vehicle {
virtual void drive();

Vehicle *vl = new Vehicle();
Vehicle *v2 = new Car();

vl->drive (); runs drive() from the Vehicle
v2->drive () ; runs drive() from the Car

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 -

Scientific Programming



Lecture 15: OOP in C++
)O0O00000e00

Polymorphism and Virtual Functions

Polymorphism with virtual functions

» What virtual function to run is determined at run-time
> Depends on the “real” type of objects
> Works for both pointers and references

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

00000000 e0

Polymorphism and Virtual Functions

Interfacing: Abstract class

v

In C++, abstract classes provides interfaces
Not to be confused with data abstraction
To make a class abstract : declare at least one of its functions
as pure “virtual” function.
A pure virtual function is specified by placing "= 0”
class Car
{
public:
virtual double getNrWheels() = 0; // pure
virtual function
private:
double NrWheels

}i

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Abstract class

> Abstract classes cannot be instantiated

> Purpose : A base classes which could be inherited in other
classes

> |Inherited classes have to overload each of the virtual functions
in the base class

> Meaning: B (inherits the base class A) supports the interface
provided by A.

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming



	Overview
	Overview

	Content
	Lecture 15: OOP in C++
	Reminders
	Wrap Up
	Operator Overloading
	Inheritance
	Polymorphism and Virtual Functions



