|
|
KTH
/ CSC
/ Kurser
/ 2D1252
/ numalg06
Numerical Algebra
This course consists of two parts: |
| Meeting |
Preparation |
Text |
Contents |
| F1, Sept 5 13:15-15 in E2 |
1.2, 1.3 |
L 1 D 1.2-3 D 2.1-4 |
Introduction: General concepts in
numerical linear algebra. The standard problems. Linear systems: Gaussian elimination and factorizations, pivoting, error analysis |
| L1, Sept 8 13-15 in Karmosin+Vit |
1. Floating point arithmetic, Gaussian
elimination: lab061.pdf |
||
| F2, Sept
12 13:15-15 in E31 |
Linear systems, continued |
||
| L2, Sept 15 10-12
Magenta |
|||
| F3, Sept 18 10:15-12 in E2 |
2.1, 2.3, 2.4, 5.1 |
L 2 D 2.7 |
Sparse matrices: Direct methods for linear
systems |
| L3, Sept 22 10-12
Magenta |
2. Sparse matrices: lab062.html |
||
| F4,
Sept 21 8.15-10 in D3 |
2.5, 5.2 |
L 3 D 3.1-2 3.5 |
Least squares: Theory, normal equations,
singular value decomposition (SVD), numerical rank |
| L4, Sept 29 10-12
Magenta |
|||
| F5, Sept 28 10:15-12 in E3 | 1.5, |
L 4 D 4 |
Eigenvalues: Theory, perturbation
analysis, Transformation algorithms, |
| L5, Oct 6 10-12 Magenta |
3. SVD for data analysis: lab063.pdf Files needed for pattern recognition task zipdata.mat ima2.m |
||
| F6, Oct 5 10:15-12 in Q2 | 5.3 |
L 5 D 6.6 |
Very large matrices: Iterative
algorithms |
| L6, Oct 13 13-15 Brun |